
Roberts, J.C. and Wright, M.A.E. (2006) Towards Ubiquitous Brushing for
Information Visualization. In: Banissi, Ebad and Burkhard, Remo Aslak
and Ursyn, Anna and Zhang, Jian and Bannatyne, Mark and Maple, Carsten
and Cowell, Andrew J. and Tan, Gui Yun and Hou, Ming, eds. Tenth International
Conference on Information Visualisation (IV'06). IEEE, pp. 151-156. ISBN
0-7695-2602-0.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14454/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/IV.2006.113

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14454/
https://doi.org/10.1109/IV.2006.113
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Towards Ubiquitous Brushing for Information Visualizatio n

Jonathan C. Roberts,
Computing Laboratory,
University of Kent, UK
J.C.Roberts@kent.ac.uk

Michael A. E. Wright
School of Computer Science,
University of Nottingham, UK

maw@cs.nott.ac.uk

Abstract

Brushing is a collection of techniques to dynamically
query and directly select elements on the visual display.
Such interaction allows the user to explore the visualiza-
tion, to interactively select a subset of points and see how
these changes are updated in other related views. Tradi-
tionally, the artefacts that are ‘brushed’ are the plotted el-
ements in the visualization (e.g. the points on a scatter-
plot, or the bars of a bar chart). In this paper we discuss
the concept of Ubiquitous Brushing (UB), which brings to-
gether various different types of selection (whether in data
space, screen space or views). Not only can users brush
over elements in the display but also they can brush over
various meta-information such as menus, legends or axis to
affect the highlighted elements. The paper discusses the ba-
sic idea and demonstrates how subsequent UB operations
can be compound together to provide useful dynamic filter
operations.

Keywords— Brushing, Exploratory Visualization, Multiple
Linked Views

1 Introduction

Brushing is used in almost every interactive visualiza-
tion environment. Typically, the technique is simple; the
user moves the brush to different positions on the plotted
graphic to select (and highlight) certain elements that are
bounded by the brush. By doing so the user is able to graph-
ically highlight and hence investigate various aspects of the
data. Brushing is an extremely important investigative tool
because the queries are instantaneous, linked with other rep-
resentations, which gives insight into how they appear in
other dimensions, and above all directly applied to the visu-
alization.

The origins of brushing can be traced back to the PRIM-
9 system by Tukey et al [7] but it was Becker and Cleveland
who defined the term “brushing” in their seminal paper on
“Brushing Scatterplots” [2]. They state “The salient fea-
tures of brushing are visual manipulation of the graph by the

analyst, instantaneous change, the movement of the brush
to different positions on the scatterplot matrix, the ability to
change the shape of the brush ... The brushing methodology
provides a medium within which a data analyst can invent
data analytic methods, which we call brush techniques”.

Over the years various researchers have indeed invented
and extended this basic idea, developing new brush tech-
niques (see section 2). However, all these techniques only
allow the user to brush on the plotted data points. In this
paper we introduce “ubiquitous brushing”. The concept is
that it utilizes the whole display: allowing the user to brush
over any element of the interface, whether plotted elements,
labels or menus. Obviously, these additional components
provide the context for the actual visualization; hence, when
used in a compound brush the user can instantaneously view
how these items relate to other elements. This is signifi-
cant as some operations could be easier or quicker to per-
form through a UB operation, than through traditional tech-
niques.

Ubiquitous brushing hence requires a meaning or opera-
tion to be attached to any part of the visualization system,
such as data-table, menus or a legend, thus giving the user
a rich and unique set of operations from which to view and
amend the brushed elements. This allows the user to di-
rectly explore from one context to another. This breaks the
common assumption that a brush can only be active on the
plot itself. In fact, as we shall see, it is possible and useful to
brush over this additional meta-information to accordingly
change and update the highlighted elements. One way to
implement UB is through the technique named ‘click and
brush’ [24]; where a compound brush can be built up from
a series of clicks – to fix the current information – and sub-
sequent brushes to filter the operation.

2 Overview of brushing & Related work

Brushing has been called by different names; for in-
stance, Buja et al [5] described it as “painting multiple
views”. However, the principles remain the same; that each
of the realizations still assumes that the user will control,

in a visual manner, a brush of a certain shape and area, and
that the results are simultaneously updated on each data plot
(i.e. that the plots are dynamically linked).

Dynamic linked brushing is important: the user can
brush in one view in one dimension and see the results of
that operation in other dimensions in other views. These
subsequent additional views may be different projections of
the data all plotted in the same form, such as those pro-
vided by a matrix of scatterplots, or can be completely dif-
ferent forms. For example, systems like the early PRIM-
9 [7], and tools by Becker and Cleveland [2] principally
used scatterplots, while others like HyperSlice [19] provide
a matrix of similar visualizations. Whereas, tools such as
XmdvTool [20], Snap [11], Waltz [13], GeoVISTA [17] and
CommonGIS [1] link complimentary visualizations. It is
often by interacting with these different visualizations that
the user gains a better understanding of the underlying data.

In fact, dynamically linked brushing is part of the wider
more general field of multiple linked views. For example,
Siirtola [14] looked at brushing multivariate data using a
parallel coordinate graph and the reorderable matrix. For
an in depth discussion of multiple linked tools and issues
see the paper on “Exploratory visualization with multiple
linked views“ [12].

Developers over the years have created various brushes.
The brush must provide a method by which to designate
‘what is selected’ and ‘what is not selected’. Generally a
bounding box or freehand lasso is used to encapsulate the
required elements [23]. However the shape of the brushes
can be point, line or area based. E.g. Stuetzle [15] allows
the user to highlight individual points; Becker, Cleveland
and Weil[3] describe a line-brush that selects points con-
strained to an axis; while many systems use a bounding
box to select items of interest [5, 2, 16, 20]. Brushes are
usually dynamically painted over the plot. For instance,
Ward [21] describes an example which he names “direct,
user-specified’, where the centre of a bounding-box brush
can be moved to the location of a mouse click, and the lim-
its of the brush changed by selecting on the boundary of the
brush.

Becker and Cleveland specify four brush operations
highlight, shadow highlight, delete and label. Highlight,
changes the visual appearance of the element in both the
current view and any linked view (this is known as mask-
ing in the PRIM-9 system [7]); with shadow highlight, both
the visual appearance of the selected elements is changed,
and the other unselected elements are removed from other
linked views (this is similar to the isolation operation that
was implemented in the PRIM-9 system, which extracts any
sub-region and displays it in isolation); Delete is the oppo-
site to highlight in that elements are taken out of the dis-
play; whereas, Label displays additional information about
the elements (usually a text label appears to the side of the

selected elements).
Finally, some systems allow multiple brushes, where

each new selection instance is displayed in a new color [21].
These multiple brushes can then be joined or subtracted
from previous selected elements. This method is a ‘com-
pound brush’ [6] and is most relevant to Ubiquitous Brush-
ing. Wills [23] comprehensively describes different possi-
ble combinations in his selection calculus. It is a pity that
compound brushing, especially using the selection calculus
principles, has not been more widely adopted, perhaps be-
cause it is harder to implement memory based systems or
it is hard for a user to ascertain which items were joined
and how they were joined. Chen [6] provides a solution
to the latter problem in their flexible compound brushing
system based on higraphs. In their system various com-
ponents of the system can be linked together via various
logical operations and expressions (e.g. AND, OR, XOR,
LESS, EQUAL etc). The higraphs provide a clear visual
representation of the selection calculation.

3 Towards Ubiquitous Brushing

Let us imagine a user exploring a multidimensional
dataset of cars. The developer may wish to generate scat-
terplot displaying the weight (x-axis), acceleration (y-axis)
and number of cylinders (symbols), see Figure 1.

Our first observation is that there are many components
to the display (the plot area, legend, axis and labels, menu
etc.) and it is these components that provide the context to
the plot data. For instance, x,y axis labels and tick marks al-
low the user to read off specific values, the legend provides
meaning to the symbols, while menus give control over the
current information.

It is possible to imagine a system that allowed the user
to brush over the legend; brushing over the legend symbol
could cause the associated elements to be highlighted, or
displayed in isolation, or removed from the plot. Remem-
ber, the elements are instantly updated, so a user can move
from one legend symbol to another and instantly observe
the result. Additionally, one could envisage brushing over
the axis. This could act as a beam-brush to select all values
above the position of the pointer.

The second observation is that the exact meaning of a
component is dependent on where it is or what is around
it. For example, the button labelled “X” of a sub-window
in a multiple window system, typically on the top right of
the window, will close that specific sub-window down. Fur-
thermore, values that are plotted in the same vicinity share
similar traits and the elements themselves provide a context
for other elements. In this situation the user may understand
the data, not necessarily because of a legend, axis or other
information, but because of adjacent and congruent infor-
mation.

Figure 1. A demonstration of a scatterplot visualization.
(Realized using Excel).

Figure 2. A subset of the data selected from Figure 1,
is shown in isolation. The user could brush over the
legend to select every item of a particular type.

Although brushing over legend symbols would highlight
elements in one display and would clarify the visualization
when many categories are represented, it would be most
useful in multiple-view visualization where the information
in linked-views would be simultaneously highlighted. This
is because the meaning of each could be different. Consider
when the user selects a sub-area which mostly contains 4
cylinder cars. These are displayed in isolation in a new
view, as shown in Figure 2. Assuming that brushing op-
erations in figures 1 and 2 are linked together; by brushing
over the 4-cylinder symbol in the legend of Figure 1 all the
4-clynder elements would be selected, while brushing over
the elements in Figure 2 only a subset of corresponding el-
ements in Figure 1 would be highlighted in corresponding
views.

Another idea could be to exploit the position of the plot-
ted points, such that all elements, which are in the same
vicinity to a selected point, would be highlighted. So for
example, in a multi-window system the user could have cre-
ated multiple windows with elements inisolation, as soon
as the user moves into the window (i.e. brushes on the win-
dow) all the elements that are displayed in that particular
window are instantaneously selected and highlighted in all
corresponding windows.

Our third observation is that the information in the data-
table or exact-details of some of these components change
as the user explores. For example, as the user manipulates
and explores the information through brushing (or any other
manipulation technique), not only does the state of the in-
dividual elements change (0 for unselected, 1 for selected),
but the specific legend for the new visualization would also
change. Now, not only the data-table, that is used to create
this view, contains a subset of the original data, but also the
legend for the new view contains only three symbols. Also,
both x,y axis are smaller and show more labels, and it is pos-
sible to see more individual items because they are shown at

a larger scale. This zoomed view then can be subsequently
brushed and explored.

Perhaps the user is interested in specific values of some
points, and then the user can view details-on-demand where
specific details appear in a popup at the request of the user.
This popup would contain both labels and values. Hence,
it is conceivable to imagine that not only the labels but also
the new popup information could be brushed. By brushing
over the label, any information that contains that variable
could be highlighted; by brushing over the value, any data
point that also has that value could be highlighted in any
linked view. Furthermore, it is feasible to use this idea to
operate compound brushes; i.e. brush operations that are
made up of multiple sequential operations.

Let us analyze further these concepts. First, each of these
examples assumes that a meaning has been applied to the
component. Thus, one challenge to the developer is to ap-
ply an appropriate and meaningful operation to these com-
ponents. In reality, it may not be appropriate to allocate a
‘brushed’ meaning to every part of the display, e.g. it is un-
clear what brushing over certain menu items such as ‘File’
would mean. Second, the area or hotzone of the elements
to be brushed needs to be defined. This may be straight-
forward, such as in the case of symbols on the legend, or
may be more complex such as brushing on the axis, because
there may be multiple appropriate meanings. Third, it is
possible to utilize ubiquitous brushing as multiple brushes.
This is perhaps more interesting because, as we presented
in our third observation above, the context often changes af-
ter one brushing operation, which could be used to explore
multiple scenarios sequentially: brush some data, which
would generate a new plot, which could be used to do an-
other brush, and so forth.

In definition , Ubiquitous Brushing (UB) is therefore an
interactive technique that allows the user to brush over any
part of the user interface, including (1) any of the plotted

values, (2) any of the surrounding context-giving compo-
nents (such as legends, keys, symbols, labels etc), (3) labels
or data points that popup or (4) windows and containers.
Appropriate meaning needs to be applied to these elements
to generate consequential operations, while the extents of
the brushed areas also need to be defined. Furthermore,
because the components change through an exploration it
useful to allow compound UB operations. Thus, the system
needs to have memory to control the subsequent brushing
operations.

4 Demonstration

We have implemented a demonstration system that vi-
sualizes mail messages. It is not meant to be a complete
mail visualization tool, but is designed to tryout some of
these interactive techniques. MailView, as shown in Fig-
ure 3 currently demonstrates ubiquitous brushing of labels
and other contextual elements. The system consists of three
main visualization windows: the Graph View is a scatterplot
that displays the emails as date vs arrival-time, the Informa-
tion Panel shows the main message (i.e. presents details-
on-demand), the Data Table either lists the complete data or
shows only those elements that are selected. Also, the Tool
Box window provides buttons and menus to change the op-
eration of the system.

In this implementation the user can ubiquitously brush
over any element in the Data Table as well as most la-
bels and information in the details-on-demand windows
(e.g. within the Information Panel). Additional scatterplots
(Graph windows) can be created as well to show selected
elements inisolation, but these are not shown here. Each of
the windows are linked together such that any brushing op-
eration in one window is automatically highlighted in sub-
sequent windows. This system was developed from previ-
ous incarnations, and we encourage the reader to consult
these for more details of the workings of the system [8, 24].

Let’s start by selecting some elements. Figure 3 shows
MailView with some elements selected, in this case we have
initially brushed over one point which gets highlighted in
blue, and circular brush of a larger size is used to select a
further six elements which are highlighted in red. Each sub-
sequent selected elements are highlighted in different col-
ors, and the details are shown in the Data Table view, see
Figure 3 top. So far, this demonstrates traditional brush-
ing operations. However, ubiquitous brushing permits us to
brush over any component of the system.

The user can brush over any item of the data table. Fig-
ure 4 shows the situation after the user has brushed over the
From field in the fifth row of the Data Table. In this case
the brush falls over “To CS-staff” and the ubiquitous brush
dictates that any element that is also sent “To CS-staff” is
additionally highlighted. These additional elements are also

added to the Data Table, as shown in black at point B on the
figure. Any other relevant information is also updated, such
as the data in the Information Panel. Because the brushing
is dynamic, the user can subsequently move and brush over
any other items. This is shown in Figure 5, where the user
brushes over the email address “S.J.Thompson” in the From
field. Subsequently, any other email “From S.J. Thompson”
is highlighted in all the other views.

The user could also brush over the menus. Thus if they
brush over the “TO” menu item in the Data Table then all
emails that were sent “To” any of the addresses currently
listed in the Data Table list will get highlighted in any view.

The user can also brush over the details-on-demand in-
formation in the Information Panel. Figure 6 shows that
the user has taken the state of Figure 4, where the user had
brushed over the To field. This operation had resulted in
the new email From D.J.Sowrey being displayed in the In-
formation Panel. In this operation the user subsequently
brushes over that email address in the Information Panel to
discover other emails from that person. Alternatively, the
user could brush over the item labelled 15:00 to display any
other email sent at 3pm.

Such dynamic brushing operations allow the user to ex-
plore from one situation to another. This technique is im-
plemented using the Click and Brush principle [24]; where
the user can brush over some elements, click on them to
fix them which consequently stores them into the Selection
Data Table. Users can then make subsequent brushing op-
erations ubiquitously on any part of the display.

5 Discussion and Conclusions

UB is a direct manipulation brushing technique that ex-
tends current brushing ideas by allowing the user to brush
over any element in the display, as well as the plotted
data points. By using this technique the user may be able
to select elements more efficiently, and a developer could
build resourceful systems. This is most useful when used
as a compound brush to allow the user to directly ex-
plore through multiple scenarios. In fact, the most relevant
related-work is the structure-based brushes by Fua, Ward
and Rundensteiner [9]. Their techniques do allow multi-
ple drill-down/roll-up operations but their work focussedon
brushing hierarchies and did not allow the user to brush over
a wider area. Even though UB is a creative technique there
are obviously some challenges to overcome:

First, because UB is a direct manipulation approach the
interface is transparent to the user, and it may be difficult
for a user to understand the exact result of the particular
ubiquitous brush operation. This is a general problem with
direct brushing especially compound brushing techniques.
One solution is to use a history list, where every operation
is stored and displayed in a list and the user can role back

to a previous instance. Alternatively, different techniques
could be use to clarify the operation; such as annotating de-
tails as transparent layers to generate a meta-visualization
of the operation [22] or by explicitly drawing a graph rep-
resentation of the brushed results, such as used by Chen [6]
in their hygraph representation.

Second, the refresh rate needs to be kept high. This is an
important consideration, especially with large datasets.It is
ideal to aim for an update rate of 10 frames per second [18].
Thus, appropriate data structures need to be used to high-
light the correct information. We utilize associated arrays
to locate the right information.

Third, the information needs to be instantaneously up-
dated in multiple views; various associated lists need to
be kept to allow different information to be retrieved in a
timely manner. We use the linking model by Boukhelifa et
al [4] to achieve this coordination.

Fourth, highlighting is another important issue that needs
to be considered; we use color to represent different states
of the information and multiple views to display the infor-
mation in isolation. However, there are alternatives, suchas
focus and context, masking and distortion.

Finally, in this paper we have discussed Ubiquitous
brushing that fits in well with other brushing operations.
It is imagined that this technique can be further developed
and integrated with other techniques, such as the hygraphs
of Chen [6], selection calculus [23] and high-dimensional
brushes [10].

Acknowledgments

We acknowledge Simone Frau for an earlier version of
the MailView tool and Andrew Runnalls for beneficial dis-
cussions of this idea.

References

[1] G. Andrienko and N. Andrienko. Making a GIS intelli-
gent: CommonGIS project view. InAGILE’99, pages 19–
24. Crete University Press, April 1999.

[2] R. A. Becker and W. S. Cleveland. Brushing scatterplots.
Technometrics, 29(2):127–142, 1987.

[3] R. A. Becker, W. S. Cleveland, and G. Weil.The use of
Brushing and Rotation for Data Analysis, pages 247–275.
Wadsworth Brooks/Cole, 1988.

[4] N. Boukhelifa, J. C. Roberts, and P. Rodgers. A coordina-
tion model for exploratory multi-view visualization. InProc.
CMV’03, pages 76–85. IEEE, July 2003.

[5] A. Buja, J. A. McDonald, J. Michalak, and W. Stuetzle. In-
teractive data visualization using focusing and linking. In
Proc. Visualization ’91, pages 156–163. IEEE Computer So-
ciety Press, 1991.

[6] H. Chen. Compound brushing explained.Information Visu-
alization, 3(2):96–108, 2004.

[7] M. A. Fisherkeller, J. H. Friedman, and J. W. Tukey.PRIM-
9: An Interactive Multidimensional Data Display and Anal-
ysis System, pages 91–109. Wadsworth Brooks/Cole, 1988.

[8] S. Frau, J. C. Roberts, and N. Boukhelifa. Dynamic coor-
dinated email visualization. In V. Skala, editor,WSCG05,
pages 187–193, Plzen, Czech Republic, January 2005.

[9] Y.-H. Fua, M. O. Ward, and E. A. Rundensteiner. Navigating
hierarchies with structure-based brushes. InProc. Informa-
tion Visualization, pages 58–64, San Francisco, California,
USA, October 1999. IEEE Computer Society Press.

[10] A. R. Martin and M. O. Ward. High dimensional brushing
for interactive exploration of multivariate data. InProc. Vi-
sualization ’95, pages 271–278. IEEE, 1995.

[11] C. North and B. Shneiderman. Snap-together visualization:
A user interface for coodinating visualizations via relational
schemata. InAdvanced Visual Interfaces, pages 128–135,
2000.

[12] J. C. Roberts.Exploratory visualization with multiple linked
views. In Exploring Geovisualization A.MacEachren and M-
J.Kraak and J.Dykes, Eds, Chapter 8, Amsterdam: Elseviers,
pages 159-180, 2005.

[13] J. C. Roberts. Waltz: an exploratory visualization tool for
volume data using multiform abstract displays. InVisual
Data Exploration and Analysis V, Proc. SPIE Vol. 3298,
pages 112–122, January 1998.

[14] H. Siirtola. Combining parallel coordinates with the reorder-
able matrix. In J.C.Roberts, editor,Proc CMV’03, pages
63–74, July 2003.

[15] W. Stuetzle. Plot Windows, volume 82, pages 466–475.
Wadsworth Brooks/Cole, 1987. Also in Dynamic Graphics
for Statistics, W.S.Cleveland, M.E.McGill ed. Wadsworth
Brooks/Cole, 1988, 225-245.

[16] D. F. Swayne, A. Buja, and D. T. Lang. Exploratory visual
analysis of graphs in ggobi.Proc. 3rd Int. Workshop on Dis-
tributed Statistical Computing, March 2003. Vienna.

[17] M. Takatuska and M. Gahegan. GeoVISTA Studio: A code-
less visual programming environment for geoscientific data
analysis and visualization.Computers and Geosciences,
28:1131–1144, 2002.

[18] J. J. Thomas and K. A. Cook.Illuminating the Path: The Re-
search and Development Agenda for Visual Analytics. IEEE
Press., 2005.

[19] J. J. van Wijk and R. van Liere. Hyperslice: visualization
of scalar functions of many variables. InProc. Visualization
’93, pages 119–125, 1993.

[20] M. O. Ward. Xmdvtool: integrating multiple methods forvi-
sualizing multivariate data. InProc. Visualization ’94, pages
326–333. IEEE Computer Society Press, 1994.

[21] M. O. Ward. Creating and manipulating n-dimensional
brushes. InProc Joint Statistical Meeting, pages 6–14, 1997.

[22] C. Weaver. Visualizing coordination in situ. InProc Info-
Vis’05, Minneapolis, MN, October 2005. IEEE.

[23] G. J. Wills. 524,288 ways to say ‘this is interesting’. In
Proc. IEEE Symposium on Information Visualization, pages
54–61. IEEE Computer Society, 1996.

[24] M. A. Wright and J. C. Roberts. Click and brush: A novel
way of finding correlations and relationships in visualiza-
tions. In L. Lever and M. McDerby, editors,Proc. Theory
and Practice of Computer Graphics, pages 179–186. EG,
June 2005.

Figure 3. The MailView application consists of three
main visualization windows and one control window.
The Data Table view (top) either shows the detail of ev-
ery element or solely the selected elements (in this ex-
ample it is showing the selected elements). The Graph
view (center) depicts emails as date vs arrival-time, the
Information Panel (lower left) shows the email details.
The user has selected one element, annotated as (1),
and a further six annotated as (2), these are shown in
isolation in the Data Table view.

Figure 4. Ubiquitous brushing means that any item in
the Data Table view can be brushed. So, continuing on
from Figure 3, this screenshot shows the situation af-
ter the user has brushed over the TO field in the fifth
row of the Data Table (labelled as A). By doing so, any
item that is also sent TO this person is displayed in the
Graph View (3). Plus these new elements are appended
to the Data Table. Moreover, the Information Panel cur-
rently shows the first element of the new information (as
annotated by B).

Figure 5. The user can move the brush, from the posi-
tion in Figure 4 to explore other elements. I.e. the user
is brushing over the From field, and it selects a different
set of elements as shown by label (4).

Figure 6. Additionally, the user can brush over other
labels and elements, to explore other scenarios. This
shows the user brushing over another From field (this
time on the Information Panel) continuing from the state
in Figure 4.

