
HAL Id: lirmm-00153855
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00153855

Submitted on 12 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visually Mining the Datacube using a Pixel-Oriented
Technique

David Auber, Noël Novelli, Guy Melançon

To cite this version:
David Auber, Noël Novelli, Guy Melançon. Visually Mining the Datacube using a Pixel-Oriented
Technique. IV’07: 11th International Conference on Information Visualisation, Jul 2007, londres,
France. �lirmm-00153855�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00153855
https://hal.archives-ouvertes.fr

Visually Mining the Datacube using a Pixel-Oriented Technique

David Auber

CNRS UMR 5800 LaBRI

Bordeaux, France

David.Auber@labri.fr

Noël Novelli

CNRS UMR 6166 LIF

Marseille, France

Noel.Novelli@lif.univ-mrs.fr

Guy Melançon

INRIA Futurs / CNRS UMR 5506 LIRMM

Montpellier, France

Guy.Melancon@lirmm.fr

Abstract

This paper introduces a new technique easing the

navigation and interactive exploration of huge multi-

dimensional datasets. Following the pixel-oriented

paradigm [8], the key ingredients enabling the interactive

navigation of extreme volumes of data rely on a set of func-

tions bijectively mapping data elements to screen pixels.

The use of the mapping from data elements to pixels con-

strain the computational complexity for the rendering pro-

cess to be linear with respect to the number of rendered pix-

els on the screen as opposed to the dataset size. Our method

furthermore allows the implementation of usual information

visualization techniques such as zoom and pan, anamor-

phosis and texturing. As a proof-of-concept, we show how

our technique can be adapted to interactively explore the

Datacube, turning our approach into an efficient system for

visual datamining. We report experiments conducted on a

Datacube containing 50 millions of items. To our knowl-

edge, our technique outperforms all existing ones and push

the scalability limit close to the billion of elements. Sup-

porting all basic navigation techniques, and being more-

over flexible makes it easily reusable for a large number of

applications.

1. Introduction

The design of new visualization methods and tools be-

comes even more necessary with the continuously increas-

ing volume of available data, which poses a problem that

obviously cannot be solved by relying solely on the increase

of CPU power. According to the “How much information”

project developed at Berkeley, one exabyte of data (1 mil-

lion terabytes) was produced in 2001, with 99,997% be-

ing exclusively available digitally (see (Keim 2001)). In

2003, that quantity seen as individual data production cor-

responded to 800 megabytes per person in one year on the

whole planet (Peter and Varian 2003). A number of re-

search fields now contribute in their own way to the design

of methods and tools to exploit this richness of informa-

tion, among which visual approaches experience growing

success.

This abundance of information of course brings its load

of questions and problems to solve. Companies most of-

ten store their data in structured database making it possi-

ble to couple visualization applications with their own in-

formation systems, helping users to interactively query the

database.

The volume of data is but only one of the issues that

must be addressed here. Indeed, in addition to the dataset

size, the number of possible queries the user can run on

the dataset grows exponentially with respect to the number

of attributes. The Datacube is a device intrinsically cap-

turing that complexity. Put simply, a Datacube encodes all

the possible OLAP (On Line Analytical Processing) queries

that can be processed on a database. The cost of (in-

teractive) OLAP queries is relieved by pre-computing all

possible logical combinations of aggregate functions on a

database. OLAP queries are used to forage datawarehouses

where data is usually stored chronologically. Typical appli-

cation domains of OLAP are marketing, client relationship

management, analysis and prediction of user or consumer

behaviors. Actual research projects address more complex

problems dealing with spatial (geographical) data or multi-

media data, often supporting decision making systems. Ex-

ploring corporate data, thus running dynamic queries on-

line, analysts get a better understanding of situations ulti-

mately leading to decision making or to the definition of

corporate strategies.

The technique we describe in the present paper supports

visual and interactive exploration of large volumes of data

stored into a datacube. The exploration provide the user

with the possibility of looking at the whole data cube, in-

stead of just a subset of tuples resulting from a specific

query. Locating higher level structural patterns, the ana-

lyst can then zoom in the cube and locate regions of the

cube that be further studied and visualized. We build our

solution from pixel-oriented principles astutely applied to

datacubes resulting in an efficient visual mining technique.

2. Datacube basics

Cube operators, or Datacubes, were introduced [6] to ef-

ficiently support multiple aggregations which is widely used

in OLAP databases [1, 3, 4, 13, 7]. They provide multi-

ple points of view on metrics of interest, thus supporting

common decision making or analysis tasks. More precisely,

measured values are aggregated at various levels of granu-

larity across dimensions which can be viewed as criterion

guiding the analysis.

Publications

Author Type Title

1 Auber conf infovis

2 Auber conf iccvg

3 Auber conf iv

4 Auber book lncs

5 Auber conf GD

6 Delest conf infovis

7 Delest conf iv

8 Delest journal lncs

9 Domenger conf iccvg

10 Domenger conf tcvg

11 Domenger conf infovis

Table 1. Publications (papers) are stored accord-

ing to three dimensions: Author, Type (of pub-

lication) and (journal or conference) Title.

A Datacube is computed based on the content of an

attribute table extracted from a database or dataware-

house. The set attributes or table columns is divided in

two parts. The dimensions or categories, called Dim,

gather criterion under which the analysis is usually con-

ducted. Table 1, for example, gathers attributes concern-

ing papers published by several authors. The table it-

self, called Publications contains a set of dimensions

(columns) Dim = {Author, Type, T itle} that can be be

searched according to possible values for Authors, Type
and/or Title.

As mentioned above, a Datacube captures all possible

aggregation of tuples sharing common attributes values. In

other words, the original table can be somehow enriched

using an aggregate function COUNT counting entries on a

subset S ⊂ Dim of dimensions. Equivalently, this amounts

to allow tuples to have any value (ALL) for dimensions not

in S. An additional column then stores the result of this ag-

gregation and contains the number of corresponding tuples.

As an example, Table 2 shows the datacube inferred from

the attribute table in Table 1 in tabular format.

Corresponding Datacube of Publications

Author Type Title Count

1 ALL ALL ALL 11

2 Auber ALL ALL 5

3 Delest ALL ALL 3

4 Domenger ALL ALL 3

5 ALL conf ALL 9

6 ALL book ALL 1

7 ALL journal ALL 1

8 ALL ALL infovis 3

9 ALL ALL iccvg 2

10 ALL ALL iv 2

11 ALL ALL lncs 2

12 ALL ALL GD 1

13 ALL ALL tcvg 1

14 Auber conf ALL 4

15 Auber book ALL 1

16 Delest conf ALL 2

.

34 ALL conf GD 1

35 ALL conf tcvg 1

36 Auber conf infovis 1

37 Auber conf iccvg 1

38 Auber conf iv 1

39 Auber book lncs 1

40 Auber conf GD 1

41 Delest conf infovis 1

42 Delest conf iv 1

43 Delest journal lncs 1

44 Domenger conf iccvg 1

45 Domenger conf tcvg 1

46 Domenger conf infovis 1

Table 2. The datacube inferred from the publica-

tion list in Table 1.

0

Author
Type
Title

Author Type
TitleTitle

Author
Type

Author Type Title

Lattice of cuboı̈ds or powerset of dimensions

{Author, Type, T itle} from the Publications
relation in Table 2.

Figure 1. Semi-Lattice of all possible values for dimensions {Author, Type, T itle} (Table 2).

As one can observe, the effect of the aggregate function

on combination of dimensions can be easily described as a

powerset of dimensions. In our example, combinations have

been grouped according to the number of aggregated di-

mensions. In the first line, all dimensions have been aggre-

gated; as a result the COUNT attribute for this line simply

evaluates to the total number of publications. Lines 2–13

correspond to aggregation over each dimensions, resulting

in a count of publications according to every possible values

of all attributes; that is, the first few lines gives the number

of publications of each author, followed by the number of

publications by type (number of journal papers, conference

papers, etc.). For sake of simplicity, the table does not ex-

plicitly list lines 17 to 33. Observe also that the last lines of

the datacube simply duplicate the original table.

The reading of the datacube is easy since each line can

be interpreted in a straightforward manner. The datacube

presented in Table 2 is however extremely small. In real-

ity, the tabular form of a datacube would expand over tens

or hundreds of pages and is not at all appropriate for inter-

active exploration. Indeed, the size of the datacube can be

computed as follows. Write Dim = {a1, . . . , ak} (where

ai stands for “attribute i”) and denote by A1, . . . , Aq the set

of attribute values for dimensions a1, . . . , ak.

Let A ⊂ Dim be a subset of all possible dimensions.

Denote by Q(A) the number of tuples that coincide on

dimensions in A (that is, the set of tuples that coincide

when their column attributes in A are replaced by ALL
as in Table 2). The size of the datacube is then equal

to
∑

A⊂Dim Q(A). Observe that this value is bounded

above by Πk
i=1(1 + |Ai|) since Q(A) is bounded above by

Πi 6∈A|Ai|. Thus, in any case, we must suspect the datacube

size to grow exponentially as the number of dimensions in-

creases.

2.1. Cuböıds lattice

Given a relation (table) R with dimensions

Dim = {a1, . . . , ak} together with an aggregate function

f , the cube operator is usually expressed as a query:

SELECT a1, . . . , ak, f(M) FROM R
GROUP BY CUBE a1, . . . , ak

Such a query achieves all the “group-by” operations ac-

cording to all combinations of dimensions belonging to the

powerset over Dim. Each sub-query performing a single

“group-by” operations associated with a subset A ⊂ Dim
yields a cuboı̈d [7]. The image on the previous page il-

lustrates the lattice of cuboı̈ds associated with the powerset

over Dim = {Author, Type, T itle}. The powerset of di-

mensions can be represented by a lattice of cuboı̈ds which

naturally maps to a 3D cube since |Dim| = 3.

Various approaches addressing the computation of the

datacube make use of sorting or hash-based techniques [5],

and study optimization strategies allowing to reuse results

previously obtained during execution [1, 16, 13, 12]. More

precisely, they convert the dimension lattice in a processing

tree providing the order according to which cuboı̈ds are to

be computed.

Figure 2. Infovis Contest 2005 semi-lattice: (top left) the whole semi-lattice drawn using a spiral
layout, (bottom left) a zoom + a fisheye on semi-lattice,(right) a node link diagram of a part of the
semi-lattice.

3. Visualization of multidimensional data

The lattice of cuboı̈ds solely encapsulates the order re-

lation between subsets of dimensions implicitly stored in

the datacube. It does not however unfold relations between

data elements or attribute values. Indeed, the cuboı̈d lat-

tice does not reflect the size of tuple sets underlying each

“group-by” operation, for instance. It is however possible

to unfold these details using a different visual representa-

tion, as shown in Figure 1 (previous page).

This node-link representation is more compact than the

tabular form (Table 2), since it makes use of intrinsic links

between tuples. The cuboı̈d lattice structure provides a nat-

ural ranking: tuples sitting at rank i (from left to right) are

those containing |Dim| − i occurrences of ALL. Prede-

cessors of a tuple are easily obtained by replacing attribute

values by the ALL generic value in all possible ways. This

semi-lattice can thus be drawn using drawing algorithms for

directed acyclic graphs, for instance.

This semi-lattice representation provides a lot of visual

information about the data and enables to find interesting

phenomena in the data. For instance, node size in Figure 1

is mapped to the number of tuples underlying each query.

This visual artefact makes it straightforward to see that all

authors have published a majority of their papers in confer-

ences as shows the bigger blue border box in the middle of

the second row. Going down one level, we moreover see

that they publish most of their papers in the same confer-

ence. Node link diagrams such as the one in Figure 1 are

efficient for datacubes (or more generally for datasets) of

about 1000 nodes. Hierarchical graph drawing algorithm

can be used to optimize edge crossing and ensure better

readability. Going for larger datasets however requires al-

ternative visual representations.

Lots of work has already been done on database visual-

ization. For instance, in Polaris [19], Stolte et al. propose

an interactive tool that enables to interactively build a set

of relational queries and visualize the results. Multimen-

sionality is dealt with by letting the user select several 2D

views built from all pairs of dimensions. Specific visual-

izations are furthermore computed depending on the type

of attributes. For details on Stolte et al.’s projection tech-

nique for multidimensional data see [18]. Stolte et al. also

make use of datacubes, building lattices of datacubes to of-

fer multiscale navigation of the data at different levels of

detail.

VisDB [9, 10] by Keim et al. have developed pixel-

oriented techniques mapping data elements to single pixels,

thus making optimal use of the available screen space. Our

work builds on top of pixel-oriented principles, as we shall

see in the forthcoming sections.

3.1. Pixel-oriented visualization for dat-
acubes

From now on, we shall use the 2005 Information Visual-

ization Contest dataset as a running example. This dataset is

made of 458916 tuples over eight dimensions and two mea-

sures. The size of the semi-lattice built from this dataset

contains 56 808 846 items. Figure 2 shows three different

views of the InfoVis 2005 Contest semi-lattice. These snap-

shots illustrate how pixel-oriented views and node link di-

agrams can be combined in order to support interactive ex-

ploration of the semi-lattice. We use an overview window

which can be zoomed in. Starting from visual patterns that

can be located and navigated in the left windows, the user

can query the underlying data and rely on a hierarchical lay-

out of a small subset of the data.

The first ingredient (or sub-process, see the visualiza-

tion pipeline, section 4 below) when building pixel-oriented

visualization is to select a mapping from data elements

to pixels on the screen. Basically, this is done using a

bijective function so that each pixel maps back to a sin-

gle data element. Other sub-processes enter what is often

called the “visualization pipeline” as discussed in section 4.

The pixel-oriented paradigm introduced by Keim (see [8])

can be seen as an optimization problem: pixels should be

mapped so that neighbor pixels in the data are placed close

to each other on the screen. The technique uses a linear or-

der on data elements, often inferred from a (totally ordered)

selected attribute, which can be seen as a map from the data

space onto a line segment. The mapping onto a 2D portion

of the plane then uses a “space-filling curve”.

3.1.1 Fractal curves: Peano-Hilbert and Morton

Space-filling curves go back to Peano and Hilbert (see [14]).

These curves are built using a basic pattern made of adjacent

finite line segments embedded in the plane. Each of the seg-

ments is then replaced with the rescaled original pattern. It-

erating the process, we get a sequence of 1D curves embed-

ded in 2D space with growing complexity (see 3.1.1). The

mathematical object we obtain when iterating this construc-

tion infinitely many times is a curve that fills a bounded rect-

angle: the curve passes through each 2D point only once.

The first six iterations of the Hilbert curve.

The construction iteratively assigns 2D coordinates to a

finite sequence of integers. Indeed, the nth curve of the

Hilbert construction contains 4n 2D-points (joints between

finite line segments) and can thus be used to map an ordered

list of 4n data elements onto the plane. Depending on the

number of available pixels and/or of the number of data ele-

ments, the appropriate iteration can be used to map the data

elements on the screen. In [11] Lawder and King provide an

efficient algorithm to compute this bijective 1D to 2D map-

ping both ways based on a state diagram representing each

state of the construction of the Peano-Hilbert curve. Their

algorithm allows to compute screen coordinates from inte-

ger index (or data index from screen coordinates) in time

⌈log(N)/log(4)⌉ where N is the number of data items.

0

1 2

3 4 5

67

8 9

101112

1314

15

16 17

1819

20

21 22

23 24

25 26

27

2829

30 31 32 33

3435

36

37 38

39 40

41 42

43

4445

46 47

48

4950

515253

54 55

5657

58 59 60

61 62

63 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

1D to 2D mapping for the (left) Peano-Hilbert

curve, (right) Morton curve.

The Morton curve is another example of space-filling

curve that proved to be useful in pixel-oriented visualiza-

tion (see [8]). The Morton curve possesses a nice prop-

erty linking geometry (coordinates) and arithmetic (index):

screen coordinates (x1x2 . . . xn, y1y2 . . . yn) map to index

(x1y1x2y2 . . . xnyn) where each xi, yj) are 0-1 bits. Hence,

again the Morton 1D to 2D map (and vice-versa) can be

computed in time ⌈log(n)/log(4)⌉.

3.1.2 Scanline and spiral curves

Fractal curves have been shown to provide good heuristic

to the optimization problem underlying pixel-oriented visu-

alization [8]. Designing pixel-oriented visualization for the

datacube however requires to take additional elements into

account. Not only do we have to place nearby data elements

close to each other on the screen, but we furthermore wish

to reveal the ranking of elements in the semi-lattice. For this

reason, we have explored other non-fractal 2D embeddings.

The next illustration shows a first example of a non-

fractal space filling curve. Scanline (left) orders pixels top

to bottom and left to right just as letters are implicitly or-

dered on the page of a book. Incidentally, Keim uses this or-

dering when building recursive pixel-oriented patterns [8].

One advantage of the scanline mapping function, in addi-

tion to the ease of computation, is its ability to deal with

various aspect ratio, which reveals to be practical in numer-

ous applications. Writing W for the window width towards

which data elements are mapped, the coordinates for ele-

ment i can be straightforwardly computed through the map

i → (xi = i mod W, yi = i/W). Conversely, the index of

pixel (xi, yi) is i = yi · W + xi.

0 1 2 3 4 5 6 7

89101112131415

16 17 18 19 20 21 22 23

2425262728293031

32 33 34 35 36 37 38 39

4041424344454647

48 49 50 51 52 53 54 55

5657585960616263

63 62 61 60 59 58 57 56

55

54

53

52

51

50

4948474645444342

41

40

39

38

37

36 35 34 33 32 31 30

29

28

27

26

252423222120

19

18

17

16 15 14 13 12

11

10

9876

5

4 3 2

10

Scanline curve (left) and Spiral curve (right).

The spiral curve depicted on the right, also studied by

Keim [8], however proved to be the best candidate for re-

vealing the ranking of elements. Elements are first ordered

according to their rank in the semi-lattice, and then ordered

according to a selected attribute. In doing so, we are able to

map each layer of the semi-lattice to a ring in the spiral pat-

tern, coupling this mapping with visual cues such as color

hue associated with rank (see Figure 2).

The spiral curve has one more property which reveals to

be important when dealing with extremely large datasets.

Writing d for the distance from a ring R to the center (half

width of a centered square), the number of pixels on R is

8 · d. Thus the amount of pixels drawn with a spiral of

width W is:
∑w

i=0 8 · i = 8·(w·(w−1)
2 = 4 · (w2 − w). As a

consequence, the screen position of the ith element can be

computed in constant time (and conversely).

4. Efficient traversal of the visualization

pipeline

The visualization process is often depicted as pipelined

sub-processes taking care of the various operations that

must be conducted from raw data ultimately to a graphical

view on a screen. The diagram below is inspired from Card

et al. [2], and provides a depiction of the pipeline adapted

to our visualization.

As can be seen, the pipeline not only captures the order

in which operations must be carried, but also indicates how

user interaction can trigger lower order processes. Acting

on the screen will for instance trigger computations on part

of the data (second box from the right), itself affecting the

layout (third box) and visual cues (fourth box). The visu-

alization process, when described from the user standpoint

(see Spence [17] for instance), often consists in a discovery

loop going back and forth in the visualization pipeline. Let

us comment on three transformations guiding the computa-

tional process underlying the pipeline, mapping each step

to the datacube visualization:

Interaction

Raw
Information User

Visual
FormDataSet View

Tuples Datacube Anamorphosis
Zoom RotationSpace filling

Curve

Data

Transform
Visual

Mapping

View

Transform

Novelli, ICDT, 2001
Novelli, ISMIS, 2002
Auber, IV, 2005
Auber, Infovis, 2003

0

1 2

3 4 5

67

8 9

101112

1314

15

16 17

1819

20

21 22

23 24

25 26

27

2829

30 31 32 33

3435

36

37 38

39 40

41 42

43

4445

46 47

48

4950

515253

54 55

5657

58 59 60

61 62

63

Visual

Perception

Visualization pipeline (adapted from [2])

• The first step consists in transforming raw data into an

efficient and easily exploitable format. In our case, this

step amounts to the computation of the datacube.

• The second step computes visual attributes (such as

color, shape, texture, position, . . . ; see [20]) for each

data elements. In our case, following a pixel-oriented

methodology, each data element is assigned 2D coordi-

nates and color hue depending on a selected numerical

attribute. In this case, computing the shape of a data

element is irrelevant. Note however that we must per-

form other types of transformations when we build the

node-link view on the right panel, showing part of the

semi-lattice (see Figure 2).

• The third step consists in building the graphical view

shown on the screen. Various types of operations can

be applied to the graphical view itself, not requiring to

go back to earlier sub-processes. Put simply, the view

can be seen as a camera that can move or rotate around

an object. Different types of lens, zoom, wide angle

(or fisheye) allow the application of focus + context

techniques.

Observe that each of these sub-processes has its own re-

quirement and impact on the final cost for building a par-

ticular visualization, both in terms of memory requirements

and time complexity.

Storing visual attributes such as coordinates for all of

the N data elements, requires a minimum of 8 · N bytes.

Additional data must be stored in order to insure efficient

data management when processing usual operations such as

clipping, or when dealing with occlusion issues. Follow-

ing [15], quad-trees (or kd-tree data structures) is a good

choice, but nevertheless require to use at least 12 bytes per

data elements to store ids and tree edges (pointers) for links

between parent and child nodes.

A naı̈ve implementation of the visualization pipeline re-

quires at least 20 bytes memory per item, which amounts

to at least 1 billion bytes (∼ 1 Gigabytes) for a 50 million

elements dataset. Memory management and rendering time

are thus central issues when displaying dataset of that size.

Now observe that the number of pixels displayed on the

screen is relatively small compare to the size of the under-

lying dataset we need to manage. As we shall see, the time

and memory complexity actually depends on the number of

displayed elements (ultimately equal to the number of avail-

able pixels) instead of the number of data elements. That

is, the various processes involved in the pipeline will obey

a time complexity proportional to screen size, although all

dataset elements must remain available in main memory.

The main interest is that we can store many more data ele-

ments than there are pixels and yet provide a real-time vi-

sual navigation of the whole dataset.

5. Visual mapping

Let us first consider the simplest situation, where the

dataset size equals the number of available pixels. We can

then index elements using one of the space-filling curve de-

scribed above to map elements to integer coordinates, which

can then be identified with screen coordinates. Assuming

the user clicks on a single pixel, the integer coordinates of

the pixel can then be used to directly access the correspond-

ing data element. No intermediary computation or memory

storage is needed to traverse the pipeline. This operation

can be done in constant time if we moreover use the spiral

or scanline curve.

Now, let us look at the case where the number of data

elements exceeds the number of available pixels. Data ele-

ments must then be sampled in order to build an overview.

A straightforward strategy is to divide up the dataset into

subsets of identical size containing successive data elements

and to pick one representative in each. This scenario is ad-

vantageous because it does not require additional comput-

ing time, but merely to compose the overall bijection with

basic modular arithmetic. It is also realistic, since succes-

sive elements are similar. Indeed, computing average values

over each of the subsets, for instance, would require addi-

tional computing time without having a decisive impact on

the final image.

The case where the dataset contains less elements than

there are available pixels is of interest since the additional

screen space can be used to enrich the visualization, as we

shall explain. Formally speaking, going from the screen

back to the dataset is then a surjective mapping (since each

pixel maps back to more than one data element).

Zoom and Pan AnamorphosisVisual
Form View Transform

Sending pixels surjectively back to data elements

allows the insertion of glyphs in the final image.

5.1. Shapes and glyphs

Selecting individual elements becomes difficult if not

impossible when data elements map to single pixels. Basic

mechanisms can be used to ease such interaction. Starting

from a one-to-one data to pixel mapping and zooming into

the image brings us to the situation where pixels map sur-

jectively onto data elements. Screen coordinates then map

to fractional coordinates. Rounding up coordinates then se-

lects a representative element. Observe that the rounding

procedure actually identifies neighbor pixels (a rectangular

region on the screen) that all map to the same data element.

We can furthermore compose this operation with filters to

show various shapes instead of plainly mapping the same

value to all neighbor pixels.

Glyphs as side effects of surjective pixel map-

ping circle (left), square (middle), cross (right)

together with fisheye distortion.

6. Discussion and future work

We have shown how pixel-oriented pixel visualization

can be designed in order to visualize very large scale

datasets built from datacubes. Fluid interaction is per-

formed based on constant time traversal of the visualization

pipeline, keeping computational complexity proportional to

the number of pixels in the final image on the screen. Selec-

tion of single data elements is guaranteed through zoom and

fisheye distorsion enabling the insertion of glyphs involving

local surjective mapping.

Our method has been validated against a real-life dataset,

namely the 2005 IEEE Information Visualization Contest.

We were able to actually identify patterns that were found in

data by participants. Our technique was also benchmarked

using “randomly” generated datasets containing 96 936 757
elements. Building the internal data structure took approxi-

mately 20 second on an Intel centrino Duo Core T2600 with

2 Gigabytes of memory (a multi-threaded implementation

of our technique used C++, to take full advantage of the

Duo Core technology).

This paper concentrated more on computational issues

showing how constant time pipeline traversal, and conse-

quently fluid interaction, can be achieved. A longer version

of the paper will include a detailed discussion of our case

study, also looking at usability issues. More details con-

cerning the computation of the datacube, adequately adapt-

ing its computation to the visualization, also need to be re-

vealed. Finally, several properties of space filling curves

can be exploited to optimize our data structure and astutely

use hard disk swap.

Acknowledgements. This research was funded through

the French grant “ACI Jeunes chercheurs” : Cube de

Données – Construction et Navigation Interactive.

References

[1] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta,

J. Naughton, R. Ramakrishnan, and S. Sarawagi. On the

Computation of Multidimensional Aggregates. In VLDB’96,

pages 506–521, 1996.
[2] S. Card, J. Mackinlay, and B. Schneiderman. Readings in

Information Visualization: Using Vision to Think. 1999.
[3] S. Chaudhuri and U. Dayal. An Overview of Data

Warehousing and OLAP Technology. SIGMOD Record,

26(1):65–74, 1997.
[4] P. Deshpande, J. Naughton, K. Ramasamy, A. Shukla,

K. Tufte, and Y. Zhao. Cubing Algorithms, Storage Esti-

mation, and Storage and Processing Alternatives for OLAP.

Bulletin of IEEE, pages 3–11, 1997.
[5] H. Garcia-Molina, J. Ullman, and J. Widom. Database Sys-

tem Implementation. Prentice Hall, 1999.
[6] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data

Cube: A Relational Aggregation Operator Generalizing

Group-By, Cross-Tab, and Sub-Total. In ICDE’96, New Or-

leans, Louisiana, pages 152–159, 1996.
[7] J. Han and M. Kamber. Data Mining: Concepts and Tech-

niques. Morgan Kaufmann, 2001.
[8] D. A. Keim. Designing pixel-oriented visualization tech-

niques: Theory and applications. IEEE Transactions on Vi-

sualization and Computer Graphics, 6(1):59–78, 2000.
[9] D. A. Keim and H. Kriegel. VisDB: Database exploration

using multidimensional visualization. Computer Graphics

and Applications, (5):40–49, 1994.
[10] D. A. Keim and H.-P. Kriegel. Visdb: a system for visualiz-

ing large databases. SIGMOD Rec., 24(2):482, 1995.
[11] J. K. Lawder and P. J. H. King. Using space-filling curves for

multi-dimensional indexing. In B. Lings and K. G. Jeffery,

editors, BNCOD, volume 1832 of Lecture Notes in Com-

puter Science, pages 20–35. Springer, 2000.
[12] K. Ross and D. Srivastava. Fast Computation of Sparse Dat-

acubes. In VLDB’97, Athens, Greece, pages 116–125, 1997.

[13] K. Ross, D. Srivastava, and D. Chatziantoniou. Complex

Aggregation at Mutiple Granularities. In EDBT’98, LNCS

vol. 1377, pages 263–277. Springer Verlag, 1998.

[14] H. Sagan. Space-Filling Curves. Springer, 1994.

[15] H. Samet. The Design and Analysis of Spatial Data Struc-

tures. Addison-Wesley, 1990.

[16] S. Sarawagi, R. Agrawal, and A. Gupta. On Computing the

Data Cube. Technical Report RJ10026, IBM Almaden Re-

search Center, San Jose, CA, 1996.

[17] R. Spence. Information Visualization. ACM Press, 2000.

[18] C. Stolte, D. Tang, and P. Hanrahan. Multiscale visualization

using data cubes ”infovis 2002 best paper”. In INFOVIS,

pages 7–14. IEEE Computer Society, 2002.

[19] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for

query, analysis, and visualization of multidimensional rela-

tional databases. IEEE Trans. Vis. Comput. Graph., 8(1):52–

65, 2002.

[20] C. Ware. Information Visualization: Perception for design.

Interactive Technologies. Moragn Kaufmann, 2000.

