
HAL Id: hal-00495293
https://hal.science/hal-00495293

Submitted on 25 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Living flows: enhanced exploration of edge-bundled
graphs based on GPU-intensive edge rendering

Antoine Lambert, David Auber, Guy Melançon

To cite this version:
Antoine Lambert, David Auber, Guy Melançon. Living flows: enhanced exploration of edge-bundled
graphs based on GPU-intensive edge rendering. IV 2010 - 14th International Conference on Informa-
tion Visualization, Jul 2010, London, United Kingdom. pp.523-530. �hal-00495293�

https://hal.science/hal-00495293
https://hal.archives-ouvertes.fr


Living flows: enhanced exploration of edge-bundled graphs based on

GPU-intensive edge rendering

Antoine Lambert, David Auber, Guy Melançon∗

CNRS UMR 5800 LaBRI & INRIA Bordeaux Sud-Ouest

Abstract

This paper describes an approach exploiting the full

capabilities of GPU’s to enhance the usability of edge

bundling in real applications. Edge bundling, as well as

other edge clustering approaches relying on the use of

high quality edge rerouting. Typical approach for draw-

ing edge-bundled graph is to render edges as curves. But

curves generation can have a relatively high computa-

tional costs and do not easily comply with real-time inter-

action. Furthermore, while edge bundling provides a much

better overall readability of a graph, the bundles make it

more difficult to recover local information. Our goal was

thus to provide fluid interaction allowing the recovery of

local information through specific interaction techniques.

The system we built offers folklore or classical interaction

such as zoom & pan, fish-eye and magnifying lens. We

also implemented the Bring & Go technique by Tominski

et al. [18]. We proposed an approach exploiting the full

computing power of GPU’s when rendering graph edges

as parametric splines. The gain in efficiency when run-

ning all curves computations on the GPU turns bundling

techniques into techniques that can be embedded in inter-

active systems concerned with graphs of several thousands

of nodes and edges.

1 Introduction

Graph drawing algorithms mostly concentrate on the

computation of node positions and try to achieve various

aesthetics to provide readable layouts. A major graph

drawing aesthetics is edge crossing minimization [5] – its

effect on human understanding was demonstrated in pre-

vious user studies [16, 17]. In some cases however, graph

layout algorithms cannot avoid producing edge cluttering

due to high edge density or intrinsic connectivity. This

is typical of force-directed layouts when applied to real

world dense graphs: edges connecting close neighbors in

the drawing mix with long scope edges impairing readabil-

ity or even introducing confusion. The situation is even

worse when laying out data using geographical positions

(see Figure 1(a)).

Edge bundling has been specifically designed to address

the issue of reducing edge cluttering in graph drawings.

Edge bundling was initially introduced by Holten in [10]

for hierarchies and was recently extended to work for gen-

eral graphs [11]. Another recent bundling technique for

general graphs and avoiding node-edge overlaps is pro-

posed by Lambert et al [13]. Alternative solutions are Flow

Maps [6] or edge clustering [20]. Although these solu-

tions differ from edge bundles on a technical level, they

follow a similar idea: given a drawing of a graph, edges

are rerouted and grouped into bundles to improve readabil-

ity. FlowMaps were designed with the specific intention of

producing visual flows, imitating hand drawn maps (such

as Minard’s maps; see [19]), merging edges that share des-

tinations. Holten’s edge bundling and Weiwei et al.’s edge

clustering obtain a similar effect as a by product of edge

rerouting and rendering.

While the graphical effects of grouped edges clearly

provide a more readable layout of the overall graph, the

ability to select or navigate single edges, hopping from

node to node is lost. This is an important issue: provid-

ing nice and readable layouts of graphs is only the first

step towards building usable visualizations. Users not only

want to read maps, they want to interactively explore them!

This paper describes ideas and efforts devoted to the devel-

opment of an interaction-rich navigation system designed

for the visual exploration of edge-bundled graphs. Typi-

cally, the system allows users to explore local neighbor-

hoods, and hop over nodes after edges of a graph have

been bundled or clustered. The system is interaction-rich

because most state-of-the-art, as well as traditional, inter-

action techniques were implemented. Efforts were put into

the design of a system that could support real-time and

fluid navigation of moderately large graphs (up to ten thou-

sands edges).

The mechanism we designed actually assumes edges

have been rerouted using parametric splines (e.g. Bézier

curves). The important ingredient here is that edge routes

∗e-mail: {antoine.lambert, david.auber, guy.melancon}@labri.fr



are determined by control points from which the curves

are computed. Now, because the number of control points

may be quite high, interacting with these visualizations has

a high computational cost. Additionally to control points,

points generated by the interpolation of curves to render

each edge also have to be taken into account. This paper

describes a solution based on the intensive use of the GPU

to perform most of these calculations, providing reactive

implementations of a palette of interaction techniques. The

value of our approach thus adds to the readability of edge-

bundled layouts, and allow real-time manipulation of the

graphical representation of a graph.

The paper first goes over edge bundling basics, before

describing all interaction techniques we thought the sys-

tem out to be equipped of. After insisting on the need to

transfer most, if not all, computation on the GPU side, we

describe the architectural details of our system. The pa-

per concludes by discussing possible system improvements

and future work.

2 Edge bundling

Traditional graph drawing algorithms (see [5, 12]) are

seen as node positioning algorithms. That is, they de-

fine a map: v 7→ (x,y) where v ∈ V is a node in a graph

G= (V,E) and x,y are coordinates where to draw the node

v on the 2D plane (some algorithms consider a map to 3D

space). Edges are then drawn as straight line segments

linking neighbor nodes. This simplistic approach to edge

drawing may impair the readability of the drawing. Indeed,

although drawing algorithms usually try to position nodes

as to avoid edge crossings, they may not achieve this goal

satisfactorily in denser regions of the graphs (as shown in

Fig. 1(a)). Another situation where edge crossings cannot

be avoided is when edges connecting nodes that are drawn

far apart from each other, as there is a high probability that

long edges will be drawn over shorter edges – sometimes

inducing edges to cross at angles larger than 45o degrees

or even close to 90 degrees, making things as bad as they

can be. Another difficulty is when edges are drawn over

nodes, which brings confusion as it then becomes difficult

to distinguish such an edge from other edges going out or

coming into the covered node.

A solution to this classical approach for drawing edges

is to draw edges as curves, allowing them to be drawn

aside from all nodes and avoid crossings. To our knowl-

edge, Gansner et al. [8] were the first ones to use splines for

drawing edges, thus avoiding edge crossings or edges over-

lapping nodes. However, their algorithm was intended for

use on small graphs where edge cluttering did not appear

as an issue. Edge cluttering becomes a major issue when

dealing with larger and denser graphs, for which force-

directed layouts are the most convenient and widely used

graph drawing algorithms (as opposed to other strategies

based on node ranking and sorting, as in [8] for instance;

see also [5, 12]).

Roughly speaking, the idea behind flow maps [6], edge

bundling [10, 11] or clustering [6] is to group edges as to

show how information flows between regions of the graph.

That is, different edges may emerge from neighbor nodes,

all positioned in a same region A in the drawing, and at the

same time connect neighbor nodes again sitting close to

each other in a region B. Edges sharing part of their route

also merge along to show regions where flows concentrate

(see Fig. 1(b)).

In order to achieve flow-like drawing as in Fig. 1(b),

each edge is drawn as a Bézier curve. The problem to solve

then is to compute control points determining the precise

shape of this curve. Edges sharing origin and destination

regions should share control points so that edges group and

give this nice impression of concentrated flows. The orig-

inal version of edge bundling [10] used a hierarchy as the

basic architecture for edge routing – and indeed was only

applicable to hierarchical data, inserting control points on

the hierarchy itself. This was later extended to work with

general graph where the computation of control points for

bundles was combined with a force-directed layout engine

[11]. Weiwei et al. [20] instead compute control points

hooked to a mesh emerging from an initial drawing of the

graph.

3 Interacting with edge-bundled graphs
As mentioned before, bundling or clustering edges to

improve readability and show flows in an aesthetic and

pleasant way was indeed felt as a major improvement on

classical node positioning graph drawing. There is no

doubt about the improvement they bring on the graphi-

cal representation and aesthetics of a drawing. Flows are

clearly seen and interpreted on the overall picture of a

graph. It is however necessary to combine these techniques

with adequate interaction in order to allow easy navigation

and interactive exploration even at a local scale. Indeed,

bundles solve the edge cluttering problem by having edges

go through a same channel; as a consequence, it becomes

tedious to follow a single edge or explore local neighbor-

hoods. We list here interactions we felt a system would

mandatory have to implement and combine in a fully inter-

active environment.

Zoom and Pan – The first and most basic interactions

we need to consider are the classical Zoom and Pan [9]. Al-

though classical, these interactions require to improve the

rendering phase of the edges/curves. The zoom was imple-

mented so the zoom factor and parameters are controlled

through the mouse wheel. Pan is performed by simple and

usual drag and drops. Although basic, these interaction re-

main fundamental to perform large scale navigation move,

going from one region to the other. The combination of



(a) Moderately large graph drawn with straight line edges. The graph nodes

correspond to the USA major cities; edges show migration flows. The graph

contains 1715 nodes and 9778 edges. Nodes are laid out according to ge-

ographical positions of cities, producing a drawing with poor readability,

where edges mix in a totally unordered way and where some nodes are close

to unnoticeable.

(b) The same graph as in Fig. 1(a) now drawn using edge bundling with edges

rendered as Bézier curves

Figure 1: Illustration of edge bundling.

(a) The fish-eye distorts a small region of the graph

for local inspection.

(b) The magnifying lens shows a zoom on a local

region.

Figure 2: Fisheye and magnifying lens

a zoom and pan effect under the wheel mouse makes this

operation relatively easy.

Magnifying Lens and Fish-eye – The magnifying lens

[3] and geometrical fish-eye [7] were also added to the sys-

tem as basic interactors. They allow to get local details

on an area of the graph without having to zoom in (see

Fig. 2(a) and Fig. 2(b)). These techniques allow to get

a rough estimation on the degree of nodes or number of

edges that have been bundled together, and an idea on the

spatial organization of neighborhoods.

Neighborhood highlighting – After edges have been

bundled, the graph gains in overall readability at the loss

of more local information. For instance, connections be-

tween any two particular nodes cannot be easily recovered

and isolated out of a bundle. When designing the system

and deciding on the interactions to implement and com-

bine, we focused on the recovery of these local informa-

tion. By hovering the mouse over any node in the graph

drawing, the user can highlight its neighborhood. This

is accomplished by showing a translucent circle over the

immediate where a node sits while clearly displaying the

neighborhood of the node (top of Fig. 3(a)). The circle

fades off nodes not belonging to the selected neighbor-

hood, temporarily providing a clear view of it. The size

of the translucent circle is fitted as to enclose all immedi-

ate neighbors of the node in the graph. Using the mouse

wheel, the user can select neighbors sitting at a bounded

distance from the node. The size of the translucent circle

adjusts accordingly (bottom of Fig. 3(b)).

Bring & Go – Now, neighbor nodes in the graph do not

always sit close. As a consequence, the translucent circle

highlighting neighbors of a node can potentially be quite

large. That is, the distance between nodes in the graph does

not always match their Euclidean distance in the drawing –



(a) Neighborhood highlighting – selecting a node

brings up its neighbors, fading away all other graph

elements.

(b) Using the mouse wheel, the neighborhood is ex-

tended to nodes sitting further away.

Figure 3: Illustration of the Neighborhood highlighting interaction

this indeed is the challenge posed to all layout algorithms.

The Bring & Go technique introduced by Tominski et al.

[18] solves this paradox. The Bring operation pulls neigh-

bors of a node to near proximity, temporarily resolving a

situation where the layout algorithm had failed. Fig. 4(a)

and Fig. 4(b) illustrates this situation – the passage from

step 1 to step 2 being smoothly animated. Once the neigh-

bors have been repositioned close to the node, the Go op-

eration lets the user decide of a new direction to move to

by selecting a neighbor. After clicking a neighbor node,

the visualization is panned until re-centered around the tar-

get neighbor. The transition is performed by smoothly an-

imating the pan (see Fig. 3). A recent user-study of this

interaction technique has been made by Moscovich et al

[15]. When bringing neighbors close to the selected node,

the edges abandon their curve shapes and are morphed to

straight lines. This is done by modifying the control points

coordinates of each curve so that they are all aligned.

Our system thus comprises a comprehensive palette of

interactions focusing on adjacency or accessibility tasks

(we borrow this terminology from Lee et al.’s [14] task

taxonomy, itself referring to the work of Amar et al. [1]).

That is, tasks such as exploring neighbor nodes, or count-

ing them, finding how many nodes can be accessed from

any given one, etc., can be easily done through direct ma-

nipulation of the graph using zoom, pan, neighborhood

highlight or Bring & Go, for instance. All these interac-

tions techniques have been implemented as interactor plu-

gins for the Tulip graph visualization software [2] and are

available through its plugin server.

4 Maintaining fluid interaction

The challenge we were faced with is that curves gen-

eration have a relatively high computational cost when it

comes to interacting with bundles. Indeed, although the

curves can be drawn in reasonable time for static drawings

using standard rendering techniques, the problem becomes

tedious when one wants to interact on bundles using any

of the techniques described in the previous section. The

curves’ shapes must be continually transformed as the user

moves the mouse and pilots interaction (geometrical fish-

eye or Bring & Go for instance).

Moreover, we did not want fluidity to impact on the

quality of the curves and impose an upper bound on the

number of control points used to compute the edge routes.

Instead, we aimed at producing a system capable of deal-

ing with an arbitrary number of control points. As a con-

sequence, the computation of the points interpolating the

curve itself puts a real burden on the system and calls for

an extremely efficient approach. The solution we designed

avoids performing computations on the CPU as far as pos-

sible, relying on the GPU for almost all curve related com-

putations. The only computations that are potentially per-

formed on the CPU are the original graph layout and the

bundling part.

4.1 Introduction to spline rendering

Now, there are two major issues when rendering a para-

metric spline. Control points define the curve analytically

described as a polynomial (see Eq. (1 for Bézier curves).

Second, once the polynomial has been determined, it must

be evaluated as many times as required in order to inter-

polate the curve itself. As a consequence, when interact-

ing with the graph asking for local deformation of edges,

bringing neighbors closer or following an edge, the curves

must be re-computed on the fly.

A classical approach when rendering a curve is to com-

pute the interpolation points on the CPU, then call appro-

priate graphics primitives and let the GPU render the curve



(a) Bring (step 1) – Selecting a node fades out

all graph elements but the node neighborhood.

(b) Bring (step 2) – Neighbor nodes are pulled

close to the selected node.

(c) Go – After selecting a neighbor (the green

node in Fig. 4(b)), a short animation brings the

focus towards a new neighborhood.

Figure 4: Illustration of the Bring & Go interaction.

on the screen. For instance, a Bézier curve corresponds to

a polynomial whose degree is one less than the number of

control points determining it (other families of polynomi-

als can also be used, such as Hermite’s polynomials). Let

(P0, . . . ,Pn) be control points. The polynomial defined from

these control points is:

Qn(t) =
n

∑
i=0

Bi,n(t)Pi, (1)

where the sum is performed component wise and

Bi,n(t) =

(

n

i

)

(1− t)n−it i, 0≤ t ≤ 1 (2)

are Bernstein polynomials and
(

n
i

)

= n!
i!(n−i)! denotes the

usual binomial coefficient.

In order to be able to easily interact with the edge bun-

dled graphs, even for basic interactions like panning and

zooming, we have to optimize the curves rendering by re-

ducing the computational load on the CPU as much as

possible. One solution could be to pre-compute all curve

points and store them in memory; this obviously is not effi-

cient in terms of memory usage, considering that we want

to draw a large amount of fine-grained rendered curves.

For example, drawing 105 curves (edges) with 100 points

per curves – one point being stored as 3 floats (4 bytes

each), the total amount of memory use would be ∼ 108

bytes (more than 110 Mbytes).

Another solution will be to use the built-in components

of high level graphics API for rendering curves. For in-

stance, in OpenGL, that task can be achieved by using a

standard feature called evaluators. Evaluators can be used

to construct curves and surfaces based on the Bernstein ba-

sis polynomials. This includes Bézier curves and patches,

and B-splines. An evaluator is set up from an array of con-

trol points and allows to compute curve points on the GPU

by sending the parameter t to the rendering pipeline. How-

ever, most of the OpenGL implementations have restrained

the maximum authorized number of control points to eight.

So to draw a Bézier curve or a cubic B-spline with more

than eight control points using evaluators, it has to be done

piecewise by subdividing the curve to render into curves

with fewer control points. Consequently, the performance

to draw high order curves with this technique decreases as

the number of control points grows. So even if evaluators

work well to render curves with a small number of control

points, they are not suitable to resolve our issue of drawing

curves with several dozens of control points efficiently.

4.2 GPU-intensive spline rendering

Our solution delegates the computation of curve points

to the GPU which is perfectly well designed to perform

vectorial computation and floating points operations. By

using the OpenGL Graphics API, we can encapsulate those

tasks in a shader program. This type of program, written

in a C-like language called GLSL (OpenGL Shading Lan-

guage), allows to modify the default behavior of some pro-

cessing units in the rendering pipeline – the vertex process-

ing unit can be customized this way. The purpose of vertex

processing stage is to transform each vertex’s 3D position

in virtual space to the 2D coordinates at which it appears

on the screen. By designing a vertex shader we can ma-

nipulate properties such as node position or color, with all

computations executed on the GPU. Shaders offer tangible

benefits since they are well suited for parallel processing

as most modern GPUs have multiple shader pipelines.

The vertex shader we designed is activated each time

we render a curve on screen. Before sending vertex co-

ordinates to the GPU, the curve’s control points are trans-

ferred to the shader and stored in an array. The maximum

size of that array is hardware dependent and determined at

runtime. On recent GPU, more than one thousand control



points can be handled. Other parameters are transferred to

the program, like the desired thickness of the curve at both

ends. The rendering process then proceeds by sending to

the GPU as many vertex coordinates as the desired number

of points approximating the curve. These vertex coordi-

nates are built according to a strict convention. For each

vertex, an x coordinate contains the value of the parameter

t (0≤ t ≤ 1) at which the polynomial Qn(t) (see Eq. (1) for
Bézier curves) must be evaluated. A y coordinate contains

one of the three following values : −1.0, 0.0, 1.0, encod-
ing the final position of the point to compute (0.0 means

the point is on the curve, 1.0 it is on the top outline and

−1.0 on the bottom outline). Once a vertex reaches the

vertex processing unit in the GPU rendering pipeline, the

vertex shader is executed.The value of parameter t stored in

the x coordinate is retrieved and the associated curve point

(t,Qn(t)) is computed. When drawing a thick curve, the

next curve point is also computed in order to approximate

the tangent and normal vectors on the curve. The computed

point in 3D coordinates is then projected to the 2D screen

space. This projected point is returned as an output of the

vertex program and goes to the next stage of the rendering

pipeline.

We provide as an example in figure 5 the source code of

the vertex shader we designed to render Bézier curves. We

also implement vertex shaders to render two other types

of splines : Catmull-Rom splines and uniform cubic B-

splines. Their source code can be found on the Tulip soft-

ware subversion repository1. The Bézier shader program

performs a ”brute-force” evaluation of the Qn(t) polyno-
mial (see Eq. (1)). The binomial coefficients involved in

the polynomial formula are computed CPU-side using Pas-

cal triangle and encoded in a two-dimensional floating

point texture. Our experiments showed us that numerical

instability appears when number of control points exceeds

120. While computing a Bézier point the maximum value

that can be stored as a float is reached and leads to incor-

rect results. To overcome this problem, we approximate a

Bézier curve defined through more than 120 control points

with the help of a Catmull-Rom spline [4]. This Catmull-

Rom spline has an interesting property: it goes through

all of its control points Pi and is C 1 continuous, meaning

that there are no discontinuities in the tangent direction at

a control point. Now, it turns out that these curves can

be rendered as cubic Bézier curves on each segment in-

duced form neighbor points Pi and Pi+1, where the interme-

diate control points needed to define each cubic curve are

easy to compute. More precisely, let P0, . . . ,Pn be the con-
trol points of the Catmull-Rom spline. The control points

B0, . . . ,B3 needed to draw the cubic Bézier segment be-

tween neighboring points Pi and Pi+1 are: B0 = Pi, B1 =

Pi+(Pi+1−Pi−1)/6, B2 = Pi+1− (Pi+2−Pi)/6, B3 = Pi+1.

We need to pay extra attention when computing control

points of the first and last Bézier segment. That is, when

i = 0, we set B0 = B1 = Pi and when i = n− 1, we set

B2 = B3 = Pi. To render a Bézier curve with more than

seventy control points, we compute a set of points approx-

imating it using the De Casteljau’s algorithm. Indeed, this

method is numerically stable even for curves with a high

number of control points. These computations are per-

formed on the CPU side. Then we draw a Catmull-Rom

spline whose control points are those previously computed.

By computing a reasonable number of points approximat-

ing the high order curve to render, we obtain a curve shape

that closely matches the real one.
4.3 Rendering performances

We evaluated the performance of the GPU based imple-

mentation of spline rendering against the CPU based one.

Our benchmarks consisted in drawing an edge bundled

graph containing two thousands edges drawn as splines

whose number of control points varied from 4 to 87. We

tested the three type of spline we have implemented when

rendering edges : Bézier curves, uniform cubic B-splines

and Catmull-Rom splines. The results are shown in Ta-

ble 1 and are expressed in number of frames per second

produced by each of the rendering method. One can see

that the gain in performance obtained when using the GPU

implementation is really significant. Especially for Bézier

curves, the number of frames per second is multiplied per

25. It reaches 17 for the three type of spline which is close

to ideal fluidity.

5 Conclusion and future work
This paper focused on the usability of edge bundling

in real applications, challenging the bundling technique to

comply with real-time interaction. While edge bundling

provides a much better overall readability of a graph, the

bundles make it more difficult to recover local informa-

tion. Our goal was thus to provide interaction allowing the

recovery of local information through specific interaction

techniques. The system we built offers folklore or classi-

cal interaction such as zoom & pan, fish-eye and magnify-

ing lens. Using these techniques in real applications where

graphs are edge-bundled posed a challenge since the ren-

dering of splines is computationally expensive. We pro-

posed an approach exploiting the full computing power of

GPU’s. On current graphic cards, we gained a factor of 25,

showing that bundling techniques can indeed be used in

interactive systems concerned with graphs of several thou-

sands of nodes and edges.

Although we only considered edge-bundled graph vi-

sualization, other types of information visualization tech-

niques could take advantage of our rendering technique.

1http://sourceforge.net/projects/auber/



Splines type
Rendering

implementation

Estimated

FPS

Bézier CPU 0.68

Bézier GPU 17.2

cubic B-splines CPU 12.79

cubic B-splines GPU 17.5

Catmull-Rom CPU 6.95

Catmull-Rom GPU 17.4

Table 1: Performance comparison between our GPU implementation of splines rendering and a CPU implementation when

drawing and edge-bundled graph containing 2000 edges. The number of control points per edges goes from 4 to 87. For

each curve, 100 points are generated. The CPU used to perform these tests is an Intel(R) Core(TM)2 Extreme CPU X9100

@ 3.06GHz and the graphic card is a NVidia Quadro FX 1700M containing 32 shader units.

Indeed, parallel coordinates views can be smoothed using

splines to improve readability. It is reasonable to imagine

that our GPU-based rendering techniques would allow the

same type of fluid interactions on these graphical represen-

tations.

References
[1] R. Amar, J. Eagan, and J. Stasko. Low-level com-

ponents of analytic activity in Information visualiza-

tion. In IEEE Symposium on information Visualiza-

tion, Washington, DC, USA, 2005. IEEE Computer

Society.

[2] D. Auber. Tulip : A huge graph visualisation frame-

work. In P. Mutzel and M. Jünger, editors, Graph

Drawing Softwares, Mathematics and Visualization,

pages 105–126. Springer-Verlag, 2003.

[3] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and

T. D. DeRose. Toolglass and magic lenses: The see-

through interface. In Proceedings of SIGGRAPH ’93,

1993.

[4] E. Catmull and R. Rom. A class of local interpolating

splines. Computer Aided Geometric Design, pages

317–326, 1974.

[5] G. di Battista, P. Eades, R. Tamassia, and I. G. Tollis.

Graph Drawing: Algorithms for the Visualisation of

Graphs. Prentice Hall, 1998.

[6] P. Doantam, X. Ling, R. Yeh, and P. Hanrahan. Flow

map layout. In IEEE Symposium on Information Vi-

sualization, pages 219–224. IEEE Computer Society,

2005.

[7] G. W. Furnas. Generalized fisheye views. SIGCHI

Bull., 17(4):16–23, 1986.

[8] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P.

Vo. A technique for drawing directed graphs. IEEE

Transactions on Software Engineering, 19(3):214–

230, 1993.

[9] I. Herman, M. S. Marshall, and G. Melanon. Graph

visualisation and navigation in information visualisa-

tion: A survey. IEEE Transactions on Visualization

and Computer Graphics, 6(1):24–43, 2000.

[10] D. Holten. Hierarchical edge bundles: Visualiza-

tion of adjacency relations in hierarchical data. IEEE

Transactions on Visualization and Computer Graph-

ics (Proceedings of Vis/InfoVis 2006), 12(5):741–

748, 2006.

[11] D. Holten and J. J. v. Wijk. Force-directed edge

bundling for graph visualization. Computer Graph-

ics Forum (Proceedins of 11th Eurographics/IEEE-

VGTC Symposium on Visualization), 2009.

[12] M. Kaufmann and D. Wagner, editors. Drawing

Graphs, Methods and Models, volume 2025 of Lec-

ture Notes in Computer Science. Springer, 2001.

[13] A. Lambert, R. Bourqui, and D. Auber. Wind-

ing roads: Routing edges into bundles. In 12th

Eurographics/IEEE-VGTC Symposium on Visualiza-

tion (Computer Graphics Forum; Proceedings of Eu-

roVis 2009). To appear., 2010.

[14] B. Lee, C. Plaisant, C. S. Parr, J. Fekete, and

N. Henry. Task taxonomy for graph visualization.

In AVI Workshop on Beyond Time and Errors: Novel

Evaluation Methods For information Visualization

BELIV ’06, Venice, Italy, 2006. ACM.

[15] T. Moscovich, F. Chevalier, N. Henry, E. Pietriga,

and J.-D. Fekete. Topology-aware navigation in large

networks. In CHI ’09: Proceedings of the 27th in-

ternational conference on Human factors in comput-

ing systems, pages 2319–2328, New York, NY, USA,

2009. ACM.



#version 120

// MAX_NB_CONTROL_POINTS is a hardware dependent constant determined at runtime

uniform vec4 controlPoints[MAX_NB_CONTROL_POINTS];

uniform int nbControlPoints;

uniform int nbCurvePoints;

uniform float startSize;

uniform float endSize;

uniform vec4 startColor;

uniform vec4 endColor;

uniform float step;

uniform sampler2D pascalTriangleTex;

const int maxBezierControlPoints = 120;

const float pascalTriangleTexStep = 1.0 / float(maxBezierControlPoints-1);

vec3 computeCurvePoint(float t) {

if (t == 0.0) {

return controlPoints[0].xyz;

} else if (t == 1.0) {

return controlPoints[nbControlPoints - 1].xyz;

} else {

float s = (1.0 - t);

vec3 bezierPoint = vec3(0.0);

for (int i = 0 ; i < nbControlPoints ; ++i) {

vec2 pascalTriangleTexIdx = vec2(float(i) * pascalTriangleTexStep, float(nbControlPoints-1) * pascalTriangleTexStep);

bezierPoint += controlPoints[i].xyz * texture2D(pascalTriangleTex, pascalTriangleTexIdx).r

* pow(t, float(i)) * pow(s, float(nbControlPoints - 1 - i));

}

return bezierPoint;

}

}

void main () {

float t = gl_Vertex.x;

float size = mix(startSize, endSize, t);

vec3 curvePoint = computeCurvePoint(t);

if (gl_Vertex.y != 0.0) {

vec3 tangent = vec3(0.0);

if (t != 1.0) {

vec3 nextCurvePoint = computeCurvePoint(t + step);

tangent = normalize(nextCurvePoint - curvePoint);

} else {

vec3 prevCurvePoint = computeCurvePoint(t - step);

tangent = normalize(curvePoint - prevCurvePoint);

}

vec3 normal = tangent;

normal.x = -tangent.y;

normal.y = tangent.x;

curvePoint += normal * (gl_Vertex.y * size);

}

gl_Position = gl_ModelViewProjectionMatrix * vec4(curvePoint, 1.0);

gl_FrontColor = mix(startColor, endColor, t);

}

Figure 5: Vertex shader, written in GLSL, used to render Bézier curves up to 120 control points.

[16] H. Purchase. Which aesthetic has the greatest effect

on human understanding? In Symposium on Graph

Drawing GD ’97, Lecture Notes in Computer Sci-

ence, page 248261, Berlin, 1998. SpringerVerlag.

[17] H. Purchase, R. F. Cohen, and M. James. Validat-

ing graph drawing aesthetics. In Symposium Graph

Drawing GD’95, volume 1027 of Lectures Notes

in Computer Science, pages 435–446, Berlin, 1995.

SpringerVerlag.

[18] C. Tominski, J. Abello, F. van Ham, and H. Schu-

mann. Fisheye tree views and lenses for graph visu-

alization. In IV ’06: Proceedings of the conference on

Information Visualization, pages 17–24, Washington,

DC, USA, 2006. IEEE Computer Society.

[19] E. R. Tufte. Envisioning Information. Graphics Press

(8th printing, June 2001), Cheshire, CT, USA, 1990.

[20] C. Weiwei, Z. Hong, Q. Huamin, W. Pak Chung,

and L. Xiaoming. Geometry-based edge clustering

for graph visualization. Visualization and Computer

Graphics, IEEE Transactions on, 14(6):1277–1284,

2008. 1077-2626.


