Northumbria Research Link

Citation: Gibson, Helen and Faith, Joe (2011) Node-attribute graph layout for small-world
networks. In: 15th International Conference on Information Visualisation (IV), 12-15 July
2011, London.

URL: http://dx.doi.org/10.1109/1V.2011.64 <http://dx.doi.org/10.1109/IV.2011.64>

This version was downloaded from Northumbria Research Link:
https://nrl.northumbria.ac.uk/id/eprint/833/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is

available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher's website (a subscription
may be required.)

ok Northumbria g

University
NEWCASTLE ”

]

8 UniversityLibrary


http://nrl.northumbria.ac.uk/policies.html

Node-attribute graph layout for small-world networks

Helen Gibson, Joe Faith
School of Computing, Engineering and Information Sciences
Northumbria University
Newcastle-upon-Tyne, UK
{helen.gibson,joe.faiff@northumbria.ac.uk

Abstract—Small-world networks are a very commonly occur- This pilot study uses a dimension reduction technique de-
ring type of graph in the real-world, which exhibit a clustered  veloped for vector data, targeted projection pursuit, towsh

structure that is not well represented by current graph layaut ¢y ster structure more clearly than other layout algorithm
algorithms. In many cases we also have information about the

nodes in such graphs, which are typically depicted on the gizh

as node colour, shape or size. Here we demonstrate that these
attributes can instead be used to layout the graph in high- Many real-world networks can be approximated by small-
dimensional data space. Then using a dimension reduction world networks. In fact, Albert and Barabasi [3] have
technique, targeted projection pursuit, the graph layout @n  pynothesised that the prevalence of small-world netwarks i

be optimised for displaying clustering. The technique out- : . . .
performs force-directed layout methods in cluster separdbn biological systems is due to inherent structural advarsiage

when app“ed to a sarnp|el art|f|c|a||y generated, small-wdd A small-world network is Where, despite the fact that the

Il. SMALL -WORLD NETWORKS

network. network is large, it takes very few steps to move between
Keywords-Graph Layout; Dimension Reduction; Node- ~ any two nodes. Specifically, they have a smaller than average
attribute; Clustering; Small-world shortest path length and a high clustering coefficient mean-
ing they are also more likely to contain clusters of nodes.
|. INTRODUCTION The most common real-world example of a small-world

Many real-world networks display a small-world network network is from the six degrees of separation experimeat; th
structure, characterised by the fact that they are highlg-cl concept that most people in the United States are separated
tered and have smaller than average shortest path lengthsy only six people in a chain of friendship, as suggested by
Small-world networks are likely to contain cliques (a fully psychologist Milgram [4]. Other examples of small-world
connected subgraph) or at least highly connected subgraphetworks include the collaboration of actors in films [5],
of nodes. Real world examples include neural networkssocial networks, neural networks of the brain [6], and the
social networks and the connectivity of the World Wide Webconnectivity of the World Wide Web [7].

[1]. It has been found that when users arrange such graphs Given that small-world networks are such a commonly
manually, they will seek to organise the graph such thabccurring graph structure, it is then a surprise that so few
nodes in clusters are grouped together [2]. It would theeefo layout algorithms display them well [8]. Force-directeg-la
be useful for graph layout algorithms to also emphasiseethesouts, in particular, do not optimise the visualisation foradl
clusters — but most layout algorithms fail to do this. world networks. This is, in part, because of the short path

Node-attribute graphs are graphs in which all nodes haviength (graph-theoretic distance) small-world networ&geh
a set of attributes associated with them. These attribates ¢ Force-directed layouts such as Kamada and Kawai's [9]
be thought of as a new type of node to which that nodes linkenergy-based layout try to represent graph-theoretiarniist
or, vice-versa, that other nodes in the graph could instead bas Euclidean distances and so if all pairs of nodes have a
defined as attributes. For example, membership of a groupmall graph-theoretic distance then most pairs of nodes are
in a social network could be represented as an attribute gflaced close together and the clustered structure of thghgra
those nodes representing its members, or as a link from & lost. Therefore layouts which can accentuate this dadte
group node to the member nodes. Here we demonstrate thstructure offer advantages over traditional layouts foalsm
attributes associated with cluster membership can paositioworld networks.
each node in a high-dimensional attribute space such that
dimension reduction techniques can then be used to layout Ill. N ODE ATTRIBUTE GRAPHS
the nodes in the graph in two dimensions. The aim of Node-attribute, or multivariate, graphs are graphs that
this technique is first to show the clustering in the graphincorporate attributes on the nodes as well as displayiag th
and ultimately to use this information to analyse whichlinks between the nodes [10]. Node attributes on graphs are
attributes are most influential in the clustering and thelday quite common and the ability to represent them by colour,
in general. shape or size is a functionality included in many pieces



Attributes (O)

then the visualisation is used to imply the node-node and
attribute-attribute relationships rather than takingnthes a
given from the start.

Nodes (X)

IV. GRAPH CLUSTERING

Users value clustering in graphs and they try to recreate
this structure when laying out graphs manually [2]. Tradi-
tional force-directed layouts do not reproduce the clirsgesr

in graphs well; this is because they tend to place all nodes of

Figure 1: A node-attribute graph where the blue circles are .
nodes and the red are attributes. Links exist between th(?“gh degree at the centre of the graph and also try to adhere

blue nodes and between the blue and red nodes. % _the aesthetic criteria of ke_epmg edge _Igngths uniform
which makes cluster separation more difficult [8]. One

attempt to visualise clusterings in graphs is due to Noack
[8], [18] who demonstrated an energy layout algorithm for

of graph drawing software such as Cytoscape [11], Gephtlustering graphs, calling them 'interpretable layoutsce
[12], Pajek [13] and others. However, there is a limit to thethe |inks are not shown in the visualisation but are instead
number of attributes that can be represented this way. Ongsed to position the nodes; the nodes are then also sized
way of representing a node attribute in a graph would be t@jepending on their degree. The graph is not clustered rior t
add an extra node representing the attribute and a (Weughteqayout' rather it is clustered based on the graph-partitpn
link to the graph from the node whose attribute it is, as injdea of cuts and then visualised. A cut is a simple measure
Fig. 1. Obviously actually representing the graph this wayof the coupling between two sets of disjoint nodes, and
would add a Significant number of extra nodes and links tQ\]oack [18] proposes two models: node-repu]sion and edge_
the view and most likely make the graph harder, not easiefepulsion. The node-normalised cut is the ratio of number of
to read. edges between the two partitions to the total possible numbe

Instead, defining the graph this way means the graplf edges between the two partitions. The edge-normalised
can be divided into two separate graphs: the original graplut is then defined as the ratio between the number of edges
with no attributes shown and a bipartite graph where linkshetween the partitions and the product of the sums of the
only exist between nodes and their attributes. This type oflegrees of the nodes in each partition. The edge-repulsion
graph structure contains a subset of graphs termed semnodel is preferred as it is less likely to place nodes of high
bipartite graphs [14] where a semi-bipartite graph hasrsgtco degree in the centre of the graph.
type of nodes as opposed to a set of attributes. Real-world Other attempts for visualising clustered graphs include
graphs which have this semi-bipartite structure include XuHuang and Nyguen’s [19] approach where the graph is di-
et al's [14] network containing genes and gene ontologywided into densely connected subgraphs that are each placed
terms where genes are connected to their ontology termsn their own separate rectangular partition for layout. Zhu
and the terms are linked to each other hierarchically. OtheGraham and Tsiatas [20] use a version of Kamada and
possible real-world examples could be a drug and proteilKawai's force-directed layout and the PageRank algorithm
network where similar drugs (or similar proteins) are lidke for computing a clustered layout while Balzer and Deussen
and a drugs are linked to proteins they target [15]. Sinyilarl [21] use a 3-D graph with pre-defined clusters to first wrap
in social networks, such as those from Facebook, links argpheres around clusters and then use implicit surfaces to
made between friends and a second set of links can be add@gither emphasise cluster separation.
for connections to groups, activities, 'Likes’, 'Fan oftce

Another example of multi-modal graphs are those from
formal concept analysis, known as Galois or concept lattice
These are similar to bipartite graphs but for which a specific Dimension reduction takes some data in high-dimensional
graph visualisation has been developed. The set of nodespace and computes a lower dimensional representation of
are divided into non-disjoint subsets each of which comstain that data, which for visualisation purposes is likely to be
nodes that share the same attributes; and the relatioto dimensions. Methods of dimension reduction include
between subsets are then shown using a Hasse diagram [16jultidimensional scaling, principal component analysid a
The composition of each subset is then shown using bwther linear and non-linear methods.
annotating the glyph representing it. Freeman and White Targeted projection pursuit (TPP) [22] is a linear pro-
[17] used Galois lattices to show social networks withjection method of dimension reduction such that, instead
three types of link: node-node, attribute-attribute andero of searching for the most interesting projection (as with
attribute. However they are different from the graphs weprojection pursuit), the user can interact with the data by
are visualising here as only node-attribute data is used anattempting to move the points around to fit their intuitioman

V. DIMENSION REDUCTION AND TARGETED
PROJECTIONPURSUIT



the algorithm will try to find a projection that best matches VI. NODE-ATTRIBUTE GRAPH LAYOUT
the users desired view. This is an effective technique Bau  pafine a node-attribute graph to be
it allows users to explore and interact with the data in reaI—G(VX, Vo,Exx,Exo) where Vx are the nodes in
time as well as to iteratively make and test hypotheses abou < partition, V, are the nodes in the second partition,
how the data can be projected and what that projection the@XO are the edges linking nodes iy to Vo and Exx
means in the context of the original high-dimensional data, . he edges between the nodes in partiian We call
set. TPP works by the user suggesting a view of the datg,a nodes in/x our entity nodes and the nodes i, our
they wish to see and then searches for a projection that bestripute nodes.
matches that target view. So by taking anx k matrix One pre-requisite for this visualisation is that each node
X and an x 2 target viewT' TPP tries to find ak x 2 haq4s to be defined as a being a member of a particular clus-
projection matrix” that minimises the difference between o pefore the analysis can be carried out. This can be done
the two, wheren is the number of points anklthe number ., \sing particular cluster structure that occurs natyriall
of dimensions. That is the dataset or by using an unsupervised clustering algorith
first, such ag-means, to impose a clustered structure on the
dataset.

The visualisation of the graph will show tHéy nodes
and the Exx edges while the layout will depend on the

As an alternative to user-directed layout, TPP can alsalustering of the nodes and the eddego between thd/x
search for a projection that separates the data into prarodes, that are visualised, and thg nodes, that are not.
defined classes by trying to maximise the distance betweelm order to layout the points, for each nodeliir a vector,
classes through projecting the data on to the vertices of @; with binary entries is constructed based on their links to

min||T — X P|| 1)

simplex [23]. the Vo nodes, i.e. if an edge betweéf;, andVp, exists
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Figure 2: Dataset creation. (a) The four initial cliques oflas. (b) Random links are added between cliques and removed
within cliques. (c¢) Nodes that are chosen as attributesradieated as the smaller nodes. (d) The attribute nodes aid th
connections are removed leaving only the x links. All layouts produced using Yifan Hu's force directiagout in Gephi.



then the entry takes value one and if it does not then takegraph between attribute and entity nodes and the graph of

value zero. connections between the entity nodes only (Fig. 2d).
In this case the graph original consisted of 50 nodes with
pi ={(Pi1, iz, Pis ._.)T| 318 links divided unequally into 4 cliques of sizes 11, 12,

(2) 19 and 8 and the addition of noise to the dataset increased
this to 350 edges. Then the nodes were split into entity and
This can be extended to include relationships to attributeattribute node groups with 30 nodes in the entity group and
which are not only binary but also nominal and real-valued20 nodes in the attribute group. This resulted in clusterssiz
data too, especially if the link is considered to have a weigh of 7, 7, 11 and 5 in the entity group and 4, 5, 8 and 3 in
ing. From this eaci/x can be described aBx (¢, p;) in the attribute group. In terms of links this gives 132 links
[Vo + 1| dimensional space where one of those dimension# the visualisation, 173 links used in the projection and 45
describes the clustet, to which the node belongs. links between the attributes were removed. The graph is then
The aim is then to use TPP to visualise the position oflaid out in three ways: the Yifan Hu force-directed approach
each node in two-dimensional space and use it to separateom Gephi [12] (Fig. 3); TPP (Fig. 4); and Noack’s LinLog
the clusters in the graph as far as possible. In this case tHayout in Fig. 5.
vector p; for each of theVy, nodes is taken as one of the TPP clearly achieves a greater visual separation between
n rows forming then x k matrix, wherek is the number clusters than the force-directed layout. This is espacthlt
of attribute nodes. A two-dimensional projection is found case with some nodes which would be difficult to determine
that minimises the difference between the target projactio which cluster they belong to without colouring. This could
defined by the user and itself. The nodes can be coloureble advantageous in the future as it would free the use of
according to their cluster membership or if no clustering iscolour to show some other attribute. The use of TPP to
proposed then an unsupervised clustering algorithm can bgeparate the clusters is different to just using user choice
used to define one. The links between the entity nodes cai® position the nodes, as in Fig. 3, since in that case the
then be added to the visualisation. position of the nodes is purely dependent on where the user
From this point the user can then either repeatedly selesvant to put them. In TPP, however, the position of the nodes
and drag nodes to move them to fit their idea of how thes the product of a linear projection. Additionally moving
graph should appear and the closest possible projection wibne node, or a group of nodes, in TPP rarely affects only
be shown or the process can be automated. In this case the chosen nodes; other nodes are moved as a consequence
have the centre of each cluster to be positioned over thef trying to fit the selected nodes to their preferred positio
vertices of a simplex is seen as the optimum target viewThat is, the position of the nodes using the TPP algorithm
i.e. where each of the clusters will be most separated frons purely dependent on the attribute nodes and to a lesser
each of the other clusters. This automated process is akiextent cluster membership.
to just the user trying to separate the clusters themselves b LinLog also creates clear spatial separation; however it
dragging points but achieves maximum separation. imposes its own clustering on the data which makes clear
comparisons difficult. While the lack of links in this layout
makes the clustering very clear — and the distances between
In this pilot study, TPP was used to visualise a clusterectlusters gives an indication of the number of links between
small-world network with node-attribute data, and the lssu them — the lack of links means some of the understanding
compared with the same graph visualised using the Yifan Hof how the clusters are related to each other is lost. It also
layout in Gephi [12] and Noack’s LinLog layout [18]. affects the ability to see if there are individual links beam
An example graph with the required properties (small-nodes in different clusters that show interesting infoiorat
world, known clusters, and node attributes) was constducte
by starting with several fully-connected cliques that will
define the clusters in the graph (Fig. 2a). Specifically,qisin  The aim of this approach is to show the clustering that
an artificially generated data set allows control over theoccurs in most small-world networks and its relationship to
properties of the graph in order to evaluate the potentiahode attributes. It can be seen that the layout produced by
success of the technique for real-world data in the futurefTPP does show the clustered structure of the graph more
without having to account for noise or unexpected vari-clearly than a simple force-directed layout did where the
ations. The adjacency matrix that defines the graph waseparation of clusters is mostly discernible by their colou
then randomly mutated to add new links between cliques Further validation on this layout and its success will in-
and removing some links within cliques (Fig. 2b). Nodesclude measuring both the intra-node distances within etast
were then randomly divided into entities and attributeg/(Fi and the inter-node distances between clusters and corgparin
2c) and any remaining links between two attributes arghem between the layouts. Secondly, as it is known that
removed. From this there is data for two graphs: the bigartit users also prefer fewer edge crossings [2] in their graphs,

pij = 1if Ex, o, exists and) otherwisg

VII. EXAMPLE APPLICATION

VIII. CONCLUSION



Figure 5: Noack’s linlog layout which imposes its own clustg on the graph. The blue cluster corresponds to the purple
cluster, the red to the green and the two green clusters teethand blue clusters in the other layouts.



it will be useful to measure the difference between the[11] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T.
numbers of edge crossings between the two layouts that

show links. The purpose of using attributes for layout is
not only important for producing a good layout, they may

also be able to give more insight into the structure of the

graph. Particularly, being able to assess which attribuizg

(12]

be the most influential in the layout and which attributes are

the least, or even completely irrelevant.

Further extensions to this dataset would be to alter the
ratio of entities to attributes and measure how this affectg; 3

the ability to cluster the data and the layout in generalsThi
was also an artificially created dataset and so most redtwor
graphs may contain more noise, specifically it would be
useful to investigate how introducing known exceptions int
the data, such as misleading attributes and wrongly cledsifi

nodes may give an indication of how great an effect they
have on the layout and how easy is it to identify any errors.
It will also be important to test how this technique can scale

to graphs with hundreds or even thousands of nodes.
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