
Visualizing the Evolution of Software Systems using the Forest Metaphor

Ugo Erra, Giuseppe Scanniello, Nicola Capece
Università della Basilicata, Dipartimento di Matematica e Informatica

ugo.erra@unibas.it, giuseppe.scanniello@unibas.it, nicola.capece@unibas.it

Abstract
We present an approach based on a forest metaphor to

ease the comprehension of evolving object oriented soft-
ware systems. The approach takes advantages of famil-
iar concepts such as forests of trees, sub-forest of trees,
trunks, branches, leaves, and color of the leaves. In par-
ticular, each release of a software is represented as a forest
that users (or software maintainers) can navigate and in-
teract with. Users can pass from a release to another one,
so understanding how the entire software and its classes
evolve throughout the past releases. The approach has
been implemented in a prototype of a 3D interactive en-
vironment. A preliminary empirical evaluation has been
also conducted to assess that environment and the under-
lying approach.

1 Introduction
In contrast with software development that typically

takes 1-2 years, software maintenance lasts for many years
after the first release deployed [25]. In fact, a software is
changed and evolved for several reasons that range from
the correction of faults to the introduction of new function-
ality [16]. The execution of maintenance operations has
the effect of increasing the size and the complexity of the
system and gradually decays the original design and the
overall quality of the software. The understanding of the
evolution of a subject software system is vital in todays
software industry [4].

Software visualization is widely employed to compre-
hend source code and to understand the evolution of a
software (e.g., [2], [4], [5]). In particular, a number of
metaphors and supporting tools based on 2D and 3D en-
vironments have been proposed [6], [11], [15], [21]. Al-
though these techniques are useful to comprehend a subject
software and its evolution (e.g., software change [4]), they
often fail to show relevant information (e.g., the presence
of comment in the code).

In this paper1, we propose an approach to visualize
evolving object oriented software system based on a for-
est metaphor [7]. In particular, a release of a subject soft-

1Please read the paper on-screen or as a color-printed paper version,
we make extensive use of color pictures.

ware is visualized as a forest of trees that a user (or soft-
ware maintainer) navigate and interact with. Visual proper-
ties of trees (e.g., trunks and leaves) are mapped according
to well defined rules with the metrics extracted from the
source code. The maintainer can go also throughout the
releases of the subject software to understand its evolution
at three different granularity levels: system, package, and
class. A 3D interactive environment implementing our ap-
proach is proposed as well. To validate this environment
and the underling approach, we have also conducted a pre-
liminary case study on three evolving open source software
implemented in Java.

The work presented here is based on [7] and with re-
spect to it the following main contributions are provided:
(1) an improved version of the metaphor; (2) the applica-
tion of the metaphor to software evolution; (3) a extension
of the interactive 3D environment; and (4) the results of a
case study on 30 releases of three open source software.

The remainder of the paper is organized as follows: in
Section 2, we present related work, while we describe the
approach in Section 3. In Section 4, we present the prelim-
inary empirical evaluation, while Section 5 concludes the
paper presenting future work.

2 Related Work
The city metaphor is one of the most explored natu-

ral metaphors for software visualization (e.g., [12], [3],
[17], [13]). For example, Wettel and Lanza [22] propose a
city metaphor for the the comprehension of object oriented
software systems. Classes are represented as buildings and
packages as districts. Our approach is different because it
is able to visualize more information at low-scale under-
standing (e.g., number of public methods for each class).
Recently, the same authors [23] present a controlled exper-
iment with professionals to assess the validity of both the
city metaphor and their 3D interactive environment. The
results show that their environment leads to a statistically
significant improvement in terms of task correctness and
statistically significantly reduces the task completion time.
A different metaphor based on a natural environment is
presented in [10]. In particular, the authors propose a solar
system where each sun represents a package, while planets



are classes, and orbits represent the inheritance level within
the package. Such metaphor is used to analyze either static
or evolving code and to show suspected risk parts of the
code. Several are the differences between our proposal
and the approaches discussed above. The most remarkable
one is that our proposal offers a proper representation for
methods, attributes, and source code comment. A possi-
ble drawback that affects our metaphor is that it could re-
sult complex in case the maintainer is not properly trained.
This issue is directly connected to the considerable amount
of information our metaphor is able to visually summarize.
Another remarkable difference is that all the approaches
above do not provide any support to understand the evolu-
tion of a software.

In [8] a 3D visual representation for analyzing a soft-
ware systems release history is proposed. The approach
is based on a retrospective analysis technique to evaluate
architectural stability, based on the use of colors to depict
changes in different releases. Differently, Tu and Godfrey
[19] propose an approach that makes an integrated use of
software metrics, visualization, and origin analysis. In [9]
is suggested an approach based on the notion of history to
analyze how changes appear in the software. The authors
also propose a tool for visualizing the histories of evolv-
ing class hierarchies. The main difference between these
approaches and ours is that we consider all the releases of
all the source code artifacts, while these approaches con-
sider snapshots of the system. Furthermore, our proposal
is based on a natural environment and is able to show both
large- and low- scale understanding of evolving software.

3 The Approach
We propose an approach that visualizes object oriented

software systems as 3D graving forests of trees. Maintain-
ers can freely navigate and interact with the forests to im-
prove the comprehension of a subject system. Maintain-
ers can also skip from a release of that system to the sub-
sequent or previous ones. The rationale for adopting the
forest metaphor and defining our approach are related to
large- and low- scale understanding concerns and can be
summarized as follows:

• A tree visualization summarizes complex information
in a natural way.

• A tree is a complex structure composed of unmistak-
able elements such as trunk, branches, leaves, and
color. These properties can be meaningful mapped
onto source code characteristics.

• A forest of trees provides developers with a large-
scale understanding of the design and the proliferation
of classes.

The Rendering of the Trees. The model upon which we
based the creation and the rendering of the trees is based
on the Weber and Penn approach [20], which uses a model
to create the geometrical structure of trees. This model
handles several parameters to modify the property of a tree.
Examples are: the height of the tree, the width of the trunk,
the level of recursion of the branches, leaves orientation,
and so on. To build trees, the approach needs knowledge of
neither botany nor complex mathematical principles. For
example, each branch may have similarity with its parent
and inherit attributes from it. Then, all the branches are
influenced by the primary branches. In our proposal, we
consider a subset of the parameters needed to render a tree,
so affecting its shape (trunk and foliage) according to the
main characteristics of the class the tree represents.

Mapping. We considered the following visual properties
of a tree: height, branch number, branch direction, leave
number, leave color, leaves size, and base size (i.e., the part
of trunk without branches). On the other hand, the metrics
exploited to influence the visual appearance of a tree are:
lines of code (LOCs), lines of comment (CLOCs), number
of attributes (NOAs), number of public methods (NEMs),
number of private methods (NOMs), and the total num-
ber of methods (NEOMs). Although there are many other
source code metrics available in the literature, we consid-
ered only the most widely known (e.g., [14]). The rationale
for this choice relies on the fact that different metrics may
complicate the metaphor.

In Table 1, we summarize the mapping between met-
rics and visual properties of a tree. Some visual prop-
erties highlight the local characteristic of a given class
(e.g., NOMs/NEOMs), while others make sense only in
case trees are analyzed together (e.g., LOCs). In partic-
ular, we mapped the height of a tree with LOCs, while
the number of branches that sprout from the trunk corre-
sponds to NEOMs. A tree with few branches represents a
class with few methods. To highlight the number of pub-
lic methods, we use branch orientation. In case the value
NEMs/NEOMs is close to one, the class has many pub-
lic methods and its tree has branches pointing out. Differ-
ently, if NEMs/NEOMs tends to zero, the class has many
private methods and its tree has branches oriented paral-
lel to ground. NOAs is mapped onto the number of leaves,
while the leave size is equal to 1/NOAs. Then, a class with
few attributes is represented as a tree with large leaves.
A large number of leaves indicates a class with many at-
tributes. The color of the leaves ranges from green to
brown. A class having the number of CLOCs greater than
LOCs is represented as a tree with a green foliage, brown
otherwise. Finally, the base size of a tree is computed as
NOMs/NEOMs. A value close to one indicates that a class



METRICS VISUAL PROPERTIES

LOCs Tall
NEOMs Branches
NOAs Number of leaves
NEMs/NEOMs Branches orientation
1/NOAs Size of leaves
LOCs/CLOCs Color of the leaves (from green to brown)
NOMs/NEOMs Base size
LOCs = Lines of Code
CLOCs = Lines of Comment
NOAs = Number of Attributes
NEOMs = Total Number of Methods
NEMs = Number of Public Methods
NOMs = Nmber of Private Methods

Table 1: Metrics and visual properties mapping.

has many private methods and then the tree has a large base
size. Conversely, if NOMs/NEOMs is close to zero, the
class has many public methods and its tree has a small base
size. The mappings between the properties of a tree and the
selected metrics try as much as possible to ease the com-
prehension of systems, packages, and classes [7].

Sample Trees. Figure 1 shows the trees of three sample
classes for the systems considered in the case study (i.e.,
the main classes for JFreeChart and JEdit, respectively, and
the class for JSheet). The trees of two subsequent releases
of these classes are shown as well. As far as the JFreeChart
class is concerned, we can note that passing from the re-
lease 0.5.6 to the 0.7.0 the foliage is different. In partic-
ular, the number of the leaves is larger in the last release
and the color of these leaves is greener. This indicates that
the number of attributes increased. Moreover, the class in
the last release is better commented. For the class selected
in the JEdit system, we can observe a different shape of
the threes. This difference is due to the total number of
methods that increased in the class of the release 4.3. The
different relationships between public and private methods
also affected the shapes of the trees: the number of pub-
lic methods is much larger than those private. Regarding
the class considered for JHotDraw, we can observe that the
branches of all the trees point out, so indicating that the
number of public methods is close to the number of the
private ones. The main difference among the three trees is
that the total number of methods is larger in the releases
7.0.8 and 7.1. This difference results in a slight difference
in the tree shapes.

Regarding the software evolution, if a class appears in
many releases of the same software system, it will be al-
ways shown in the same point on the ground of the forests
corresponding to these releases. The position is determined
considering all the classes present in all the releases of the

system and using a spiral pattern. Therefore, if a class is
present in a release of the subject system the correspond-
ing tree is shown, otherwise it is not shown. Each spiral
represents a package of a subject system. Only for space
reasons, we do not provide here a forest visualization for
the different releases of the software systems considered.

Implementation. The proposed approach has been im-
plemented in a prototype of a supporting system. It is com-
posed of three main components. The former extracts all
the metrics needed for the visualization and produces an
XML file. This design choice allows making independent
the extraction of the measures from the rendering engine.
This component is implemented in Java. The second com-
ponent maps the tree parameters and the extracted metrics.
Also this component is implemented in Java and produces
an XML file that is then used for the rendering of all the
forest. To implement the 3D environment, we used the
OpenTree library [1]. This library provides 3D tree gen-
eration for real time applications. OpenTree is a cross-
platform and engine-independent library written in C++.
The library uses an array of vertex to generate mesh data
to render trees. Vertex can be used by any graphics library.
We used here the OpenGL [24] graphics library.

The tool supports maintainers in the exploration of the
3D forests using the Visual Information Seeking Mantra
Overview, zoom and filter, and details-on-demand [18]:

• Overview. The 3D environment supports the visual-
ization of the entire forest. The overview provides
the user with an interactive visualization of all the
classes of a subject system by using mouse and key-
board. The name of each class is attached as a label
to the corresponding tree. These labels can be hidden
if needed.

• Zoom and filter. The environment allows the user to
zoom in from the initial overview refining the current
view. If the maintainer identifies a tree of interest in
the overview, this tree can be selected and explored.
The zoom and filter feature is particularly useful in
case of large software.

• Details-on-demand. The maintainer can select one
tree and show their properties. Each parameter is la-
beled with the class membership and the tree informa-
tion (i.e., the values for all the metric used in the tree
rendering) is shown if request.

4 Evaluation
To validate our 3D environment and the underlying ap-

proach, we conducted a preliminarily case study on 30 re-
leases of three open source object oriented software sys-
tems implemented in Java:



JFreeChart-0.5.6 Constructor: 1

Public Methods: 16

Private Methods: 8

Attributes: 4

Lines of code: 834

JFreeChart-0.6.0 Constructor: 1

Public Methods: 17

Private Methods: 25

Attributes: 22

Lines of code: 1280

JFreeChart-0.7.0 Constructor: 1

Public Methods: 14

Private Methods: 31

Attributes: 29

Lines of code: 1139

JEdit-4.1 Constructor: 1

Public Methods: 81

Private Methods: 23

Attributes: 4

Lines of code: 2225

Comment lines: 956

JEdit-4.2 Constructor: 1

Public Methods: 94

Private Methods: 24

Attributes: 28

Lines of code: 2488

Comment lines: 1043

JEdit-4.3 Constructor: 1

Public Methods: 111

Private Methods: 27

Attributes: 34

Lines of code: 2774

Comment lines: 1246

JHotDraw-7.0.8 Constructor: 2

Public Methods: 24

Private Methods: 12

Attributes: 9

Lines of code: 549

Comment lines: 465

JHotDraw-7.0.9 Constructor: 2

Public Methods: 24

Private Methods: 12

Attributes: 9

Lines of code: 549

Comment lines: 465

JHotDraw-7.1 Constructor: 2

Public Methods: 24

Private Methods: 13

Attributes: 11

Lines of code: 573

Comment lines: 496

Figure 1: Three evolving classes for the systems JFreeChart, JEdit, and JSheet.



Figure 2: The forest for JEdit ver. 4.3

• JFreeChart2 is a chart library that makes it easy for
developers to display charts in their applications;

• JEdit3 is a programmer’s text editor with an extensi-
ble plug-in architectures;

• JHotDraw4 is a graphical user interface framework
for technical and structured graphics;

We considered 6 releases for JFreeChart (from 0.5.6 to
0.7.3), 16 for JEdit (from 3.0 to 4.3.2), and 8 for JHotDraw
(from 7.0.7 to 7.4.1).

We selected these systems: (i) to verify whether the
validity of our proposal is affected by the kind of system
used; (ii) because they have been widely used in the past
to assess the validity of tools for supporting maintenance
tasks; and (iii) because they present some differences in
the feature implemented.

Figure 2 shows the forest of JEdit 4.2. We can observe
that there are some classes that contained a high number of
lines of comments. Among these classes, there are some
classes with a larger number of public methods and with
a few attributes. On the other hand, there are few classes
with a large number of attributes and a few number of pub-
lic methods. In the first case, the classes provide services
to other classes and to make easy how to use these services
the developers commented the code. In the latter case, the

2www.jfree.org/jfreechart
3www.jedit.org
4www.jhotdraw.org

trees represent property classes. The analysis of the 16 re-
leases of JEdit clearly shows that the size of the system
increased throughout the releases analyzed. In particular,
both the number of classes and packages increased. The
big picture of the forests did not show particular evolution
patterns. Differently, on JFreeChart we observed that the
color of the foliage became greener and greener through-
out its releases. This result indicates that developers paid
more attention in commenting the code in the last analyzed
releases.

Further Results. The use of our 3D environment on the
selected systems leads also to the following two consider-
ations: (i) Scalability. The environment did not scale up
very well on large software systems and when the num-
ber of the releases to be analyzed increase (e.g., JEdit).
To address this issue, we plan to implement a new version
of our environment based on a state-of-the-art 3D engine.
(ii) Completeness. Our approach and environment provide
a fair amount of information for an overview of the sys-
tem and also offer a proper representation for methods, at-
tributes, and comments.

5 Conclusion and Future Work
In this paper, we presented an approach for the visu-

alization of evolving software systems. The approach is
based on the forest metaphor presented in [7]. The ap-
proach has been implemented in prototype of a support-
ing tool. It provides features to navigate in the forest as



a free fly 3D virtual camera. Our prototype also imple-
ments zoom features and visualizes several attributes of the
classes (e.g., the names and the values of the metrics) to
promote the comprehension at fine-grained level.

To assess the validity of the approach, we have also con-
ducted a preliminary case study on three open source soft-
ware systems implemented in Java. The achieved results
seem encouraging, but due to the preliminary nature of our
investigation caution is needed. To increase our awareness
on the achieved findings, we plan to conduct further em-
pirical investigations on different releases of evolving soft-
ware systems. We also plan to conduct users’ studies to
evaluate the effectiveness of our proposal in the execution
of maintenance or comprehension tasks. Finally, future
work will be devoted to increase the realism of the forest
and to assess whether users perform maintenance tasks in
a more efficient fashion in case of more realistic forests.

References
[1] OpenTree Library. http://opentreelib.

sourceforge.net/.
[2] Software visualization: Programming as a multimedia ex-

perience, 1998.
[3] S. M. Charters, C. Knight, N. Thomas, and M. Munro. Visu-

alisation for informed decision making; from code to com-
ponents. In Proceedings of the 14th international confer-
ence on Software engineering and knowledge engineering,
SEKE ’02, pages 765–772, New York, NY, USA, 2002.
ACM.

[4] M. D’Ambros and M. Lanza. Visual software evolution re-
construction. Journal of Software Maintenance, 21(3):217–
232, 2009.

[5] S. Diehl, editor. Software Visualization, International Sem-
inar Dagstuhl Castle, Germany, May 20-25, 2001, Revised
Lectures, volume 2269 of Lecture Notes in Computer Sci-
ence. Springer, 2002.

[6] S. Ducasse and M. Lanza. The class blueprint: Visually sup-
porting the understanding of classes. IEEE Trans. Software
Eng., 31(1):75–90, 2005.

[7] U. Erra and G. Scanniello. Towards the visualization of
software systems as 3d forests: the codetrees environment.
In ACM SAC, page to appear, 2012.

[8] H. Gall and M. Jazayeri. Visualizing software release histo-
ries: The use of color and third dimension. pages 99–108.
IEEE Computer Society Press, 1999.

[9] T. Girba, S. Ducasse, and M. Lanza. Yesterday’s weather:
Guiding early reverse engineering efforts by summarizing
the evolution of changes. In In Proceedings of ICSM 04
(International Conference on Software Maintenance, pages
40–49. IEEE Computer Society Press, 2004.

[10] H. Graham, H. Y. Yang, and R. Berrigan. A solar system
metaphor for 3d visualisation of object oriented software
metrics. In Proceedings of the 2004 Australasian sympo-
sium on Information Visualisation - Volume 35, APVis ’04,
pages 53–59, Darlinghurst, Australia, Australia, 2004. Aus-
tralian Computer Society, Inc.

[11] L. Hattori, M. D’Ambros, M. Lanza, and M. Lungu. Soft-

ware evolution comprehension: Replay to the rescue. In
ICPC, pages 161–170, 2011.

[12] C. Knight and M. Munro. Virtual but visible software. In
Information Visualization, 2000. Proceedings. IEEE Inter-
national Conference on, pages 198 –205, 2000.

[13] B. Kot, B. Wuensche, J. Grundy, and J. Hosking. Informa-
tion visualisation utilising 3d computer game engines case
study: a source code comprehension tool. In Proceedings of
the 6th ACM SIGCHI New Zealand chapter’s international
conference on Computer-human interaction: making CHI
natural, CHINZ ’05, pages 53–60, New York, NY, USA,
2005. ACM.

[14] M. Lanza and R. Marinescu. Object-Oriented Metrics in
Practice. Using Software Metrics to Characterize, Evalu-
ate, and Improve the Design of Object-oriented Systems.
Springer Verlag, 2010.

[15] A. Marcus, L. Feng, and J. I. Maletic. Comprehension of
software analysis data using 3d visualization. In IWPC,
pages 105–114, 2003.

[16] M.M. and Lehman. Program evolution. Informa-
tion Processing & Management, 20(12):19 – 36, 1984.
¡ce:title¿Special Issue Empirical Foundations of Informa-
tion and Software Science¡/ce:title¿.

[17] T. Panas, R. Berrigan, and J. Grundy. A 3d metaphor for
software production visualization. In Proceedings of the
Seventh International Conference on Information Visualiza-
tion, pages 314–, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[18] B. Shneiderman. The eyes have it: A task by data type
taxonomy for information visualizations. In Proceedings of
the 1996 IEEE Symposium on Visual Languages, page 336,
Washington, DC, USA, 1996. IEEE Computer Society.

[19] Q. Tu and M. W. Godfrey. An integrated approach for study-
ing architectural evolution. In In 10th International Work-
shop on Program Comprehension (IWPC02, pages 127–
136. IEEE Computer Society Press, 2002.

[20] J. Weber and J. Penn. Creation and rendering of realistic
trees. In Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques, SIGGRAPH
’95, pages 119–128, New York, NY, USA, 1995. ACM.

[21] R. Wettel and M. Lanza. Program comprehension through
software habitability. In ICPC, pages 231–240, 2007.

[22] R. Wettel and M. Lanza. Codecity: 3d visualization of
large-scale software. In Companion of the 30th interna-
tional conference on Software engineering, ICSE Compan-
ion ’08, pages 921–922, New York, NY, USA, 2008. ACM.

[23] R. Wettel, M. Lanza, and R. Robbes. Software systems as
cities: A controlled experiment. In Proceedings of ICSE
2011 (33rd International Conference on Software Engi-
neeering), page to be published, 2011.

[24] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL Pro-
gramming Guide: The Official Guide to Learning OpenGL,
Version 1.2. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 3rd edition, 1999.

[25] M. V. Zelkowitz, A. C. Shaw, and J. D. Gannon. Principles
of software engineering and design. 1979.


