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Abstract—Relational databases are rigid-structured data
sources characterized by complex relationships among a set
of relations (tables). Making sense of such relationships is
a challenging problem because users must consider multiple
relations, understand their ensemble of integrity constraints,
interpret dozens of attributes, and draw complex SQL queries
for each desired data exploration. In this scenario, we in-
troduce a twofold methodology; we use a hierarchical graph
representation to efficiently model the database relationships
and, on top of it, we designed a visualization technique for
rapidly relational exploration. Our results demonstrate that the
exploration of databases is deeply simplified as the user is able
to visually browse the data with little or no knowledge about
its structure, dismissing the need for complex SQL queries.
We believe our findings will bring a novel paradigm in what
concerns relational data comprehension.

Keywords-relational databases; hierarchical visualization;
visual analytics;

I. INTRODUCTION

Over the last decades, a huge amount of information has

been generated, making large databases common in several

kinds of applications. Examples of this growth are found

in industry-generated data, where information from clients,

products, and transactions of multiple types are stored in

relational manner. In these databases, the entities are de-

scribed by attributes and refer to each other in relationships

that define a strong structural cohesion. Relational Database

Management Systems (RDBMS’s) are the ultimate solution

for such structured data; they provide intelligent storage,

and powerful querying capabilities in applications that range

from commerce to education. And, despite the fact that non-

relational solutions have popped-up in the market – such as

NoSQL databases, RDBMS’s still answer for the greatest

market-share [1], [2]. But, although RDBMS’s are wonder-

fully engineered for data storage, they are not adequate for

visual analytics – this is the point we tackle in this study.

In this context, storing and retrieving data is only part of

the problem when the goal is to obtain useful information.

Reasoning about voluminous and complex data can be very

difficult, a shortcoming that demands analytical processes in

order to find patterns, uncommon arrangements and relation-

ships, and other kinds of hidden knowledge that may aid in

decision support. Such processes are commonly performed

in exploratory fashion according to which the analyst does

not know a priori what to look for. In these circumstances, a

rich and responsive visual environment can provide preferred

results, notably for structured data.

A straightforward approach to investigate structured data

is to use graph representations with node-link visualiza-

tions, according to which nodes and edges correspond,

respectively, to entities and relationships of the Entity-

Relationship (ER) database model [3]. Within these con-

siderations, here we experiment with a graph representation

based on hierarchical partitioning, a technique that improves

the scalability of graph-based visualizations. And so, our

proposal uses the ER structure in order to generate an

initial graph that is hierarchically partitioned according to

the entities, attributes, and values found in the database.

This hierarchically-partitioned graph, then, gives rise to a

multiple-level visualization comprised of nodes, groups of

nodes, edges, and summarizations over which interactive

querying and aggregation take place.

In this study, given a relational database, we are interested

in answering the following questions:

• How are the data (entity instances) distributed over the

relations of the database?

• How are the entities on the database related to each

other?

• How do the several attributes of the database influence

the relationships of the entities?

• How do we quickly and intuitively browse the relational

data, considering its complex structure?

We answer these questions by using hierarchical graph

partitionings created from both the structure and the data

found in the database to be analyzed. Over that, we define

a novel visual/interactive scheme instantiated in a fully op-

erational prototype. Our contribution makes the exploration

of the relationships between data entities intuitive and com-

putationally fast, even if considering very large databases.

According to our technique, the database structure can be

browsed through exploration paths in which the user can

visualize entities and their relationships without explicitly

defining queries. Our study relies on the SuperGraph concept

and the Graph-Tree structure [4], and we derive the GMine

system [5], originally designed for sole graph analysis, to

the realm of visual analysis of relational data; hence, our
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new systematization is named RMine system.

Coming next, Section II reviews the related literature,

followed by our proposed methodology in Section III, where

we will define: (a) a relational-based hierarchical partitioning

for databases; (b) how this partitioning is represented in a

Graph-Tree structure together with associated algorithms;

and (c) the visualization environment for this data structure.

In Section IV, our experiments will show the main aspects

of our approach and how it simplifies the data manipulation

process. Then, in Section V we finish with a brief discus-

sion of the main achievements, outlining ideas for future

improvements.

II. RELATED WORK

Although there are many studies on database visualiza-

tion, these studies do not explore the structural information

of the data, but rather they concentrate on table representa-

tion in cube-like schemes. We introduce a novel perspective,

one that permits to explore how multiple tables relate to each

other.

One of the most referenced studies that aim at visu-

ally exploring databases is Polaris [6], [7]. It follows the

well-known data cube approach, which is broadly used

in a number of decision support systems in businesses

and organizations, mainly in the form of OLAP (on-line

analytical processing) services [8]. The system provides an

interface to develop and interact with visual specifications;
a visual specification is the assignment of the attributes

of a table for each of the axes of a data cube, along

with the required definitions for: selection of records, data

transformations, aggregations, partitionings, sortings, and

visualization properties. Polaris’ data-cube is organized so

that each cell presents the visualization (scatterplots, or

barcharts) of specific data ranges over selected attributes at

different granularities. Different from our study, Polaris is

not designed for the inspection of relational structure data.

In another study [9], Stolte et al. propose Zoom Graphs, a
general multiscale visualization of hierarchically structured

data. Their study defines a formal notation to design zoom-

graph visualizations; the notation uses four possible patterns

used to describe the core structure of the most common

designs. Although this method can model complex schemata

by using multiple hierarchies, it restricts the user’s interac-

tion to follow a single exploration path through a previously

chosen hierarchy.

On a different line, Maniatis et al. [10] employ the Table

Lens technique [11] over data cube visualizations. They

adopt the Cube Presentation Model to split the presentation

components of the logical data layer, allowing the user to

explore sections of a fact table by choosing the desired val-

ues of the attributes being presented. Similarly, Techapichet-

vanich and Datta [12] introduce the Hierarchical Dynamic
Dimensional Visualization (HDDV) to explore hierarchically

structured data from data cubes. Their approach maps the

cube dimensions to the levels of an exploration tree whose

visualization exposes the exploration path. In the tree, each

level is a bar stick with dividing marks for splitting either

attribute ranges or nominal labels of a given dimension. This

method allows the user to visually build cube queries and

quickly switch to a different hierarchical path, but it is still

able to show only a single path at a time.

Mansmann and Scholl [13] improve the visualization of

multiple hierarchies with the Enhanced Decomposition Tree,
which combines the Cube Presentation Model [10] with dif-

ferent space-filling visualization techniques. In their scheme,

the exploration tree is allowed to have sub-trees comprising

different attributes and being visualized in parallel.

Wang et al. [14] present a client-server visualization sys-

tem named Zoom Tree. Their system allows a schema-based

data cube navigation similar to the schema of Mansmann

and Scholl [13], with the difference that dimensions with

too many values are presented according to hierarchies

organized by ranges of values. Selected portions of the data

are visualized in a table layout inspired by Polaris [6], and

the user’s navigation (zooming into the table data) is stored

in the Zoom Tree, thus forming a navigation history.

ASK-GraphView et al. [15] offers a hierarchical graph

structure which closely resembles the SuperGraph concept

[4]. Their approach partitions the graph in antichains whose

associated views can be processed in the main memory, then

reducing the depth by retracting combs and reducing the

fan-out by separating siblings under new subtrees. With this

structure, they apply a recursive clustering pipeline to find

subgraph components and create the hierarchical visualiza-

tion. Diferently from their approach, the proposed method

employs the database structural information to partition the

graph and build the hierarchy.

A recurrent concern of these studies is the scalability

regarding both response time and visual cluttering, fun-

damental demands for interactive systems. The data cube

visual interface, as used in these studies, is well-established,

providing a promising environment for exploratory analysis.

However, these studies are tied to quantitative analysis,

demanding the analyst to know the right attributes and

operations in order to compose the visualizations; such

schemes provide little or no support for exploring relation-

ships between entities.

Besides, all these previous studies are transactions-

oriented, focusing on the datacube metaphor; differently, our

study does not focus on transactions, but on the multiple

relationships that emerge from the structure of operational

databases.

III. THE PROPOSED APPROACH

A. SuperGraph overview

The method we propose is based on the concept of

SuperGraphs, a formalization that abstracts a hierarchically

partitioned graph. A SuperGraph is recursively comprised
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Figure 1. SuperGraph obtained from a partitioned graph.

of nodes, SuperNodes (groups of nodes), edges, and Su-

perEdges (groups of edges), and is defined as follows:

Definition 1: [SuperGraph] Given a finite undirected graph

G = {V,E}, with neither loops nor parallel edges, a Su-

perGraph is defined as G = {V ,E}, where V is a set of

SuperNodes v, and E is a set of SuperEdges e.
Definition 2: [SuperNode] A SuperNode v is recursively

defined as a set V ′ of SuperNodes or graph nodes (if it is a

leaf), plus a set E ′ of SuperEdges ei j. As follows:

v = {V ′ = {v0,v1, ...,v(|V ′|−1)},
E ′ = {ei j = {(vi,v j)|vi,v j ⊂V ′}}} (1)

Definition 3: [SuperEdges] A SuperEdge represents all

the edges (u,v) ∈ E that connect graph nodes from a

SuperNode vi to graph nodes from SuperNode v j. Formally,

the SuperEdge between SuperNodes vi and v j is defined as

follows:

SuperEdge(vi,v j) = ei j = {e = (u,v)|(u,v) ∈ E,
u is enclosed in vi and v is enclosed in v j} (2)

Definition 4: [Weight of a SuperEdge] The weight of a

SuperEdge is the sum of the weights of its edges.

Figure 1 exemplifies the SuperGraph ab-

straction. Figure 1(a) shows graph G, de-

fined as G = {V = {1,2,3,4,5,6,7,8},E =
{(1,7),(1,8),(2,7),(3,4),(3,7),(4,5),(4,6),(7,8)}}.

From graph G, it is possible to conceive the hierarchical

partitioning presented as SuperNode G in Figure 1(b). This

partitioning is composed of SuperNodes v0 through v6 and

corresponding SuperEdges:

v0 = {V ′ = {v1,v2},E ′ = {e12 = {(3,7)}}}
v1 = {V ′ = {v3,v4},E ′ = {e34 = {(1,7),(1,8),(2,7)}}}
v2 = {V ′ = {v5,v6},E ′ = {e56 = {(4,5),(4,6)}}}
v3 = {V ′ = {1,2},E ′ = {}}
v4 = {V ′ = {7,8},E ′ = {e44 = {(7,8)}}}
v5 = {V ′ = {3,4},E ′ = {e55 = {(3,4)}}}
v6 = {V ′ = {5,6},E ′ = {}}

Figure 1(c), in turn, presents the corresponding Graph-

Tree structure, which reflects the hierarchical partitioning of

the SuperGraph. In the figure, one can see that the Graph-

Tree is designed so that leaf SuperNodes are selectively

loaded from disk. The main feature of the Graph-Tree is its

ability to dynamically determine the edges that interconnect

either nodes or SuperNodes. This feature implies that:

1) given a node, one can determine all the edges that

connect to this node without having to check all the

partitions and levels of the graph hierarchy;

2) given any two SuperNodes, one can determine all the

edges that connect these two groups of nodes.

These two features are the key to the present study as

they allow for the dynamic inspection of the structural data

in relational database. In order to provide these features, the

Graph-Tree uses specific algorithms whose details are out

of the scope of this study.

B. Relational-based hierarchical partitioning

In previous studies, the Graph-Tree data structure was

used to process and to visually interact with graphs that were

automatically partitioned. The problem with this application

is that the number h of levels in the hierarchy is determinant

in interpreting the graph hierarchical partitioning; however

there are no algorithms to automatically determine these val-

ues from a given graph. To solve this problem, in this study,

we define the number of hierarchy levels as the number

of attributes of interest in a given database relation. As it

will be explained further on, this defines a semantically-rich

hierarchy organized according to the values of the attributes

found in the data.

Together with this approach, we use the information

given by the relationships between the different entities of

the database to instantiate graph-like data. Therefore, we

were able to produce hierarchically-partitioned graphs that

incorporate the information of entire databases considering

the semantics given by their attributes and the structure

given by their relationships. This approach is totally different

if compared to former database visualization techniques,

which are centered on quantitative transactional values,

disregarding the important information represented by the

structure of the database.

First level
Following our line of thought, the first level of the hierarchy

is determined by entities that define many-to-many relation-

ships. For example, consider the simple database schema

shown in Figure 2 – in this schema, entity Person has a

many-to-many relationship to entity Publication. Following

the SuperGraph representation, the first level of the hierarchy

will have one partition (or SuperNode) for each correspond-

ing entity – Person and Publication, in this case. These

SuperNodes are added as children of the root node.

By using this initial partitioning, the correspondent

database hierarchical visualization will present the database

entities in its first level, as illustrated in Figure 3(a). In this
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Figure 2. Super-Graph built by partitioning two entity relations linked by a many-to-many relationship.
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Figure 3. Hierarchical SuperGraph visualization.

first level, the edges between Person and Publication defines

a SuperEdge composed by all the edges between nodes in

these partitions. The first level of the visualization, hence,

provides an overview of how the data is structured and how

the different entities manifest in the database. In system

RMine, this visualization is interactive. Besides visualizing

the SuperNodes, it is possible to retrieve further details by

inspecting the SuperEdges of the visualization. And so, one

can double click a SuperEdge of interest and the underlying

Graph-Tree will present which nodes interact with each

other.

Deeper-levels
Following, the idea is to have the possibility of refining

the information of each SuperNode entity of the first level.

That is, each SuperNode had to be partitioned into another

set of SuperNodes, a level below in the hierarchy. The

problem here is how to determine the partitioning in a given

level, and how many levels to use. In order to answer these

two questions, our method considers the attributes of each

entity as the information to guide the lower levels of the

partitioning. We proceed considering two actions:

a) the number and meaning of the levels are given by the

attributes of each entity, one level per attribute;

b) the number of partitionings in a given level is given

by the values of that attribute as found in the database.

Action a) implies that the most representative attributes

of a given entity must be considered. In the example, entity

Person can be represented by age and city, determining two

levels below the first level; and entity Publication can be

represented by country and year, again two levels below the

Figure 4. Percentile statistical partitioning. In this case, the 5 quintiles of
entity Person as determined by attribute Age.

first level - illustrated in Figure 2. Action b) is a little more

complicated; it demands to search the database and verify

the distribution of values for each attribute.

There are different kinds of attributes; the main kinds

are categorical, nominal, and numeric. Categorical attributes

with small numbers of categories, as gender for example,

will determine one partition for each distinct category. For

a greater number of categories, it is interesting to evenly

partition the data following its distribution. For nominal

and numeric attributes, the number of partitions can be

determined by considering the distribution of the values.

Figure 2(b) shows an example with each attribute being

partitioned in two groups – attribute age partitions the Person
SuperNode in two SuperNodes “age > 50” and “age <

50”; and then each SuperNode is again partitioned in two

SuperNodes, “city: Paris” and “city: Seoul”. This method

204204204213213213213



results in the Graph-Tree structure illustrated in Figure 2(c),

which can be used in a hierarchical SuperGraph visualization

as illustrated in Figure 3. According to such visualization,

the user can descend in different paths and levels of the tree

to inspect the SuperEdges between the various arrangements

of SuperNodes.

Still for nominal and numeric attributes, one can consider

a greater number of k partitions; which can be achieved

with traditional statistic percentile analysis. Since we are

dealing with a visual interactive ensemble, the default value

of k is set around the limits of human working memory,

which is 7+/-2 elements according to Miller’s Law [16].

This restriction leads to a number of partitions per level that

does not overload the user’s cognition.

As an example, Figure 4 shows the distribution of ages of

a real-world database (detailed in Section IV), in which we

define k = 5 partitions. We obtain quintiles QU1 = [18,41]
(20 % of the observations), QU2 = [42,49] (40 % of the

observations), QU3 = [50,55] (60 % of the observations),

QU4 = [56,63] (80 % of the observations) and QU5 =
[64,162] (100 % of the observations).

Following the percentile statistical approach, we end up

with partitions with nearly the same size in number of

entity nodes. This is a straightforward procedure intended

for automatic analysis; yet, our methodology can also benefit

from user-defined parameters (such as a greater k) for

specific analytical goals.

Design criteria
The design of our methodology was defined to satisfy four

features:

1) the structural information of the database becomes

represented in the graph hierarchy, an information

formerly ignored;

2) the semantic information given by the attributes and

values found in the database are kept for further

analysis;

3) it becomes possible to deal with very large databases

while maintaining its semantic meaning and inter-

pretability;

4) the hierarchical representation adheres to hierarchical

visualization techniques, permitting to visually explore

the database.

In Section IV, we demonstrate these features together with

additional quantitative criteria by means of a broad set of

experiments.

C. Database representation and preprocessing

In order to have the database represented as a semantic-rich

hierarchical graph, as described in the preceding section, it is

necessary to preprocess it based on choices of representative

attributes. This step involves selecting the relevant relations

(entities) and relationships, as required by the analyst, trac-

ing its set of attributes and their respective distributions.

Once the database is preprocessed, its data is scanned and

a Graph-Tree is created following a hierarchical partitioning

that conforms to the data properties. In an instantiated

Graph-Tree there are three kinds of information:

• the nodes at the leaves, which correspond to the tuples

of the relations;

• the SuperNodes along the hierarchy up to the first

level, which correspond to sets (groups) of nodes and,

recursively, to sets of SuperNodes; at the first level, they

correspond to the relations of the database;

• structural information that distributed along the struc-

ture permits to calculate the relationships (edges)

between any pair node-node, node-SuperNode, or

SuperNode-SuperNode.

From the storage point of view, a small portion of the

Graph-Tree is kept in the main memory, while a bigger

portion is kept on the disk. This organization permits to

have the data loaded on demand, saving on processing and

memory resources.

D. Hierarchical Graph Visualization

Our method generates semantic-rich SuperGraph for a given

database, having as a product, a Graph-Tree that organizes

and manages data on demand. The conception of this prod-

uct, as it has been described, adheres to hierarchical visu-

alization techniques of any kind (as those listed by Schulz

[17]), and as a proof-of-concept, we use a canonical node-

link visualization as implemented in GMine. Originally, this

visualization has been used to visualize graphs in general;

for the database domain, we have adapted it so to bring

the specificities of relational data to an interactive visual

environment.

The visualization we propose is based on the following

operations, which can be thought as specialized cases of

drill-down and roll-up operations [18]:

• expand SuperNode: digs one level down the hierarchy;

• contract SuperNode: moves one level up in the hierar-

chy;

• SuperNode-to-SuperNode connectivity: as one expands

or contracts a given SuperNode, its correspondent

SuperEdges must reflect the operation, that is, sub-

sets/supersets of SuperEdges must be calculated for

every pair of SuperNodes;

• hide/show SuperEdge: as the number of SuperEdges

varies, the user must be able to hide or show Su-

perEdges of interest;

• expand SuperEdge: under user’s demand, the set of

edges that determine a given SuperEdge is presented

in a separate visualization, in which details can be

observed;

• filter edges: as a SuperEdge is expanded, the number

of edges presented to the user may be way too much

for visualization; for this, our scheme supports filtering

205205205214214214214



������
����	

������������	

�
��	

���
�

���



�
	�

�
	���
�
��
��	
��

����������


�
	��

��

�������	
�
	�
�

�
���	

������
����
��	
��


���


�
���

�����
��
���

�������
����
	�

���
������	

�
��
��	
��
����	

����
��

�
����

���	���
����
��
�
���

����������	


����	����	

�
����

���	���
�����

�	��������	

Figure 5. Tycho-USP database.

edges based on their weight, that is, the number of times

two nodes have interacted in the database.

All these features are integrated in a novel environment for

database visualization, as illustrated in the next section. In

this environment, once the database data are loaded, the user

can verify and refine the information that characterizes each

entity, at the same time that he/she can track the relationships

within these entities.

IV. EXPERIMENTS

To demonstrate the potential of the proposed approach, this

section covers some experiments. Given a database and some

exploratory tasks, we illustrate each task together with its

corresponding SQL queries and processing times. The intent

is to demonstrate that our method substitutes complex and

costly SQL operations that, otherwise, would demand time

to be written and to be processed. Our method, instead,

allows for the same operations satisfying to interaction-time

restrictions.

A. Database and test setup

The data used in the following experiments come from

the Tycho-USP database. Tycho-USP is a general academic

database from the University of São Paulo, containing data

about students, professors, and their academic work. The

data are collected from various information systems in the

university and merged with external data from scientific

agencies of the Brazilian government. It is structured in

a schema with five main entities: Event (352,400 nodes),

Examination (382,890 nodes), Publication (691,083 nodes),

Research Supervision (26,237 nodes) and Person (50,779

nodes); with relationships Person-Examination (851,168

edges), Person-Event (247,516 edges), Person-Publication

(691,083 edges), Person-Supervision (52,439 edges) and

Publication-Event (26,237 edges); a total of 1,503,389 nodes

and 1,868,443 edges.

As illustrated in Figure 5, the four entities of Tycho-USP

were considered according to their attributes of interest as

follows: Person (age, location, gender), Publication (year,

country, subject), Event (rank, sphere, type), Supervision

(type, progress, advisor_role) and Examination (country,

course, institution). The structure of the database was con-

sidered according to the relationships linking Person to all

the other entities, and Publication to Event. The attributes

were used to determine the levels of the hierarchy, and

the relationships were used to determine the edges of the

underlying graph.

For our experiments, we use parameter k= 5. The nominal

attributes are divided into the k most frequent classes plus

an “others” class with the remaining elements; and numeric

attributes are partitioned in k percentiles with approximately

the same cardinality. The first task is to build the data

structure; to this end, our method receives a configuration set

containing the entities and relationships of interest and builds

an empty Graph-Tree. Then, the construction procedure

writes the nodes and edges in the leaf SuperNodes, and

fills up the upper levels with connectivity SuperEdges. This

initial step creates a persistent Graph-Tree on disk, which

can be loaded in the visualization system later.

All time measurements are averaged wall-clock timings,

taken on a personal computer equipped with an AMD

Phenom II X4 850 processor, 4 GB of DDR3 main memory,

a single 500 GB SATA hard disk and Microsoft Windows 7

Professional x64 operating system.

B. Visual analysis

In this section, we demonstrate how our method can be

used for visually inspecting a relational database. We carry

the following tasks:

1) Visualize the distribution of the entities and of their re-

lationships: how many people, publications and events

are there and how are they arranged?

2) Visualize the relationship between Person and Exam-

ination: which countries are preferred by exchange

students?

3) Which courses are preferred in Brazil?

When the Graph-Tree is ready, RMine presents the first

level under the root, one SuperNode for each database

entity. As noted in Figure 6(a), by selecting one of the

SuperNodes, RMine calculates and presents the SuperEdges

that connect this SuperNode to the other entities. The size of

the SuperNodes are proportional to the number of nodes they

represent, and the thickness of the SuperEdges are c · log(n)
to the number n of edges they represent and a configurable

constant c. Therefore, one can intuitively tell which are the

largest relations (Publication and Event) and which are the

most intense relationships (Person-Examination and Person-

Publication), just as addressed by question 1). Figure 6 also

presents the correspondent SQL commands that would be

necessary to produce the same information as that being

visually observed.

The next interaction step is to expand one SuperNode

of interest. This action triggers the next level of parti-

tioning, according to the first attribute. Each SuperNode

expansion triggers a number of connectivity calculations
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(a) First level of the Tycho-USP GraphTree. The selected
SuperEdge represents (Person × Supervision) and corresponds
to: SELECT p.name, s.id FROM Supervision s JOIN
Person p ON p.id = s.advisor OR p.id = s.student

(b) Expanding the SuperNode Examination. The selected
SuperEdge represents (Person × Examination:Country=France)
and corresponds to: SELECT p.name, x.title FROM Exam x
JOIN Person p ON p.id = x.person JOIN Examination
e ON e.id = x.examination AND (e.country =
’France’)

(c) Hiding unselected SuperEdges. SuperEdges (Person ×
Examination:Country=?), corresponding to parametric SQL:
SELECT p.name, x.title FROM Exam x JOIN Person p
ON p.id = x.person JOIN Examination e ON e.id =
x.examination AND (e.country = ?)

Figure 6. Super Nodes and correspondent expansions.

that assign new SuperEdges between the newly exposed

children SuperNodes and the remaining SuperNodes in

the visualization. In our example, we expand SuperNode

Examination according to the country where the examination

Figure 7. All the SuperNodes expanded in their first partitioning level.

occurred – see Figure 6(b), which highlights the connections

to France, and Figure 6(c), which emphasizes entity Person

and the parametric aspect of the corresponding SQL. And

so, for the Person-Examination relationship, we can answer

question 2) by simply reading the weights of the connectivity

SuperEdges – they sum up the number of USP students in

all countries, pointing to partitions: Brazil, Spain, United
States, France, Portugal, and others.

After expanding more entities, the visualization will look

like Figure 7, in which a subset of partitions is presented

in deeper levels of the hierarchy. Looking closely at Su-

perNode Person, now partitioned by age, we see that the

automatic partitioning makes each one of the Person by age
SuperNodes hold a percentile range with an approximately

equal number of objects. The figure shows that roughly 20%

of the people in this database are older than 42 years old

and younger than 49 years old. Now, considering entity

Publication, as partitioned by year, one can see that the

ranges of the partitions tend to shorten; since the partitioning

followed the percentile approach, it means an increase in

number of publications along the time.

At this point, by inspecting SuperNode Examination by

country, we can answer question 3). For this task, we expand

SuperNode Examination:Country=Brazil – Figure 8(a), so

that we can view the most representative courses together

with connectivity SuperEdges to Person by age – Figure

8(b). The visualization shows that Business, Architecture,

Law, Nursing, and Education are the preferred courses, and

for a given selected course, we can inspect how are the

preferences by age. For Architecture course, we can see

that younger people (18 through 41 years) answer for the

smallest fraction of the people (professors and students)

related to this specific course.

From another point of view, we might be interested in

analyzing the behavior of the younger fraction of people in

relation to all the other courses – Figure 9. The produced

visualization points out that Law is the course to which

younger professionals and students are most connected

to. In RMine, we can go deeper in our data inspection
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(a) Examinations in Brazil. (Person:Age=? × Examina-
tion:Country=Brazil), corresponding to parametric SQL: SELECT
p.name, e.title FROM Exam x JOIN Examination e ON
e.id = x.examination AND (e.country = ’Brazil’)
JOIN Person p ON p.id = x.person AND (p.age
BETWEEN ? AND ?)

(b) Examinations in Brazil, a closer look at
Architecture course. (Person:Age=? × Examina-
tion:Country=Brazil:Course=Architecture), corresponding to
parametric SQL: SELECT p.name, e.title FROM Exam
x JOIN Examination e ON e.id = x.examination

AND (e.country = ’Brazil’) AND (e.course =
’Architecture’) JOIN Person p ON p.id = x.person
AND (p.age BETWEEN ? AND ?)

Figure 8. Exploring author-publication relationships.

by retrieving the specific instances that correspond to the

observed SuperEdges. For example, if we are interested

in knowing details about People:Age=[18-41] and Exami-

nation:Country=Brazil:Course=Business, a simple click on

its correspondent SuperEdge will bring us the visualization

presented in Figure 10. There, in a bipartite graph, one can

see the names of the people and the titles of the examinations

that are related in the specific context of their correspondent

SuperNodes.

This section demonstrated that our method allows for

complex aggregation tasks to be performed intuitively in

interaction-time constraints. We showed that, not only the

user is spared the need to write complex SQL code, but also

that the processing requirements are significantly reduced.

The cost of these benefits is the preprocessing time that,

also, is within acceptable time constraints; especially if we

consider the fact that the Graph-Tree structure is persistent

Examinations in Brazil grouped by course in relation
to people aged 18 to 41 years. (Person:Age=[50-53] ×
Examination:Country=Brazil:Course=?), corresponding to
parametric SQL: SELECT p.name, e.title FROM Exam
x JOIN Person p ON p.id = x.person AND (p.age
BETWEEN 18 AND 41) JOIN Examination e ON e.id =
x.examination AND (e.country = ’Brazil’) AND
(e.course = ?)

Figure 9. Exploring author-publication relationships.

(Person:Age=[18-41] ×
Examination:Country=Brazil:Course=Business)

Figure 10. Connectivity of SuperNodes.

on disk.

C. Time measurements

In the previous section, we demonstrated the visual interac-

tive appeal of our method, which lends itself to database

exploratory analysis; we also showed how our method

prevents users from writing complex SQL queries by means

of the Graph-Tree features. Besides these contributions, our

method permits costly relational aggregations to be executed

in a fraction of the time a relational database would take

for the same task. In this section, we demonstrate this

feature by comparing the wall-clock timing both for the

database execution and for the RMine processing. To this

end, we will use 374 different connectivity (SuperNode-

to-SuperNode) computations, each one corresponding to a

SuperEdge in RMine; and each one corresponding to a

complex SQL aggregation query. For our time measures,

we use commodity database PostgreSQL 9.2.1 amd64 with
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Figure 11. Wall-clock timings for each of 374 RMine connectivity
computations and 374 equivalent PostgreSQL aggregations.

a schema tuned with indexes for the column combinations

in the following queries.

Consider the connection SuperEdges between Examina-
tion by country by course and Person by age. This in-

formation can be accomplished interactively or using an

SQL query. As an illustration, the connectivity between Su-

perNode Examination:Country=Brazil:Course=Business and

SuperNode Person:Age=[18-41] can be selected with the

following SQL query:

SELECT person.name, examination.title FROM

exam

JOIN person ON person.id = exam.person

AND (person.age BETWEEN 18 AND 41)

JOIN examination

ON examination.id = exam.examination

AND (examination.country = ’Brazil’)

AND (examination.course = ’Business’);

The same holds for the 374 connectivity calculations

proposed in this section. The calculations vary, both for

the commodity RDBMS and for our method, depending on

the intensity of the relationship between the SuperNodes

involved in the analysis. Hence, we show that the time we

take is significantly smaller than the time an RDBMS would

take; note that we are not considering the time a user would

take to design the SQL queries, this time is supplanted by the

interactive aspect already presented in the former section.

In Figure 11 we show the time for each of the queries

considered in the experiment. The figure shows that our

method achieves the answer faster than the RDBMS in a

great number of cases, mainly in heavier steps. The database

caching also plays a clear role, showing slower queries

interleaved by faster ones. The figure also shows that the

time taken varies depending on the attributes involved in

the query; some nominal attributes determine unbalanced

partitionings, and thus, unbalanced result sets. In other

Figure 12. Cumulative wall-clock timings for 374 RMine connectivity
computations and 374 equivalent PostgreSQL aggregations.

Table I
CUMULATIVE TIME MEASURED FOR EACH SUPERNODE EXPANSION

(SECONDS)

Expand SuperNode Load Conn SQL
(initial loading) 7.330 - -
Person 0.042 5.955 12.833
Person:50-55 0.014 1.731 2.752
Examination 0.276 7.133 9.513
Examination:U.S.A. 0.000 2.571 2.598
Event 0.168 4.420 9.253
Event:Regional 0.003 0.398 0.713
Publication 0.244 8.584 29.989
Total 8.321 39.376 67.651

words, some queries return more data than others. Figure

12 presents the accumulated time for the queries. The figure

shows that, for sequences of queries, our method progresses

arithmetically better than the RDBMS; this was a need in the

design of our method because exploratory interaction asks

for long sequences of trial and error steps.

In Table I we list some times taken by our method and by

the RDBMS. Column Load corresponds to the time RMine

takes to load data from disk; column Conn corresponds to

the time an expansion operation (connectivity calculation)

takes in RMine – an expansion triggers a set of connectivity

calculations from the expanded SuperNode to the other Su-

perNodes in the scene; and column SQL corresponds to the

time the RDBMS takes to do the same expand operations.

Still in Table I, we consider rows for the initial load of the

preprocessed Tycho-USP Graph-Tree, and rows for expand
operations considering entities Person, Examination, Event,

and Publication. All times are in seconds. The totalizations

in the table demonstrate that all steps of the visual interaction

were computed faster in RMine than the corresponding

relational queries. In fact, RDBMS’s are not designed for

exploratory data inspection, and this is the point we attack.
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V. CONCLUSION

We have defined and experimented on a novel approach

for analyzing the structure, the data, and the relationships

as defined in relational databases. Our solution was based

on the Graph-Tree structure and its related algorithms,

which provided an efficient way of storing, retrieving, and

calculating the relationship information of the database,

features that are key to our method. Over the Graph-Tree, we

defined a procedure for reading and organizing the database

information according to a semantic-rich hierarchical graph

partitioning. The Graph-Tree, then, was used as the basis

of RMine, an operational prototype for relational visual

analysis.

We worked with a visual graph-based approach that

demonstrated to be intuitive in respect to visual exploration,

and that proved to be efficient in terms of computational

cost. The visual exploration spares the analyst of the need

to write complex SQL queries, meanwhile the computational

cost benefits from the efficient relationship features provided

by the Graph-Tree. For future studies, we envision the

coupling of analytical features to aid the user in summa-

rizing the meaning of the multiple data presented over the

visualization; also, we consider the possibility of having the

Graph-Tree to be dynamically altered according to analytical

parameters on the fly.
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