

City, University of London Institutional Repository

Citation: Nguyen, P., Xu, K., Walker, R. & Wong, B.L.W. (2014). SchemaLine: Timeline

visualization for sensemaking. 2014 18th International Conference on Information
Visualisation (IV), pp. 225-233. doi: 10.1109/iv.2014.14

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/15533/

Link to published version: https://doi.org/10.1109/iv.2014.14

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

SchemaLine: Timeline Visualization for
Sensemaking

Phong H. Nguyen, Kai Xu, Rick Walker, and B. L. William Wong
School of Science & Technology

Middlesex University

London, UK

{p.nguyen, k.xu, r.walker, w.wong}@mdx.ac.uk

Abstract—Timeline visualization is an important tool for
sensemaking. It allows analysts to examine information in
chronological order and to identify temporal patterns and
relationships. However, many existing timeline visualization
methods are not designed for the dynamic and iterative nature
of the sensemaking process and the various analysis activities it
involves. In this paper, we introduce a novel timeline visualization,
SchemaLine, to address these deficiencies. SchemaLine is
designed to group notes into analyst-determined schema, using a
layout algorithm to produce compact but aesthetically pleasing
timeline visualization, and includes fluid user interactions to
support sensemaking activities. It enables interactive temporal
schemata construction with seamless integration with visual data
exploration and note taking. Our preliminary evaluation results
show that the participants found the new method easy to learn
and use, and its features effective for the sensemaking activities
for which it was designed.

Index Terms—timeline visualization; sensemaking

I. INTRODUCTION

A timeline is a chronicle of events and its visualization

is to plot events along the time axis and position them

at the time points at which they occur or the ranges

over which they last [1]. Sensemaking involves gathering

information, representing it in a schema, analyzing that

representation, and possibly discovering new knowledge or

informing further actions [2]. Pirolli and Card suggest the

usefulness of timeline visualizations in the schematization

process in their sensemaking model [3]. A timeline helps

coordinate events in the dataset chronologically; therefore, it

may help reveal temporal relationships and reduce analysts’

effort in memorizing them.

Several visual analytics systems integrate timeline

visualizations for different purposes. POLESTAR [4] and

HARVEST [5] allow users to take notes, define new

knowledge, and visualize them in a timeline. Jigsaw [6]

provides automatic extraction of entities (people, places,

organizations, etc.), and a timeline to organize them. nSpace2

Sandbox [7] allows the creation of multiple bands within the

timeline to classify different types of artifacts in the system.

However, the timeline visualizations in these systems suffer

from several drawbacks. They either lack an automatic

layout [4] or use an overly-simplistic linear layout [7]. As

a result, the visualization requires significant effort from users

to manually arrange the data items. Schematization [3] is

an important process in sensemaking: it involves organizing

information into groups or categories, e.g., because it relates to

the same person or forms a causal narrative. This can later help

analysts form hypotheses about the problem being researched.

It is useful to show such information visually on a timeline,

so that analysts can study and discover higher-level temporal

patterns and relations between groups of events, instead of

only those between individual pieces of information.

Sensemaking is a highly iterative process, with each

component closely connected to the rest. The Pirolli-Card

model [3] depicts it as a hierarchy of sensemaking loops,

with the entire process (the top-level loop) divided recursively

into smaller sensemaking loops. The Data-Frame model [8]

consists of a few interconnected iterative loops, each for

a certain type of sensemaking activity. The implication for

timeline visualization is that it needs to support the dynamic

nature of sensemaking by allowing analysts to interactively

create and edit timelines and by providing close integration

with other elements of a visual analytics environment, such

as visual exploration and argumentation, to support the tight

connections between sensemaking tasks. Also, these need to

be achieved through intuitive and fluid interaction, so as not to

require extra cognitive effort and distract analysts from their

current train of thought.

In this paper, we introduce a new timeline visualization,

SchemaLine, which is designed to address the aforementioned

issues. More specifically, SchemaLine contributes

• a visual design for an interactive timeline that groups

notes into schema determined by the analyst,

• an algorithm to automatically generate a compact and

aesthetically pleasing visualization of these schema on

the timeline, and

• a set of fluid interactions with the timeline to support the

sensemaking activities defined in the Data-Frame model.

We conducted a preliminary study to evaluate the

effectiveness of SchemaLine in supporting sensemaking. The

participants found SchemaLine easy to use and its features

effective for the given sensemaking tasks.

II. RELATED WORK

In this section, we consider related work on representing

temporal data and producing timelines, before also examining

larger visual analytic systems that include timelines in their

feature set.

A. Timeline Visualizations

A typical example of timeline visualizations is

LifeLines [1], a visualization for personal histories, which

uses icons to indicate discrete events and thick horizontal

lines for continuous ones. When the number of data items

is large, they need to be shown collectively rather than

individually. The river metaphor [9] is one such method that

represents thematic changes in large document collections.

Storyline visualizations illustrate the dynamic relationships

between entities in a story. The technique was first introduced

by Munroe with his hand-drawn visualizations [10]. The

visualization summarizes movie plots by depicting each

character as a line and each interaction between characters

as a converging or diverging bundle of those character

lines. Computational layouts have since been introduced to

automate the rendering process including work by Tanahashi

and Ma [11] and Liu et al. [12].

Visualizing individual events on a timeline is relatively

simple; however, showing relationships between events is

quite challenging. One approach is to explicitly draw an edge

between two related entities as in tmViewer [13]. Edge styles

can be used to depict different kinds of relationships; however,

drawing a node-link diagram on top of the timeline can cause

the visualization to become cluttered even with a small number

of events. Another method is to use the concurrent perception

ability of humans by using color coding or icons to indicate

different groupings. When events are distributed along the

timeline, this method introduces a heavy cognitive load for

viewers to scan through the entire timespan. Our method

uses colored backgrounds and clusters all events belonging

to the same group to reduce user effort. Relationships

within multiple faceted temporal data are addressed by

André et al. in Continuum [14] by using views with

different scales and the classic details-on-demand technique

to save space. More recently, SemaTime [15] can visualize

two different types of relationship: time-dependent (e.g.,

lives-in) and time-independent (e.g., father-of). SemaTime

stacks events vertically and places related events close

together. Time-dependent relationships are depicted by using

rectangles crossing the relevant common interval of the

two events. Time-independent relationships are illustrated by

simple arrows.

B. Timelines within Visual Analytics Systems

A timeline is commonly integrated into Visual Analytics

systems designed for making sense of large and complex

datasets including POLESTAR [4], HARVEST [5], Jigsaw [6],

[16], and nSpace2 Sandbox [7], [17].

To support sensemaking, timelines are typically used to

visualize not raw data, but more meaningful information such

as user notes (POLESTAR, HARVEST) or extracted entities

(Jigsaw, nSpace2 Sandbox) instead. HARVEST visualizes both

raw data and synthesized knowledge in one timeline to allow

progressive investigation. However, filtering must be supported

to prevent valuable information getting lost among dense data.

Most of the systems use timelines to show notes statically,

to present a known story instead of dynamically discovering

a hidden story. nSpace2 Sandbox is an exception – it allows

users to group related entities into sub-timelines and to alter

the entity’s date on the timeline if needed. However, one entity

cannot be added into multiple timelines, which is necessary

when an entity’s category is uncertain. Our SchemaLine

provides a set of fluid interactions to manipulate notes to build

a more semantic schema.

Notes are typically represented using the “sticky-notes”

metaphor: a colored rectangle as background with text on top

of it. nSpace2 Sandbox provides multiple levels of detail for

entities: a short summary, a full article, or even entities of

entities. Timelines are commonly visualized as a horizontal

axis with notes connecting to the timeline by edges. nSpace2

Sandbox uses a vertical axis timeline as the “diary” metaphor

with columns for sub-timelines.

POLESTAR requires manual notes arrangement to fit

the display. nSpace2 Sandbox uses a simple linear layout

to organize entities, thus entities with nearby dates will

overlap on the timeline. Our layout algorithm produces an

aesthetically pleasing visualization that avoids this issue while

still providing easy note manipulation.

Timelines are often used as an extra view, coordinated with

the whole system. Jigsaw provides a reasoning space called

Tablet, where a timeline can be added. nSpace2 Sandbox

also introduces a separate component called Timeline view.

Even though entities from data space can be dropped into

timeline space, it may introduce a heavy cognitive load for

users to switch between two working spaces. In the evaluation

of this paper, we integrate SchemaLine into an existing system

seamlessly to provide concurrent exploration and sensemaking

with data.

III. SENSEMAKING WITH TIMELINE VISUALIZATIONS

SchemaLine is intended to support tasks in sensemaking

of temporal data and is influenced by the well-established

sensemaking model proposed by Pirolli and Card [3]. This

model organizes the sensemaking process into two loops:

the foraging loop, which involves searching, extracting and

organizing information; and the sensemaking loop, which

involves building schema, creating and testing hypotheses,

and presentation. In this model, schematization serves as a

bridge connecting the foraging loop and the sensemaking loop.

It is a crucial step in converting raw evidence to rational

explanations. Pirolli and Card suggest that the schematization

process should be supported by a computer-based tool that

coordinates events in the dataset to reveal relationships

between them and to leverage analysts’ effort in memorizing

them [3]. As a result, we decided to investigate timeline

visualization support for sensemaking. A timeline can not

only reveal the temporal relationships among the findings,

but also have a considerable impact on how easily they can

be understood: when Pennington and Hastie [18] studied

the impact of evidence presentation order on juror decision

making, they found that information was easier to understand

when presented in chronological order and thus had a

significant impact on jurors’ decisions.

We find that the cognitive processes in the schematization

process are well elaborated through different sensemaking

activities in the Data-Frame model proposed by Klein et

al. [8]. These sensemaking activities are Connect data to a
frame, Elaborate a frame, Question a frame, Preserve a frame,

and Reframe. Sensemaking activities begin when a surprise,

unexpected event with respect to our prior knowledge appears.

The analyst forms an initial account for the unexpected event

by connecting some evidence. In the Data-Frame model’s

terminology, the analyst tries to match some data to create

an initial frame. When encountering new data, the analyst can

either add it to the frame to elaborate the frame (if it fits to

the frame) or remove existing data (if it cannot fit the frame

anymore). The analyst starts questioning the frame when they

detect inconsistencies between data, or poor quality data in the

frame. Then, they need to decide between preserving the frame

by looking for more data, or reframing it by comparing it with

other frames, or seeking a completely new frame. Because of

the various and detailed sensemaking activities surrounding

the frame in the Data-Frame model, we decide to support all

these five activities in our the timeline visualization through

fluid user interactions. The terms ‘schema’ and ‘frame’ are

used to refer to the same concept throughout this paper.

IV. VISUAL ENCODING

A. Event Representation

An event is represented by a rounded rectangle with its

left side aligned with the event’s time on the timeline. To

reduce cluttering, events are not constantly connected by lines

to their corresponding points on the timeline. Instead, when

the mouse is over an event, its time point on the timeline is

highlighted. A short textual summary is rendered inside the

rectangle to summarize the event. To address the scalability

of long summaries, we assign a maximum width to event

rectangles and trim excess text. The full content will only

be displayed when the note is hovered over. All events have

a uniform height to give a consistent overall appearance,

especially when they are connected to form a schema (Section

V-B). Quite often, events are categorical data. For example, in

news reports, an article can be classified into sport, fashion

or both. SchemaLine adds a small rectangle in each event

to color-code its categorization. Eight different colors are

supported, which are chosen from qualitative colors – Set 1

of ColorBrewer [19]. All other categories besides eight of the

most popular ones will share the same color to address the

limitation of the small number of distinguishable colors. We

plan to combine colors with other indicators such as texture to

increase the number of differentiated keywords in the future

work. The number of maximum categories that an event can

belong to is configurable to adapt the dataset characteristics.

As in Fig. 1, maximum three themes of an event can be

displayed.

Fig. 1. Events are represented as rounded rectangles with a uniform height
and limited width aligned at their corresponding time points. The 15th-May
event is highlighted. On the left side of the event rectangle, small color-coded
rectangles indicate the event’s groupings.

In SchemaLine, the timeline is shown as a horizontal axis at

the bottom of the display. Its starting and ending points change

dynamically to cover the time span of all events. The timeline

consists of two temporal scales. These two scales can also be

changed dynamically according to the displayed events. For

example, they change from “month/day” to “year/month” to

accommodate large interval increases.

B. Schema Representation

After discovering a number of relevant events or pieces of

evidence, the analyst starts combining them to form a schema.

A schema is a set of related events that are connected to each

other in a certain way. For example, a schema might contain

all events about a particular person. Multiple schemata can be

composed in SchemaLine as shown in Fig. 2.

We consider several design options to connect events within

a schema such as using colored/shaped icons or node-link

diagrams. However, they all have some drawbacks as discussed

in the Related work (Section II). Computational methods that

allow visualize a large number of events with different themes

such as ThemeRiver [9] do not work either because individual

events and interactions are more essential in SchemaLine.

Also, it should be easy to follow events within a schema

in temporal order. We decided to visualize each schema as

a colored stripe, which is inspired by Munroe’s hand-drawn

visualization [10]. A character line in Munroe’s work connects

all events happened to that character. Similarly, our schema is

a color stripe connecting all events belonging to it. Instead of

using a thin line, we use a path with unique width (an event’s

height) to make enough space to display the event’s summary

text and allow interaction with individual notes. A rectilinear

path is employed to provide a nice visualization rather than

direct connection between events.

V. ALGORITHM

The process of generating schemata has two main steps.

First, the layout of the schemata is generated and then its

outline is computed based on the layout information.

A. SchemaLine Layout

The algorithm that produces the layout of schemata

and events in SchemaLine aims to produce a compact

and aesthetically pleasing visualization that also meets the

following criteria:

Fig. 2. SchemaLine: each piece of text is an analyst note, positioned along the time axis at when the event happened. Related notes are linked together to
form a “schema” or “frame”. There are three frames in this example represented as colored rectilinear paths. Small color-coded rectangles on the left side
of notes are “categories”.

C1 The preferred horizontal position of an event is its

corresponding time on the timeline.

C2 An event can be shifted horizontally by a limited

amount to improve the layout; however, the relative

order between events must be maintained.

C3 There is no event/event, event/schema, or

schema/schema overlap.

In summary, the layout algorithm consists of the following

four steps (Fig. 3):

1) Order the schemata such that those that share events are

next to each other as much as possible;

2) Generate the relative position of events within a schema;

3) Place schemata bottom up following the order computed

in the first step as compactly as possible;

4) Add the remaining events that do not belong to any

schema.

1 2 3
Compute orders Generate layouts Compact schemata Add events

Fig. 3. The SchemaLine algorithm: First, the order of schemata is computed.
Second, the layout of each schema is generated independently. Third, schemata
are stacked together to save display space without changing order. Finally,
events that do not belong to any schema are added.

1) Schema Orders: It is not always possible to have

schemata that share events placed next to each other. For

example, if three schemata all share events with each other,

then in any order two of them will always be separated by

the third schema. Our algorithm uses a strategy that prioritizes

pairing of schemata according to how many events they share.

To do this, we map the problem to graph path finding as below.

Given a set of schemata S, we create an undirected graph

G = (V,E), where each vertex vi represents a schema si ∈ S.

The weight of an edge eij is the number of events shared by

schemata si and sj . Finding a schema order with the maximum

number of shared nodes placed next to each other becomes

finding a path with maximum weight connecting all vertices

in G. This classic longest path finding problem is NP-hard. The

number of schemata we plan to support is at most eight due

to the limitation of the small number of colors that human can

distinguish. Therefore, we simply use brute-forte algorithm to

find the path.

2) Individual Schema Layout: The second step of the

algorithm produces the layout of each schema. Events

shared by multiple schemata are replicated for each

of them; therefore, the layout of each schema can be

generated independently. Events within a schema are sorted

chronologically so that they can be added from left to right.

The algorithm works by adding one event at a time: the new

event will stay at the same horizontal level as the previous

one if it can, otherwise it will move up one level. When a

event ni has the same time as the previous ni−1, it needs

to be moved up one level because they must have the same

x-coordinate. Otherwise, if ni intersects with ni−1, an attempt

is made to shift ni−1 to the left to make space for ni as

discussed below. If the shifting is successful, the event stays

in that level; otherwise, the event needs to move up one level.

Shifting Events: To address the issues of scalability and

efficient use of space, accuracy of the event position can be

sacrificed. For each event, its x-coordinate is initially set at

event time (C1). Then, events can be shifted horizontally to the

left by a limited amount, to make room for events that are after

it temporally. An event can be rendered at the non-accurate

position scaled with its time. However, to keep the event close

to the accurate position, we set the maximum distance that a

event can shift to its width. As a result, the event still overlaps

with its time point on the timeline and provides reasonable

indication to viewers of its true position. When shifting, it

is crucial to maintain the relative order between the shifting

event and other events (C2). For example, if event ni was

to the left of n before the shifting, it should remain on the

left afterwards. Another important condition is that there is no

intersection with any other event after the shifting (C3). An

illustration of this algorithm is shown in Fig. 4.

3) Schemata Compact: In the third step, the algorithm

stacks schemata in the order computed in the first step to

produce a compact visualization. For example, if two schemata

cover non-overlapping time ranges, they can be placed in the

same level to save display space.

The group of schemata that share events is added to the

SchemaLine first. Their relative ordering top to bottom is fixed

and each schema is pushed towards the bottom as much as

possible to save display space. After this, schemata without

any shared event are added, again from bottom up to find the

lowest level possible.

New level

N1

N2 stays on
the same level

N1 N2

N2 shifted to
have space for N3

N1 N2 N1 N2 N3

N4

N3
Can’t shift,

N4 moves up one level

Fig. 4. Schema layout algorithm. Four events N1, N2, N3, N4 will be
added to the schema in chronological order. N1 is positioned at its accurate
event time. N2 can stay in the same level as N1 because it does not intersect
with N1. N3 intersects with N2 but the intersection width is small enough
so that N2 can be shifted to the left to let N3 stay in the same level as well.
However, N4 needs to move up one level because the width of its intersection
with N3 is longer than that of N1 and N2, i.e., they cannot be shifted.

4) Non-schema Events: This last step allocates events

that do not belong to any schemata. Events are sorted

chronologically so that they are added to the SchemaLine from

left to right. The ideal x-position is the event time, but an event

can be shifted as described in Section V-A2. An event always

begins at the lowest level and moves upward until there is

enough space for it: that is, until it does not intersect with any

other schema or events after possible horizontal shifting.

B. SchemaLine Outline

In this section, we describe the algorithm to produce a

polygonal outline covering all the event rectangles within a

schema. We decided to use only horizontal or vertical line

segments to keep the outline simple. The polygonal path Pn

of a schema that contains n event rectangles R1, R2, ..., Rn,

ordered from left to right, is determined as follows:

Pn =

{
R1, n = 1

Pn−1 ⊕Rn, n > 1
,

where ⊕ is the merge operator that merges a polygonal path

and a rectangle into a new polygonal path.

A polygonal path is simply represented as an array of

vertex coordinates. As the above formula demonstrates, this

array will be incrementally extended by adding each rectangle

individually. As described in the schema layout algorithm

(Section V-A2), when adding a new event into an existing

schema, the event either has the same level as the previous

event of the schema or moves up one level. Polygonal path

extension is simple; however, it needs to extensively cover

all possible cases to produce a nice path. Fig. 5 shows five

different cases that need to be considered when merging a

polygonal path and a rectangle.

(a) Basic case 1 (B1): new rectangle R3 is
on the right side of the path.

(b) Basic case 2 (B2): new
rectangle R3 is on top of the
path.

(c) Special case of B1 when
right-side of R3 is shorter than
right-side of R2.

(d) Special case of
B2 when left-side
of R3 is close to
left-side of R2.

(e) Special case
of B2 when
right-side of R3
is shorter than
right-side of R2.

Fig. 5. Five possible cases when a new rectangle into the polygonal path.
Big circle indicates the pivot vertex of the path (top-left corner of the last
rectangle). Orange circles indicate updated vertices, and blue circles indicate
newly added vertices of the polygonal path.

After producing a rectilinear path, the bends are made

rounded to create a pleasing visualization (Fig. 2). The path

is filled with the same stroke color but less transparency to

make the border pop-out with a darker hue. The beginning of

the path does not have the border to indicate that the path is

open on that side and the reader should follow this direction.

VI. SENSEMAKING WITH SCHEMALINE

SchemaLine is designed to support all five sensemaking

activities in Data-Frame model through fluid user interactions.

Following the design guidelines for fluidity proposed by

Elmqvist et al. [20], SchemaLine’s interactions

• use smooth animated transitions between states,

• provide immediate visual feedback on interaction, and

• use direct manipulation of visual representations.

Sensemaking activities in Data-Frame model involve two

different types of entities: data and frame. We allow direct

manipulation of visual representations of data and frame,

instead of invoking menus and buttons to perform actions.

The first sensemaking activity in the Data-Frame model is

to construct a new frame by connecting relevant data. It

can be performed in SchemaLine by dragging one event and
dropping it onto another event. A plus icon and a dashed
rectangle surrounding the two events are displayed to indicate

that a new frame will be created. When dropping the event, a

color stripe representing a frame will be formed by connecting

these two events, and a smooth animated transition is used to

improve user perception.

Besides dropping an event on top of another event, the user

can drop it onto the color stripe to add that event to an existing

frame (elaborate a frame). Conversely, the user can drag an

event belonging to a frame and drop it onto the void space to

remove it from the frame (preserving a frame). Appropriate

informative feedback is displayed, plus icon for addition and

minus icon for subtraction, and a smooth animated transition

is used to improve user perception. Fig. 6 shows an example

of adding an event into a frame.

Fig. 6. Each frame is represented as a colored stripe. Dropping an event onto
the blue stripe means adding that event into the blue frame to elaborate it.

Questioning a frame occurs when the user encounters

inconsistencies in data within a frame. The temporal

distribution of events in the frame may suggest some concerns

about the validity or completeness of the frame. For example,

if a frame about one person contains many events in January

and March, but no events are found in February, then it may

be inferred that there could be some data missing. The analyst

can mark a suspected event by right-mouse double-clicking on

it. Red color text is used to indicate that the event needs more

investigation.

Dragging an event from one frame to another frame will

remove it from the old frame and add it to the new frame.

However, holding Control key when dropping will instead

copy the event to the new frame. This interaction allows the

analyst to duplicate events to create several similar frames

and compare them (comparing frames). When two frames

are selected, they will be moved closer together to allow easy

comparison, irrespective of the frames ordering generated by

the layout algorithm. The user can drag an entire frame and

drop it onto another frame to merge all events together. The

user can also drop the frame onto the void space to take apart

the frame and release its events. This interaction is useful when

the user thinks that the frame is completely wrong and wants

to construct a new frame (reframing).

Other interactions with events are also designed to be

intuitive. Left-mouse double-clicking on an event opens its

full content. Dragging an event with the right mouse button

can change the event’s date. This feature is useful because

the report date is not always the date when the event actually

occurred; for example, “yesterday there was a bomb attack

in ABC”. Dragging an event outside the boundary of the

timeline will remove it from the system (with remove icon

as informative feedback).

Once any change is made on SchemaLine, such as moving

an event from one frame to another, an animation is shown of

smooth transition between the changes to help analyst update

their “mental map”. To achieve this, the layout algorithm

(Section V-A) computes the new event rectangle locations.

Then, the outline algorithm (Section V-B) runs at every step

of the interpolation between the old and the new locations

to produce intermediate polygon paths based on the updated

event locations.

VII. EVALUATION

We first discuss the integration of SchemaLine into

an existing visual analytics system, and then conduct

an evaluation of SchemaLine’s usefulness in supporting

sensemaking of temporal data.

A. An Application of SchemaLine

To evaluate the usefulness of SchemaLine, we integrated

it into an existing sensemaking system that also follows the

Pirolli-Card model. We choose our own research framework,

INVISQUE [21], an INteractive VIsual Search and QUery

Environment, so that the integration can be done at the code

level. Following the Pirolli-Card model, SchemaLine uses the

output of the Read & Extract process, evidence files, as the

input.

INVISQUE provides keyword search capability to address

the Search & Filter process. The search results are shown

as a cluster of index-cards, each representing a document

with selected information. For example, an index-card might

have title, publishing date, and the first lines of the full

article for a news report. The analyst can take notes while

reading it. Notes will be saved and rendered at the bottom

of the index-card. Notes are considered as evidence files in

the Pirolli-Card model and used as the input of SchemaLine.

To minimize the analyst’s effort, when they finishes entering

a note, both the note and its associated document are passed

to SchemaLine and automatically added to or updated on the

timeline. Left-mouse double-clicking on the note will open the

original document in index-card metaphor. After examining

search results, the analyst can minimize the cluster and leave

only the search term visible, to make more screen space

available for new searches but still be able to recall them

back later. We color-code the minimized clusters with the

aforementioned small rectangles inside the note rectangle. This

helps indicate the provenance of each note and may support

sensemaking activities at a later stage.

B. Case Studies

Evaluating the usefulness of SchemaLine in supporting

sensemaking is challenging. It is categorized as evaluating
visual data analysis and reasoning – one of seven scenarios

in the information visualization empirical studies by Lam et

al. [22]. Because of the difficulties of this evaluation type, such

as the fluidity and various approaches used by analysts and the

quantification of the analysis results, evaluations are typically

case studies with realistic datasets and domain experts as

participants.

We used the task from Mini Challenge 3 of the VAST

Challenge 2011, which requires the participants to identify any

potential criminal activities from the given dataset. INVISQUE

with SchemaLine integrated was used in the study. This dataset

was chosen because the solution was provided and well-tested

by the community. The original dataset contains four thousand

news reports, many of which are over 500 words long. A pilot

study showed that it was difficult for the participant to find

any answers even after trying for a long time. The reason

could be INVISQUE does not support text-mining features

such as entity extraction, which is crucial in analyzing a large

document collection. The goal of the evaluation is to assess

how SchemaLine can support INVISQUE in sensemaking,

not to assess INVISQUE itself so, in the actual study, we

reduced the dataset to contain only 36 documents that were

manually added into the dataset as part of the ground truth so

that participants could complete the task with reasonable time

and effort but without affecting the goal of the evaluation.

Five criminal activities are embedded into those documents

including food poisoning (13 documents), hacking (3), dirty

bomb (6), arms trafficking (4), and money laundering (3)

together with 7 isolated cases, which are not considered as

correct solutions.

SchemaLine is designed for general-purpose usage. We

tried to recruit participants with varying backgrounds, and

conducted three case studies with a graduate student in visual

analytics (surrogate for visualization expert, P1), a graduate

student in law (surrogate for domain expert, P2), and a

graduate student in networking (neutral background participant

P3). A 10-minute-training session was given before an

one-hour main task to help participants become familiar with

the basic functions of INVISQUE and the set of interactions

that SchemaLine offers to group relevant notes. After finishing

their analyses, participants reported the criminal activities they

had discovered, together with the supporting evidence. The

main methods of these case studies were observations and

interviews, which focused on how SchemaLine facilitates the

participant in finding the answers in the context of the five

sensemaking activities in the Data-Frame model it is designed

to support.

1) Case Study 1 – Visual Analytics Graduate Student:
Participant P1 began searching for “bomb”, read, took notes

and continued searching for a more detailed keyword “dirty

bomb”. He used drag-and-drop interaction to link his three

notes of “dirty bomb” documents together (construct a new
frame). Then, he searched for “Network of Dread”, which

was mentioned in one document as the author of the dirty

bomb attack. He took notes on the new returned document

and dropped it onto the color stripe of dirty bomb (elaborate
a frame). While investigating, he encountered an article about

a man carrying a frozen turkey having wires coming out it,

which was suspected as a bomb. At first, he dropped the

“turkey bomb” note onto the “dirty bomb” stripe. Then, he

wondered “Is it a real bomb?”. After thinking for a while, he

removed it out of the stripe (preserve a frame), which was a

correct decision when checking against the solution.

2) Case Study 2 – Law Graduate Student: Participant P2
took an overview step before searching. He quickly looked at

all 36 document titles to have a glimpse of the dataset as well

as to detect potential search keywords. He began searching

“animal deaths”, read, took notes and grouped them together

(construct a new frame). He was happy with the evidence he

found for that crime and switched to read another interesting

article “Library Computer Left” he came across. From that,

he searched for several related terms such as “computer” and

“hackers”. He figured out that a group called “F-alliance”

stole computers from the library and attempted to hack a

bank. He dropped the “computer stolen” note on top of the

“bank hacking” note to form a new explanation for the case

(construct a new frame). He found another article related to

hacking but he said “I won’t drop it to this group because it’s

just an announcement from the government about potential

threats” (preserve a frame). During further investigation, he

created another group of notes related to “bioterrorism” and

“Prof. Patino”. Then, when figuring out that the reason of

the mass deaths is a spore-forming microbe, which is also

mentioned in Prof. Patino’s talk, he dragged the new group

and dropped it onto the “animal deaths” group to combine

all notes together because they are related (merge frames).

Observing the event orders in the new group on the timeline,

he said “The equipment of Patino was stolen after the animal

deaths report, so they couldn’t be used in that case. This is

the group of potential threat in using bioterrorism” (elaborate
a frame). Fig. 7 shows the computer screen of P2 when he

reported his findings.

3) Case Study 3 – Computer Network Graduate Student:
Participant P3 searched for a few keywords related to

criminal activities before investigating the search results such

as “bomb”, “terrorism”, “money” and “hack”. In a similar

fashion to other participants he took notes when reading,

and grouped related notes together by dragging one note

and dropping it on top of another note (construct a new
frame). After finding a crime about money laundering, he

read articles from “terrorism” search results. Then, he followed

the article content to search for relevant information such as

“Paramurderers of Chaos” – a terrorist group. During further

investigation, similar to P2, he also combined two groups

of notes – “Paramurderers of Chaos” and “food supply”,

together when discovering evidence linking the two groups

(merge frames). When representing his findings, he shared that

SchemaLine prompted him to look for missing information.

“I noticed the gap between these two events [pointing to the

timeline]; then I knew I probably missed something there”

(question a frame).

4) Participant Results and Discussion:: P1 found the “dirty

bomb” attack with 4/6 pieces of evidence. P2 found the

“hacking” case with 2/3 pieces of evidence, and the “food

poisoning” case with 9/13 pieces of evidence. P3 also found

the “food poisoning” case with 6/13 pieces of evidence, and

a perfect 3/3 pieces of evidence in the “money laundering”

case. P1 took many notes in documents related to the “food

poisoning” case; however he could not link them together

because “I’m not familiar with bio-attack so I couldn’t think

of it as a threat”. All participants extensively used SchemaLine

to group related notes with different types of relationship:

a group of “bioterrorism” articles, a group of more specific

criminal activity like “dirty bomb” or “money laundering”, a

group of people like “Paramurderers of Chaos”, and a group

of a specific person like “Prof. Patino”. Another benefit of

using SchemaLine is that all participants are very confident

when presenting their analyses. P3 even opened the original

Fig. 7. A reproduced image from the video record of participant P2 when he reported his findings. Top: a trail of his keyword searches, collapsed after being
read. Middle: search results in index-card metaphor. Bottom: two schemata containing notes as supporting evidence of criminal activities he found.

document (double-clicking on the note) several times to

highlight the relevant text when reporting to the observer to

show his strong evidence. P1 had a scenario about airport
attack with only two pieces of evidence. He said that he

was not sure about that and he did not think it was correct.

Indeed, it was not mentioned in the solution. It proved that

the participants justified evidence a lot to provide a reliable

answer when using SchemaLine.

In summary, all participants liked the feature of

automatically adding notes to the timeline so that they did

not need to remember the notes. P1 thought that he would

have problem if the system did not support that: “I can

remember what happened but it was difficult to remember

when it happened”. They found that it was helpful to build

a scenario with SchemaLine because the information is

organized chronologically, which is the order when events

actually happened. P2 shared that he read the news about

the robbery at Vastopolis university and the Prof. Patino’s

talk about bioterrorism. He did not have any insight at that

time. However, when looking at his two notes on the timeline,

he realized that the order of the two events was the other

way around. Then, he thought that Prof. Patino’s description

of extremely expensive equipment in his lab could be the

rationale of the robbery. All participants commented that the

interactions to edit frames are very intuitive. P1 even said “I

think I don’t even need training and still can figure out how it

works”. P3 liked the transition effect when adding or removing

notes because “it helped me to understand what is going

on”. These case studies showed the usefulness of SchemaLine

in supporting sensemaking as well as the intuitiveness and

effectiveness of SchemaLine’s interactions in performing those

sensemaking activities.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a new timeline visualization,

SchemaLine, which is designed to support sensemaking. More

specifically, it facilitates the schematization process in the

Pirolli-Card model and targets all sensemaking activities in

the Data-Frame model. The SchemaLine layout algorithm

produces simple, compact, but aesthetically pleasing timeline

visualizations. It replaces menu and buttons with fluid

user interactions to perform all necessary tasks, and can

be integrated within larger visual analytic systems. Our

preliminary evaluation suggests that the design of SchemaLine

is supportive of sensemaking tasks. It was clearly a helpful aid

to users in analysis of the scenario, as evidenced by their usage

patterns and feedback.

As future work, a more formal evaluation would be

beneficial – perhaps even following integration of SchemaLine

into a number of different systems, to allow the specific effect

to be separated from the rest of the system. In terms of design

of the SchemaLine itself, there are a number of improvements

that could be added. Shared events between frames could be

better visualized (at present, the event is simply duplicated).

There are also obvious issues with scalability: while the

timeline will scale comparatively well with number of events,

it will scale badly with number of frames, since the set of

effective qualitative colors is quite small. Other cues such as

texture or line style may help with this problem, but to discover

this will require further experimentation.

REFERENCES

[1] C. Plaisant, B. Milash, A. Rose, S. Widoff, and B. Shneiderman,
“LifeLines: visualizing personal histories,” in ACM Conference on
Human Factors in Computing Systems, Apr. 1996, pp. 221–227.

[2] S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings in
information visualization: using vision to think. Morgan Kaufmann
Publishers Inc., Jan. 1999.

[3] P. Pirolli and S. Card, “The Sensemaking Process and Leverage
Points for Analyst Technology as Identified Through Cognitive Task
Analysis,” in Conference on Intelligence Analysis, 2005.

[4] N. J. Pioch and J. O. Everett, “POLESTAR - Collaborative Knowledge
Management and Sensemaking Tools for Intelligence Analysts,” in ACM
International Conference on Information and Knowledge Management,
Nov. 2006, pp. 513–521.

[5] D. Gotz, M. Zhou, and V. Aggarwal, “Interactive Visual Synthesis of
Analytic Knowledge,” in IEEE Symposium on Visual Analytics Science
And Technology. IEEE, Oct. 2006, pp. 51–58.

[6] C. Gorg, Z. Liu, and J. Stasko, “Reflections on the evolution of the
Jigsaw visual analytics system,” Information Visualization, Jul. 2013.

[7] “Timelines in the nSpace2 Sandbox,” http://www.oculusinfo.com/assets/
nspace2videos/TimelinesInTheSandbox.mp4, 2012.

[8] G. Klein, J. K. Phillips, E. L. Rall, and D. A. Peluso, “A Data-Frame
Theory of Sensemaking,” in Expertise out of context: Proceedings
of the sixth international conference on naturalistic decision making,
R. R. Hoffman, Ed. Mahwah, NJ: Lawrence Erlbaum Associates,
2003, pp. 113–155.

[9] S. Havre, E. Hetzler, P. Whitney, and L. Nowell, “ThemeRiver:
visualizing thematic changes in large document collections,” IEEE
Transactions on Visualization and Computer Graphics, vol. 8, no. 1,
pp. 9–20, 2002.

[10] R. Munroe, “Xkcd #657: Movie narrative charts,” http://xkcd.com/657,
2009.

[11] Y. Tanahashi and K.-L. Ma, “Design Considerations for Optimizing
Storyline Visualizations,” IEEE Transactions on Visualization and
Computer Graphics, vol. 18, no. 12, pp. 2679–2688, Dec. 2012.

[12] S. Liu, Y. Wu, E. Wei, M. Liu, and Y. Liu, “StoryFlow: tracking the
evolution of stories,” IEEE Transactions on Visualization and Computer
Graphics, vol. 19, no. 12, pp. 2436–2445, 2013.

[13] V. Kumar, R. Fur, and R. B. Allen, “Metadata Visualization for
Digital Libraries : Interactive Timeline . Editing and Review,” in ACM
conference on Digital libraries, 1998, pp. 126–133.

[14] P. André, M. L. Wilson, A. Russell, D. A. Smith, A. Owens,
and M. Schraefel, “Continuum: designing timelines for hierarchies,
relationships and scale,” in ACM Symposium on User Interface Software
and Technology, Oct. 2007, pp. 101–110.

[15] C. Stab, K. Nazemi, and D. W. Fellner, “SemaTime - Timeline
Visualization of Time-Dependent Relations and Semantics,” Advances
in Visual Computing, pp. 514–523, 2010.

[16] J. Stasko, C. Gorg, Z. Liu, and K. Singhal, “Jigsaw: Supporting
Investigative Analysis through Interactive Visualization,” in IEEE
Symposium on Visual Analytics Science and Technology, 2007, pp.
131–138.

[17] W. Wright, D. Schroh, P. Proulx, A. Skaburskis, and B. Cort, “The
sandbox for analysis: concepts and methods,” in ACM Conference on
Human Factors in Computing Systems, 2006, pp. 801–810.

[18] N. Pennington and R. Hastie, “Cognitive theory of juror decision
making: The story model,” Cardozo L. Rev., vol. 13, p. 519, 1991.

[19] M. Harrower and C. a. Brewer, “ColorBrewer.org: An Online Tool
for Selecting Colour Schemes for Maps,” The Cartographic Journal,
vol. 40, no. 1, pp. 27–37, Jun. 2003.

[20] N. Elmqvist, A. V. Moere, H.-C. Jetter, D. Cernea, H. Reiterer,
and T. Jankun-Kelly, “Fluid interaction for information visualization,”
Information Visualization, vol. 10, no. 4, pp. 327–340, Aug. 2011.

[21] W. Wong, R. Chen, N. Kodagoda, C. Rooney, and K. Xu, “INVISQUE:
intuitive information exploration through interactive visualization,” in
Extended Abstracts on Human factors in computing systems, May
2011, pp. 311–316.

[22] H. Lam, E. Bertini, P. Isenberg, C. Plaisant, and S. Carpendale,
“Empirical Studies in Information Visualization: Seven Scenarios,”
IEEE Transactions on Visualization and Computer Graphics, vol. 18,
no. 9, pp. 1520–1536, Nov. 2012.

