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Abstract

This paper presents a novel way to draw very large graphs,
especially those too big to fit the memory of a single
computer. This new method takes advantage of the re-
cent progress in distributed computing, notably using the
Apache MapReduce library called Spark. Our implemen-
tation of a force-directed graph drawing algorithm and the
way to compute repulsive forces in MapReduce are exhib-
ited. We demonstrate the horizontal scalability of this al-
gorithm and show layouts computed on a Hadoop cluster
with our method.
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1 Introduction

With the advent of social networks and connected object,
networks have a more prominent place than ever. As a re-
sult, graphs representing those networks have grown ex-
ponentially in size. It is increasingly relevant to be able
to visualize those graphs to better comprehend the data
structure and help human operators analyze data.

Many force-directed algorithms have been developped
to draw undirected graphs. The classical approach is iter-
ative: an attractive and repulsive force are applied to each
vertex at each step, computing its displacement [7, 12].
Relying on a physical model, like the spring-electrical
model, those algorithms try to reach the energy minimum
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by iterating until the layout stabilizes. Effectively, they
are unable to draw large graphs as they need an all-pair
distance computation, which quickly becomes expensive
as graphs become larger.

The multi-level approach developped in GRIP [8] and
FM? [9, 10] overcomes this limitation by introducing a
multi-level scheme. A graph filtration is created where
each child graph is a summary built from its parent graph.
A force-directed algorithm is applied on the child-most
graph, which then gives the initial layout of its parent
graph. Each level is drawn this way until the parent-
most graph, where we get the final layout. This method
ensures that the initial layout is already close to the en-
ergy minimum before applying the force-directed algo-
rithm, thus accelerating convergence. In FM?3, the multi-
pole approach circumvents the computation of repulsive
forces for every vertex pair. Graphs which where too large
for regular force-directed schemes like Fruchterman and
Reingold [7] can be drawn in a matter of seconds.

New implementations of the force-directed algorithm
have recently been developped by taking advantage of the
Graphics Processing Unit (GPU) available in most lap-
tops [6, 3]. In Frishman [6], a multi-level approach is pre-
sented using general purpose computation on the GPU.
These methods greatly accelerate computation.

Two solutions are commonly mentionned when faced
with important volume of data to analyze: High Perfor-
mance Computing (HPC) or MapReduce [4]. The HPC
approach relies on multi-core architectures using massive
parallelism. This method has proven itself to be effective
but requires data to be wholly available on a computation
cluster, which is usually not where data is stored. As a



result, a transfer has to be done to the HPC cluster to per-
form analysis. Within the Big Data context, where graphs
are huge and datasets usually need precomputation, trans-
fering data to the HPC cluster is a serious hindrance. To
bypass this obstacle, we chose to explore the graph draw-
ing problem using the MapReduce paradigm, where data
is processed close to where it is stored. Each computer
in the cluster does computations on the fraction of data
stored on its disks. Those computations are coordinated
and summarized by a master node. In this paradigm, we
avoid transfers to a dedicated HPC cluster each time an
analysis is needed. This paradigm also ensures a high
degree of parallelism and horizontal scalability, meaning
that if storage or computation capacity are needed, a new
machine can be added to an existing cluster without hav-
ing to replace any existing computer.

Spark [17] is a MapReduce framework particularly
suitable to iterative algorithms. Contrary to the classi-
cal MapReduce framework [15, 4], it ensures reusability
of datasets computed during execution, without having to
necessarily store them on disk. Using this library, users do
not need to recompute variables or reload them from disk,
as is generally the case with Hadoop MapReduce. There-
fore, the implementation of force-directed graph drawing
algorithm is facilitated in this environment.

In this paper, we will present how to write a graph
drawing algorithm with the MapReduce paradigm and its
implementation using the Spark library. We will demon-
strate how, from collected data stored in a Hadoop cluster,
we can compute a layout for graphs of millions of edges.
To this end, we will exhibit the challenges that MapRe-
duce represent for graph drawing algorithms. We will go
into details concerning the implementation of graph draw-
ing algorithms and whether or not they are directly appli-
cable in a MapReduce paradigm.

We then present an overview of the implemented al-
gorithm. We demonstrate the exact functionning of this
algorithm in the MapReduce paradigm. Each step is de-
tailed and we demonstrate that this algorithm ensure hor-
izontal scalability and a high degree parallelism.

Graph layouts obtained with this method are presented
and compared with other force-directed graph drawing
methods like FM2. We demonstrate how the various vi-
sualization are equivalent. In conclusion, we will summa-
rize the various results presented here and propose idea to
continue our work and improve our algorithm.

2  Graph Drawing with MapReduce

We demonstrate that classical graph drawing algorithms
are impossible to implement without modifications in the
MapReduce paradigm.

2.1 Spark environment

In a force directed algorithm, attractive and repulsive
forces are computed and applied iteratively to obtain a
new layout. Spark [17] offers a MapReduce environment
where it is easy to create iterative algorithms. Hence using
this library is appropriate for a distributed force-directed
graph drawing algorithm.

GraphX [16] is a Spark library especially developped
for implementing algorithm on graphs and propose a
ready-to-use interface, for example to create a graph from
an file of its edges. This library provides implementa-
tion of classical MapReduce design patterns in the case of
graphs: joins of vertex attributes, a message-passing func-
tion along the edges of the graph (as used in PageRank)
and many others.

2.2 Complete force-directed algorithm

Our first idea was to search for the energy minimum using
a force-directed algorithm, as seen in Fruchterman and
Reingold [7]. This method has been proven effective with
a very small number of vertices, where every repulsion
force between two vertices can be computed, producing
interesting layouts.

Because it requires each vertex in the graph to know
the position of all other vertices, this task is not possi-
ble to carry out efficiently in MapReduce, where data is
stored in several computer of the Hadoop cluster. Doing
the cartesian product of vertex attributes (in our case the
position of each vertex) is not feasible, especially when
dealing with very large datasets. It requires a O(V?) com-
plexity in memory, V' being the number of vertex. For
those reasons, this approach was not further investigated
in MapReduce.

2.3 Multi-level approach

To compensate size limitations in the force-directed algo-
rithm, the multi-level approach, as presented in GRIP [§]



or FM? [9], creates the hierarchy using a sequential algo-
rithm. A hierarchical filtration of graphs is created where
each rougher graph is a topological summary of its parent
graph. At each new level, less edges and vertices are left,
which makes force-directed algorithms more efficient on
those smaller graphs. Drawing the rougher graph gives
the initial layout for its parent graph, which in turn re-
duces the time needed to converge with the Fruchterman
Reingold algorithm for this particular parent graph.

In FM3, every vertex is added in a buffer. One vertex is
sampled in this buffer and every other vertex at distance
2 or less in the graph is collapsed in a solar system, ef-
fectively removing them from the buffer. Another point
is then chosen in the buffer. This process is iterated until
the vertex buffer is empty. While this strategy is very ef-
ficient in a single core architecture where computation is
sequential, parallelism is needed in MapReduce. In Frish-
man [6], most of the computation is done on the GPU but
the filtration step is done on the Central Processing Unit.
Whether this filtration can be obtained in a non-sequential
way remains an open question.

Even if such a hierarchy was available, the full force-
directed algorithm is still applied to the whole graph when
computing the final layout, on the last level. For this rea-
son, a distributed force-directed algorithm is a necessary
step to draw large graphs in MapReduce.

3 Algorithm overview

In this section, we describe the implementation of our
force-directed algorithm. The way the algorithm com-
putes attractive forces is described as well as the prob-
lem faced with repulsive forces. This problem leads to
an approximate solution to compute repulsive forces in
MapReduce.

3.1 Force directed algorithm

Force directed algorithms are iterative methods where at-
tractive and repulsive forces are applied to each vertex at
each step, computing its displacement. Those algorithm
try to reach the energy minimum by iterating over the ver-
tex displacement.

In the MapReduce paradigm, the same scheme is ap-
plied, as seen in Algorithm 1. Each step, repulsive and

attractive forces are computed. Those forces are added to
the current position of vertices in the layout. A new layout
is generated this way, closer to the energy minimum. The
layout is initialized at random. The number of iteration is
set as 101log V, with V' the number of vertices.

Data: Graph
Result: Graph Layout
Initialization;
for Fixed number of iterations do

Computing attractive forces;

Computing repulsive forces;

Applying forces to the layout;
end

Algorithm 1: Spark force-directed algorithm

For each vertex pair connected by an edge, an attrac-
tive force is computed. A spring attractive force is used.
The direction is set as the edge direction and the norm is
expressed as foii(da) = (d‘”fci;do) where d;; is the dis-
tance between the pair of vertices. Two parameters are set:
dy a nominal distance parameter and a parameter k. The
parameter dy is the optimal distance for attractive forces,
meaning that neighbors at distance dj are not subject to
the corresponding attractive force.

Repulsive forces are computed between each pair of
vertex. Those forces ensure that the layout is spread out.
The formula used for repulsive forces is the one presented
in Fruchterman and Reingold[7]. Namely, a repulsive
force is a vector going from one vertex to the other. Its
norm is computed with frep(drep) = é, where d,.p is
the distance between the pair of vertices. The parameter
k, the same parameter as the one used to compute attrac-
tive forces, is used to harmonize attractive and repulsive
forces.

3.2 Attractive forces

Attractive forces are computed using the edges and posi-
tion of each vertex. For any given edge, the position of its
source vertex is mapped with the Id of its corresponding
destination vertex. Those informations are then reduced
using the destination vertex Id to compute the attractive
forces for each vertex. This is summarized in Figure 1.
Using this scheme, messages passed on the cluster are
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Figure 1: MapReduce implementation of attractive forces

bounded by the number of edges in the graph. This en-
sures horizontal scalability.

3.3 Approximate repulsive forces

Repulsive forces are computed between all vertex pairs.
Computing the all-pair repulsive forces is not possible
in a MapReduce environment, due to data partitionning,
as seen in section 2. An approximate repulsive force
computation must be used to compute repulsive forces in
MapReduce.

The approximate force is computed from a summary of
the layout, inspired by GEM [5]. This generalization is
embodied by barycenters, which create local vertex clus-
ters. Inside those clusters, local repulsive forces are gen-
erated to ensure that the graph is as spread out as possible.

With n barycenters, each vertex only needs to know
the position of up to n elements. It reduces the memory
needed to O(n - N) instead of O(N?). Using barycenters,
the horizontal scalability is ensured.

4 Center and centroid repulsive
forces

To overcome the all-pair repulsive forces memory issue,
barycenters are used. Two different types of structures are
employed: the center of the layout and local barycenters.
These structures are described as well as the way repul-
sive forces are computed. We also describe mechanisms
(expansion and reduction) used to keep the centroids rel-
evant even when the layout is updated.

4.1 Center and centroids

We call centroid a local barycenter that summarize the
layout around its position. Each centroid is composed of
its coordinates in the layout, the current number of ver-
tices associated to it and the maximal distance to any as-
sociated vertex. Vertices in the graph are associated to
their closest centroid. A centroid array stores each cen-
troid currently in the layout. To initialize this array, some
vertex are randomly sampled from the layout. Their po-
sition gives the starting position of each centroid in the
initial centroid array.

The layout center represents the mean of coordinates
from every vertex in the layout.

Both structures generate repulsive forces: the layout
center ensures that the graph is as spread out as possible
while centroids fulfill the same purpose at a local level.

4.2 Centroid-repulsive forces

The center and centroids of the layout generate repulsive
forces are applied to each vertex in the layout. The force is
computed using the Fruchterman and Reingold formula,
as described in Section 3.1. Instead of being computed be-
tween a pair of vertices, it is computed between centroids
and vertices, using corresponding direction and distance,
or between the center and vertices in the same manner.
To compute centroid-repulsive forces, the centroid ar-
ray is broadcast to each vertex. Those values are mapped
to compute the force between each centroid-vertex pair.
They are then reduced over vertex identifiers to compute
the global mean centroid-repulsive force for each vertex.
Center-repulsive forces are computed in a similar manner.

4.3 Updating the centroids

The layout is updated at each step of the algorithm. To
keep repulsive forces relevant, positions of the layout cen-
ter and centroids are recomputed at each step. This way,
the repulsive force applied to each vertex is always acu-
rate.

Computing the mathematical mean of elements dis-
tributed in a Hadoop cluster is a well known MapReduce
application [14]. Updating the position of centroids is an
example of this design pattern. Centroids are updated by



mapping vertices positions and distance to associated cen-
troid. Reducing by centroid identifier gives new centroids
positions, number of associated vertices and maximal dis-
tance to a vertex, returning respectively the sum of posi-
tions, a count value and the max of centroid-vertex dis-
tances. Position of the center is updated the same way.

(vertexId, centroidld, centroidDist)
(vertexId, centroidld, centroidDist)

Mapper | —————p|puriione]
(vld, cld, cDist) %

1d, cId, cDist
(14, cld, cDist) Partitioner’

Mapper | ———)

(vld, cld, cDist)

1d, cId, cDist
w’ Partmoner

Mapper

Figure 2: MapReduce implementation of vertex-centroid
association

Centroid-vertex associations are also updated by broad-
casting the centroid array and mapping the centroid-
vertex distance. The reduce operation is done on the ver-
tex identifiers, keeping only the minimum distance, and
corresponding centroid identifier for a given vertex. This
operation is illustrated in Figure 2.

4.4 Expanding and compressing centroids

Centroid-repulsive forces ensure that each vertex cluster,
represented by a centroid, is spread out. To this end, the
centroid array must be a good summary of the graph: un-
der or overfitting must be avoided. To this purpose, two
mechanisms are used. If a centroid is too specific, it is
removed from the layout. If a centroid is too general, it
is split in two. The second centroid is positioned closed
to the first one, with added noise to determine its exact
position.

To trigger these mechanisms, a criterion, called mass,
is set to the number of vertices associated to a given cen-
troid. To bound the number of centroids, a lower and up-
per mass are set to a percentage of the total number of
vertices. The lower bound is set to 0.25% of the number
of vertices, which ensures that there are no more than 400
centroids in the layout. The upper bound is set to 5% of
the number of vertices, which ensures that there are no
less than 20 centroids in the layout.

Reducer —D(IdB centroidId, minDi:

With a fixed maximal number of centroids, the memory
complexity, as described in Section 3.3, is O(N).

S Algorithm in

Spark

implementation

In this section, we describe how we implemented the pre-
vious algorithm using Spark [17].

WH(MA centroidld, minDist)

5.1 Data structure

Resilient Distributed Datasets (RDD) are the default stor-

age method for very large objects in Spark. This structure
is a collection of elements that is both fault-tolerant and
facilitates parallel operations. Those objects can be cre-
ated by parallelizing an existing Scala collection like an
Array or a List. It can also be generated from an already
existing data partition on Hadoop Distributed File System
for example.

The GraphX library for Spark provides two RDD struc-
tures, an EdgeRDD and a VertexRDD. It also provides a
identifier for vertices called VertexId.

The EdgeRDD structure is an RDD of all directed pair
of vertex. It can be represented as a 2-column table, with
the first column being VertexId of source vertex and the
second column being the VertexId of destination vertex.

The VertexRDD is an RDD containing a VertexId and a
vector of values. In our case, the VertexRDD is composed
of the VertexID and the position in the layout, consisting
of two Double coordinates for the x and y coordinates of
the vertex.

Reading from a text file, both the EdgeRDD, composed
of undirected edges without loops, and the VertexRDD,
composed of distinct vertices randomly initialized in the
layout, are generated.

5.2 Attractive forces

To compute the attractive forces, the EdgeRDD is merged
with the VertexRDD to obtain the correct force computa-
tion. More precisely, by using the join function, already
implemented in the Spark environment, positions of the
source vertex and destination vertex are obtained. Those
informations are mapped in a PairRDD with the destina-
tion identifier as key and both positions of the source and
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Figure 3: Layout on Tulip [2] for a generated dataset: (Left) Graph as generated (Middle) Layout generated by FM?
(Right) Layout generated by our algorithm on a Hadoop cluster

the destination vertices as values. They are then reduced
in order to compute the single attractive force applied to
the destination vertex : using reduceByKey() each forces
components are summend and a count value is generated.
This way, the total mean attractive force is computed for
each vertex.

This returns an attractive force RDD that is stored to be
added to the current layout at the end of the step.

5.3 Centroid-repulsive forces

Before the fist iteration, the Array of centroid is initial-
ized by taking vertices at random without replacement.
This is done using the takeSample() Spark method on the
VertexRDD containing the layout.

To compute the centroid-repulsive forces, the centroid
Array is broadcast to each machine in the cluster using
the SparkContext.broadcast() method. The VertexRDD is
mapped and computes the repulsive forces, with the cen-
troids of the centroid array. This returns a PairRDD where
the key is the VertexId and the value is the current repul-
sive force. Those values are then reduced using the re-
duceByKey() method, which returns a centroid-repulsive
force RDD. This RDD is stored to be added to the current
layout at the end of the step.

The center-repulsive forces are computed in a similar
manner, but only the center position is broadcast using
SparkContext.broadcast().

5.4 Updating the centroids

Updating the centroids is done in the manner described
in Section 4.3. Spark map() and reduceByKey() meth-
ods are used on the original VertexRDD. The SparkCon-
text.broadcast() method is also used to send the centroid
Array to each executor.

5.5 Expanding and compressing centroids

Since the centroids array contains few elements, this step
is done on a single machine. To this end, this step is com-
puted on the driver node.

5.6 Updating the layout

At the end of the algorithm, the attractive forces are com-
puted and stored in an RDD. The repulsive forces (both
centroid-repulsive forces and center-repulsive forces) are
also stored in an RDD. To add these forces to the cur-
rent layout, the innerZipJoin() method is used to compute
a join efficiently: this method enables a very quick join
operation for RDD sharing similar indexes. Attractive
forces, center and centroid repulsive forces are applied on
all vertices.



6 Results

We ran our graph drawing algorithm on generated datasets
designed to have interesting layout properties as well as
on a selection of large graphs from the SNAP dataset col-
lection [13]. Here are presented some results comparing
graph layouts.

6.1 Generated datasets

To generate large datasets with a structured layout, we
designed a large graph generator. Graphs generated this
way have grid-like layouts. This graph generator creates
a graph from a vertex grid where vertices are suppressed
regularly in a hole pattern. For each vertex, five neigh-
bours are drawn randomly in a small radius around the
vertex. This method can generate any size of graph. An
example of layout generated by this method can be seen
in Figure 3, on the left.

6.2 Results on a Hadoop cluster

In Figure 3, results generated by our algorithm on a
Hadoop cluster are compared to a layout generated by
FM? and to the original layout. The generated graph is
composed of 8000 vertices and 35000 edges.

Our layout was generated on a cluster of 16 machines
each with 24 cores. Each computer in the cluster has
48Gb of RAM. We ran our Spark application on 20 ex-
ecutors. The algorithm ran for 4600 steps in 5 hours. The
layout can be seen on the right in Figure 3. The FM? lay-
out was obtained using Tulip [2]. It ran on a computer
with 8 cores and 16Gb of RAM. The algorithm only took
a few seconds. The layout can be seen in the middle in
Figure 3.

The original graph layout structure can be recognized
in the layout obtained in Spark, as well as in the layout
obtained with FM3. The layout generated in Spark re-
tains the global structure of the original layout, but is more
warped than the one obtained with FM?. This is a result of
the center and centroid repulsive force, which are creating
local distortions in the layout.

Concerning running times, the graph is too small to
take advantage of the power of the MapReduce paradigm.
It is not surprising that our method was not faster than
FM?3 on a single machine. However, our implementation

still needs tuning to perform much faster than it is cur-
rently performing.

6.3 Social networks

Some SNAP social networks, like WikiVote, were drawn
using our method and compared with FM? (results not
shown). The results are similar as those presented in pre-
vious section. However, the layouts are not very struc-
tured and bring little informations.

Conclusion

In this paper, we described a way to implement a
graph layout drawing algorithm using the MapReduce
paradigm. We showed how our method, while often
slower than efficient CPU methods on small graph, en-
sures horizontal scalability. The layout obtained had most
of the qualities of efficient graph drawing algorithms for
reasonably large graphs.

Future works

Future works will be focused on tuning our algorithm to
better run using Spark. The method will be more finely
tuned and further tested in our current cluster but also on
a larger cluster of 45 machines. With this finer tuning,
we will attempt to draw much larger graphs than the one
showed in this paper. We will provide benchmarks com-
paring our running times with those of algorithms running
on a single computer for very large graphs.
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