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Fig. 1: Our proposed two-stage multi-modal object detection network which fuses LiDAR point clouds and RGB camera
images. First, LiDAR and camera inputs are preprocessed by two sensor-specific networks respectively. Then, the 3D
proposals predicted by the LiDAR network are used to extract regional LiDAR features and camera features. Finally,
the regional features are combined by a light-weight fusion network for the final 3D bounding box regression and object
classification. We do probablistic modeling in the LiDAR network, and introduce an uncertainty sampling mechanism during
training to enhance the fusion network robustness.

Abstract— This work presents a probabilistic deep neural
network that combines LiDAR point clouds and RGB camera
images for robust, accurate 3D object detection. We explicitly
model uncertainties in the classification and regression tasks,
and leverage uncertainties to train the fusion network via a
sampling mechanism. We validate our method on three datasets
with challenging real-world driving scenarios. Experimental
results show that the predicted uncertainties reflect complex
environmental uncertainty like difficulties of a human expert to
label objects. The results also show that our method consistently
improves the Average Precision by up to 7% compared to the
baseline method. When sensors are temporally misaligned, the
sampling method improves the Average Precision by up to 20%,
showing its high robustness against noisy sensor inputs.

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer
be accessible.

I. INTRODUCTION

A driverless car is usually equipped with multiple onboard
sensors, such as video, LiDAR, and Radar sensors, in order
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to build a robust and accurate scene understanding. An
object detection system that can exploit the complementary
properties of different sensing modalities is crucial for safe
autonomous driving.

As a powerful tool for learning hierarchical feature rep-
resentations and complex transformations, deep learning
has been widely applied to computer vision tasks. In this
regard, many methods have been proposed recently which
employ deep learning to fuse multiple sensors for object
detection in autonomous driving [1]. Typical methods such
as MV3D [2] and AVOD [3] have achieved promising results
on the standard open datasets, e.g. KITTI [4], with perfectly-
aligned sensors and good weather conditions. However, those
methods are not robust against temporal and spatial sensor
misalignment that might occur during driving. Even a small
spatial sensor displacement of 0.2m has been shown to
drastically degrade the network performance [5]. It is still a
challenge to improve the network’s robustness against noisy
sensor data.

Reliable uncertainty estimation in object detection net-
works provides extra information to support predictions, and
has the potential to improve other modules such as motion
planning [6]. Previous work has studied uncertainties in
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object detectors that only employ a single sensing modal-
ity such as LiDAR point clouds [7]–[11] or RGB camera
images [12]–[15]. To the best of our knowledge, uncertainty
estimation has not been introduced to multi-modal object
detection yet. Furthermore, though previous studies have
illustrated that uncertainties reflect environmental noises [8]
or data distribution [12], there has been no study on how
they reflect more complex attributes, which can be measured
by the difficulties of a human expert to correctly label
an object. Ideally, a probabilistic detector should assign
high uncertainties to objects which human oracles also find
difficult to label.

In this work, we propose a probabilistic two-stage multi-
modal object detection network that fuses LiDARs and RGB
cameras. We explicitly model classification and regression
uncertainties in the network, and study how they reflect
labeling difficulties of a human expert. To do this, we
build a dataset with labels for environmental effects (e.g.
occlusion, number of points) as well as an estimate of the
labeling difficulty. Regarding the labeling difficulty, human
annotators assign objects to be either “Unsure” or “Sure”.
Statistical analyses show that our network produces higher
uncertainties when detecting “Unsure” objects compared
to “Sure” objects after correction for other environmental
effects. Afterwards, we leverage those uncertainties to im-
prove the detection accuracy and the network’s robustness,
especially in the sensor misalignment situation. The method
works by optimizing the fusion network with the training
data sampled by the estimated probability distributions. We
evaluate our method on multiple datasets with real-world
driving scenarios, including two open datasets (KITTI [4]
and NuScenes [16]) and our self-recorded Bosch dataset.

The Contributions in this paper are three-fold:
• We explicitly model classification and regression un-

certainties in a multi-modal object detection network,
and study how uncertainties are affected by complex
environmental uncertainties like labeling difficulty.

• We leverage uncertainties to improve the detection ac-
curacy and the network’s robustness, especially when
sensors are temporally misaligned.

• We validate our proposed method on three real-world
datasets.

II. RELATED WORK

In this section, we briefly summarize deep learning meth-
ods for multi-modal object detection and uncertainty estima-
tion. For a more comprehensive overview, we refer interested
readers to the survey paper [1].

A. Multi-modal Object Detection

When combining multiple sensors for object detection,
RGB cameras and LiDARs are the most common sensors
reported in the literature [2], [3], [17], [18]. Some works
propose to combine RGB images with thermal images [19],
LiDAR point clouds with HD maps [20], as well as RGB
images with Radar points [21]. Modern multi-modal object

detection networks follow either the two-stage or the one-
stage pipeline. The variety of network architectures provide
many options for sensor fusion. For instance, in the two-
stage pipeline, different sensors can be combined at the first
stage [3], [20], or at the second stage after regional proposal
generation [2], [5], [17]. In the one-stage pipeline, sensing
modalities can be fused at one specific layer [21] or multiple
layers [18], [22]. Typical fusion operations include feature
concatenation, element-wise average mean, and ensembling.
As discussed in [1], we do not find conclusive evidence
that one fusion scheme is better than the others, and the
fusion performance is highly dependent on the network
architectures and datasets.

In this work, we propose a two-stage object detection
network that combines RGB cameras and LiDARs. We first
extract sensor-specific features using two different backbone
networks, and then perform feature concatenation after the
regional proposal generation (Fig. 1).

B. Uncertainty Estimation and Probablistic Object Detectors

There are many ways of estimating predictive probabilities
in supervised deep networks. Bayesian Neural Networks
(BNN) [23] place priors over the network weights, and
infer their posterior distributions through variational infer-
ence [24], [25] or Monte Carlo sampling [26]. Deep Ensem-
bles [27] obtains predictive probabilities from an ensemble
of networks with the same architecture but different training
initializations. Uncertainty propagation methods approximate
the variance in each activation layer and propagate un-
certainties through networks [28], [29]. Direct-modelling
approaches assume certain distributions over the network
outputs. Networks are then trained to directly predict output
distributions [28], [30], [31] or their higher-order conjugate
priors, such as estimating the Dirichlet prior for the multi-
nomial distribution in the classification task [32], or the
Gaussian prior on the mean and an Inverse-Gamma prior on
the variance for the Gaussian distribution in the regression
task [33].

We can capture two types of uncertainties in an object
detection network: the epistemic uncertainty and the aleatoric
uncertainty [7]. The former reflects the model’s capabil-
ity for describing data, and can be explained away given
enough training data; the later captures observation noises
inherent in environments or sensors [30]. Previous studies
have leveraged epistemic uncertainty to improve detections
in open-set conditions [12] or boost training efficiency in
the active learning setting [9]. Other works have shown that
modelling aleatoric uncertainty, especially in the bounding
box regression task, can greatly improve the detection accu-
racy [8], [11], [15], [34] and reduce False Positives [13], [35].
Miller et al. [36] and Harakeh et al. [14] have found that
the merging strategy, such as Non Maximum Suppression
(NMS), significantly influence the uncertainty estimation.
Feng et al. [10] identify uncertainty miscalibration problems
in a one-stage object detection network. They follow [37]
and calibrate uncertainties to correctly estimate the prediction
error within the training data distribution.



In this work, we use the direct-modelling approaches to
explicitly model aleatoric uncertainties for both classification
and regression tasks. We employ uncertainties to improve the
detection accuracy and the network’s robustness against the
sensor temporal misalignment.

III. METHODOLOGY

A. Network Architecture

Fig. 1 illustrates our proposed two-stage multi-modal ob-
ject detection network which fuses LiDAR point clouds and
RGB camera images. Following [2], [3], the LiDAR point
clouds are discretized and projected onto the Bird’s Eye View
(BEV) plane, because this representation has been shown to
be very effective in 3D perception [1]. The input signals
are first processed separately by sensor-specific networks to
extract high-level feature maps. The LiDAR network head
also generates accurate 3D object proposals. Afterwards,
these proposals are projected onto the BEV and front-view
to extract Region of Interest (RoI) features from LiDAR and
image feature maps respectively. Finally, RoI features are
combined in a small fusion network for 3D bounding box
regression and object classification.

The network architecture is designed in a modular manner
that eases adoption. In practice, we can directly leverage
off-the-shelf pre-trained sensor-specific networks to process
LiDAR and camera data (as we do in this work). We can
also easily adopt the network with new sensors (e.g. Radar)
by re-training only the light-weight fusion network, without
affecting other modules. However, the fusion performance
is limited by the LiDAR network. If a 3D proposal is not
recognized, e.g. due to sparse LiDAR point clouds, the object
within it can never be detected by the fusion network. A
potential improvement is to generate 3D proposals from
Radar or camera channels, which we leave as an interesting
future work.

1) Input and Output Encodings: Denote an input sample
as x, and a 3D proposal generated by the LiDAR network
as z. It includes the class label cz with the softmax score sz,
and the proposal’s location bz, i.e. z = [cz,bz]. For brevity
we only consider binary class “Object” and “Non-object”,
cz ∈ {0,1}. We encode bz ∈ R8 as the center positional
offsets on the horizontal plane (dx and dy), proposal bottom
positional offset dz, length, width, height at log scale (log(l),
log(w), and log(h)), as well as orientation (cos(θ),sin(θ)).
The fusion network predicts y= [cy,by], where cy is the class
label with the softmax score sy, and by the 3D bounding
box position. We encode by ∈R8 as the offsets to the region
proposal prediction bz.

2) Sensor-specific Networks and Fusion Networks:
We process LiDAR data and extract 3D proposals using
PIXOR [38], a state-of-the-art one-stage LiDAR object de-
tector, with several modifications. We estimate the object’s
height instead of only predicting on the BEV plane, and
explicitly model predictive probabilities, which will be intro-
duced in Sec. III-B. As for the RGB image data, we employ
the Feature Pyramid Network [39], a well-performing image
feature extractor. The fusion network combines LiDAR and

image RoI features through concatenation, similar to [3].
It also takes the proposal positions and softmax scores as
inputs, because we find that these proposal features can
improve the 3D bounding box regression. The fusion network
consists of three fully connected layers, each with 256 hidden
units and being followed by a dropout layer.

B. Learning with Probability

Suppose we have pre-trained LiDAR and camera networks
that produce 3D proposals z and RoI features for fusion.
The standard approach to training the fusion network can
be viewed from the maximum likelihood perspective, where
we learn a set of network weights w that maximize the
observation likelihood of the training data. We minimize the
negative log likelihood by setting the loss function:

L (w) =− log
(

p(y|x,z)
)
. (1)

In the context of classification, p(y|x,z) is usually set to
be the multinomial mass function, and L (w) is widely
known as the cross-entropy loss. It can also be adapted to
tackle the positive negative sample imbalance problem via
the focal loss [40]. As for the deterministic regression, we
can assume p(y|x,z) as the Gaussian density function with
fixed variance. The corresponding loss function is the L2 loss.

In this work, we incorporate the proposal distribution
p(z|x) into the loss function:

L (w) =−Ep(z|x)[log
(

p(y|x,z)
)
]. (2)

Since an analytical solution is intractable, we approximate
this loss function via sampling (as illustrated in Fig. 2(a)):

Sample z′ ∼ p(z|x), L (w) =− log
(

p(y|x,z′)
)

(3)

This new training strategy brings two benefits. First, prop-
agating proposal uncertainties to the fusion network helps
to improve its robustness, as the network learns to handle
proposals with small and big uncertainties. Second, sampling
proposals can serve as a simple data augmentation method
that aids generalization.

In practice, we could pre-define a proposal distribution,
such as the Gaussian distribution with fixed variance. In
this work, we use predictive uncertainties from a pre-trained
probabilistic LiDAR network, which is more flexible because
they can encode both the varying environmental noises and
the network’s inaccuracy for each proposal. We will illustrate
how to model probability in the following section.
Probabilistic Modelling: We explicitly model regression
and classification uncertainties in our LiDAR network. For
simplicity we will use the scalar notation instead of vector to
introduce our method, e.g. bz is a regression variable in the
vector bz. Fig. 2(b) shows the process. Following [8], we
assume that each proposal regression variable is Gaussian
distributed, i.e. bz ∼ N (ubz ,σ

2
bz
), with its mean ubz being

the network standard output, and its variance σ2
bz

(regression
noise) an auxiliary regression variable. We employ the atten-
uated loss proposed by [30] to learn this probability distribu-
tion (see Fig. 2(b)). Similarly, we assume the distribution of
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Fig. 2: (a). Training the fusion network with sampling. We
assume that the 3D proposals are Gaussian distributed, and
propagate the sampled proposals based on predicted prob-
ability distribution to the fusion network; (b). Training the
probabilistic LiDAR network. The network directly regresses
the parameters of the probability distributions, which are
incorporated in the loss function.

softmax logit lz to be Gaussian, i.e. lz ∼N (ulz ,σ
2
lz), and add

another output layer in the LiDAR network head to regress
the logit variance σ2

lz (classification noise). Directly learning
this variable is difficult [30]. Instead, we sample a logit using
the re-parametrization trick and transform it to the softmax
score, which is used to calculate the final classification loss
(see Fig. 2(b)).

It is noteworthy to mention that we train the probabilistic
LiDAR network and the fusion network separately to favour
the modular architecture design, as discussed in Sec. III-A.
When optimizing the fusion network under the proposal un-
certainties, we directly sample the proposal position b′z, and
indirectly propagate the softmax uncertainty by sampling the
softmax logit l′z (see Fig. 2(a)). All sampling operations are
not required during the inference. Therefore, this approach to
directly modelling uncertainties brings almost no additional
computational cost and parameters, as discussed in [8]. In
practice, we could also train the whole detector in an end-to-
end fashion by employing the re-parametrization trick to the
proposal variance σ2

bz
. However, we do not find improvement

on the detection accuracy using end-to-end training.

IV. EXPERIMENTAL RESULTS

The experimental results are structured as follows. In
Sec. IV-B, we study what the predictive uncertainties used in

the fusion network look like. We conduct statistical analyses
and show that those explicitly-modelled uncertainties reflect
complex environmental noises and the labelling uncertainty
from human annotators. Afterwards, we show in Sec. IV-
C that the proposed uncertainty estimation and sampling
mechanism improve the object detection performance across
three datasets. Specifically, we observe that the proposed
sampling mechanism is more robust than the fixed-sampling
approach, because the predictive uncertainties encode useful
information as shown in the first experiment. Finally, in
Sec. IV-D we demonstrates the robustness of our method
against sensor temporal misalignment problems.

A. Setup

1) Datasets: We validate our method on detecting objects
of the “Car” category in three real-world urban driving
datasets recorded at different locations and with different
sensor setups.
KITTI [4]: the dataset is recorded in Karlsruhe, a mid-sized
city in Germany, only during daytime and on sunny days.
Following [2], we split the training data of 7481 frames into
a train set and a val set, with approximately 50/50 ratio.
The network is optimized on the train set and evaluated on
the val set.
Bosch: we also record data in several major cities in southern
Germany with the vehicle setup similar to KITTI, but in
much more diverse driving scenarios, such as night-drive and
rainy or cloudy days. We follow KITTI and label the object
truncation and occlusion using ordinal numbers. Besides,
we ask annotators to label each object as either “Unsure”
or “Sure”. An object is “Unsure”, if the annotators find
it difficult to define its ground truth label, such as box
parameters. Such label enables us to study how the predictive
uncertainties from our model reflect the labelling difficulties
of a human expert. In the experiment, we randomly split the
data into train drives (8664 frames) and test drives (3028
frames).
NuScenes [16]: this large-scale dataset is recorded in Sin-
gapore and Boston, with rich complexity of traffic and
weather conditions. Different from KITTI and Bosch datasets
which use 64-lens LiDARs, NuScenes is equipped with
32-lens LiDARs [16], making the LiDAR perception more
challenging. Since the full dataset is quite large, we only
use a small subset to do evaluation. We randomly select
100 scenes in the full training data (6022 frames) to train
the network, and the data in the NuScenes-teaser release for
testing (3962 frames).

2) Implementation Details: We assemble our multi-modal
object detector following the modular design discussed in
Sec. III-A. First, we leverage the pre-trained Feature Pyramid
Network as the image backbone directly from Detectron [41],
and pre-train the PIXOR-like LiDAR network with the SGD
optimizer and the learning rate 0.02, and set the step decay to
be 0.75 for every 30,000 training steps. We train the LiDAR
network with 140,000 steps for KITTI, and 300,000 steps for
Bosch and NuScenes. Our LiDAR network achieves similar
detection performance compared to the original PIXOR



results [38]. Afterwards, we fix the sensor-specific networks,
and train the fusion network with the ADAM optimizer and
learning rate 10−5 (120,000 steps for KITTI, and 250,000
steps for Bosch and NuSecenes). We find this strategy of
long training with small learning rate makes the fusion
network more stable. We proceed 1024 3D proposals with
the highest classification scores to the fusion network during
the training process, and reduce the number to 500 during
inference. Proposals out of the camera field of view are
not considered for fusion. For KITTI and Bosch datasets,
we use the LiDAR point cloud within the range length ×
width × height = [0,70]m×[−40,40]m×[0,2.5]m, and do
discretization with 0.1m resolution. For the NuScenes dataset
we set the length up to 50m due to LiDAR point cloud
sparsity. All experiments are conducted using Titan X GPUs.
The inference time reaches 5fps.

B. Understanding Uncertainties

We study how uncertainties behave using the probabilistic
proposals predicted by the LiDAR network on the Bosch test
data. We measure the Shannon Entropy of softmax scores
(SE), the total variance σ2

bz
of the regression noise, as well as

the classification noise Ucls by the positive logit variance σ2
lz .

In the binary case, the shannon entropy is high for softmax
scores close to 0.5 and low for scores close to 0 or 1.

Fig. 4 shows an example of how uncertainties are dis-
tributed in an input frame. We only visualize uncertainties
at regions with positive softmax scores larger than 0.01,
because below this threshold regression uncertainties are
dominated by random noises due to the training strategy (no
regression loss is a region is not assigned to a ground truth).
We observe that the proposals at the “around-object” regions
usually show higher Shannon Entropy scores than the “in-
object” regions (Fig. 4 (b)), because those regions are on
the boundary between objects and background. The regres-
sion and classification noises do not show this behaviour
(Fig. 4(c), (d)). Instead, both uncertainties are more affected
by the environmental noises, e.g. distant proposals depict
high uncertainties. Similar results have also been observed
in [8].

In order to study whether the predicted uncertainties Ureg
and Ucls match human annotations of “Unsure/Sure” objects,
we first associate LiDAR proposals with ground truths when
IoU> 0.5, and then calculate the uncertainty histograms of
associated proposals regarding on the “Unsure/Sure” labels.
As shown in Fig. 3, the distributions are different between
“Unsure” objects and “Sure” objects, with “Unsure” detec-
tions in general showing higher SE, Ureg and Ucls scores than
“Sure” detections. To check whether the correlation in Fig. 3
is mainly due to effects of other environmental effects, we
train linear models for Ureg and Ucls with independent vari-
ables “Distance”, “Occlusion”, “Number of LiDAR points”
(within a bounding box), and “Unsure” label, where the
ordinal variable “Occlusion” is represented by orthogonal
polynomials. The resulting models have an adjusted R2 of
0.43 for Ureg and 0.21 for Ucls, indicating that the regression
noise can be better modelled by the available parameters than
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Fig. 3: Histograms of the uncertainties for “Sure” and “Un-
sure” objects. The uncertainties are predicted by the LiDAR
network using our Bosch dataset. (a). The total variance of
the regression noise σ2

bz
; (b). The classification noise for

positive logit σ2
lz ; (c). The Shannon entropy for the softmax

scores.

the classification noise. T-tests for the regression parameter
of both models result in the p-values with p < 10−10 for
all parameters. Thus, all of the parameters have a significant
impact on the noise even if being corrected for the other
variables. To conclude, the predictive uncertainties reflect the
environmental noises which are measured by the difficulty
of human annotations.

C. Detection Performance

We study the detection performance of our proposed
method in three different datasets, shown in Tab. I. Our
method (“Ours”) explicitly estimates both regression and
classification uncertainties in the LiDAR network, and per-
forms sampling during the training phase. It is compared
with a model without the sampling mechanism (“Modelling
uncertainty” in Tab. I), and the baseline model neither with
sampling nor uncertainty estimation. Following [4], we use
Average Precision to evaluate detections in the 3D space
(AP3D), in the bird’s eye view (APBEV ), as well as on
the camera front-view plane (AP2D). We group detections
according to their distance to the ego-vehicle. For the Bosch
and KITTI datasets, we report results up to 70m detection
distance, and set the Intersection over Union (IoU) threshold
in a decreasing order, i.e. 0− 30m: IoU=0.7; 30− 50m:
IoU=0.6; 50 − 70m: IoU=0.5, because localizing distant
objects using LiDAR data becomes very difficult due to
point cloud sparsity. As for the NuScenes dataset, we set
the detection distance up to 50m, and IoU=0.5.

Tab. I shows that the networks perform similarly on the
Bosch and KITTI datasets, probably due to similar sensor
settings. However, all networks perform much worse on the
NuScenes dataset even with smaller detection range and less
strict IoU threshold, depicting the perception challenge when
the number of LiDAR channels is halved. In all datasets,
“Modelling uncertainty” consistently outperforms “Baseline”
with an increase of AP scores up to 7%. This is because
probabilistic inference aids the LiDAR network to predict
more accurate 3D proposals. Similar results have also been
found in our previous study [8]. Built upon “Modelling
uncertainty”, “Ours” further improves the detection perfor-
mance in most cases (though marginal), indicating that the
sampling mechanism helps networks to generalize.
Ablation Study: We additionally conduct ablation study to
validate the proposed method. Tab. II shows the detection
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Bosch dataset AP3D(%) APBEV (%) AP2D(%)
0−30 [m] 30−50 [m] 50−70 [m] 0−30 [m] 30−50 [m] 50−70 [m] 0−30 [m] 30−50 [m] 50−70 [m]

Baseline 88.60 70.72 38.36 85.67 69.33 35.59 85.32 62.72 27.04
Modelling uncertainty 89.11 74.17 42.20 88.70 73.18 41.25 88.64 68.91 33.40

Modelling uncertainty + Sampling (Ours) 89.21 74.40 42.84 88.92 73.54 41.75 88.83 69.46 34.61

KITTI dataset AP3D(%) APBEV (%) AP2D(%)
0−30 [m] 30−50 [m] 50−70 [m] 0−30 [m] 30−50 [m] 50−70 [m] 0−30 [m] 30−50 [m] 50−70 [m]

Baseline 87.24 72.19 37.23 83.72 68.43 32.72 84.53 64.52 32.32
Modelling uncertainty 87.04 72.69 37.64 84.05 69.25 33.52 84.64 66.07 33.44

Modelling uncertainty + Sampling (Ours) 87.84 74.15 39.56 84.79 70.09 35.01 87.15 65.79 32.44

NuScenes dataset AP3D(%) APBEV (%) AP2D(%)
0−20 [m] 20−35 [m] 35−50 [m] 0−20 [m] 20−35 [m] 35−50 [m] 0−20 [m] 20−35 [m] 35−50 [m]

Baseline 45.01 21.29 13.00 58.64 29.99 23.81 55.23 30.86 21.77
Modelling uncertainty 47.88 25.78 16.21 59.54 33.64 24.57 57.74 34.15 24.24

Modelling uncertainty + Sampling (Ours) 52.22 28.13 18.10 64.03 35.93 26.20 56.39 35.04 25.90

TABLE I: Comparison of detection performance on three datasets.

Test regression uncertainty AP3D(%) APBEV (%) AP2D(%)
Model Nr. Model Sampling Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

A LiDAR network No 73.93 60.23 56.83 90.27 77.52 71.33 90.79 78.62 72.26
B Fusion No 76.22 61.35 55.93 85.90 77.81 71.55 92.46 83.69 81.05
C Fusion Fixed variance σbz = 0.1 (x,y) 78.47 63.17 58.99 87.34 78.48 73.77 92.92 84.19 81.56
D Fusion Fixed variance σbz = 0.15 (x,y) 75.89 61.98 56.38 85.18 77.70 71.48 92.20 85.88 81.49
E Fusion Fixed variance σbz = 0.3 (x,y) 72.99 59.01 53.38 84.78 75.59 70.78 91.83 83.29 78.79
F Fusion Ours (x,y) 76.77 62.04 56.41 85.65 77.89 71.55 94.75 83.96 81.36
G Fusion Ours (x,y,z,w,h, l) 79.03 61.95 57.29 90.36 79.58 74.52 93.32 84.63 81.78

Test classification uncertainty AP3D(%) APBEV (%) AP2D(%)
Nr. Model Sampling Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
H LiDAR network No 72.51 60.76 59.79 84.98 79.16 77.68 90.16 81.22 81.23
I Fusion No 75.91 63.35 58.07 85.44 77.90 73.33 92.32 84.08 81.51
J Fusion Fixed variance σlz = 0.17 78.96 63.86 58.31 86.71 78.65 73.97 94.88 86.26 83.54
K Fusion Ours 79.71 65.24 59.55 88.49 78.99 74.18 93.05 86.46 82.03

TABLE II: Ablation study on the KITTI dataset (Best performance is marked in bold, second best with underline).

performance on the KITTI dataset. We divide data into Easy,
Moderate, and Hard settings [4], and use IoU=0.7 for all
settings. Models A, H are LiDAR networks which only
model regression uncertainty and classification uncertainty,
respectively. The fusion networks B-G are built upon Model
A, while Models I-K upon Model H. To verify the advantage
of sampling from the learned uncertainties, we additionally
train fusion networks by sampling with fixed standard de-
viation for the regression uncertainty (Models C-E) and the
classification uncertainty (Model J). The fixed deviation for
regression uncertainty σbz is increased from 0.1m to 0.3m,
and the deviation for classification uncertainty σlz is selected
as the mean value of the learned uncertainty.

From the table we have three observations. First, our
proposed sampling mechanism consistently improves the
fusion performance either for regression (comparing Models

F, G with Model B) or classification (comparing Model K
with I), and sampling more regression variables could bring
better detection accuracy (comparing G with F). Second,
sampling with the fixed small deviation (Model C) improves
the detection accuracy due to the data augmentation ad-
vantage. However, increasing the fixed deviation may harm
the performance (Models D and E). In fact, sampling at
σbz = 0.3m (Model E) even underperforms the LiDAR-only
detector (Model A). Similar results have also been found
in [42]. Therefore, the fixed-sampling approach is an ad-
hoc solution and requires tedious hyper-parameter tuning.
In contrast, our method of sampling learned uncertainties
(Models F, G and K) avoids such process. It generates diverse
training data which corresponds to complex environmental
noises (as shown in Sec. IV-B), and provides competitive
or better detection performance, making it more robust than
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Fig. 5: Robustness testing. We
randomly shift the LiDAR point
clouds in the horizontal plane
following the Gaussian distribu-
tion to simulate the sensor tempo-
ral misalignment. The horizontal
axis represents the standard devi-
ations, and the vertical axis rep-
resents the detection performance
on the KITTI dataset.

the fixed sampling method. Finally, fusing LiDAR data with
RGB camera information largely improves 2D detection
results (e.g. comparing Model A and B on AP2D), but may
degrade the BEV performance from the LiDAR-only network
(e.g. Models E and F on APBEV ) due to the fusion network
design: the network implicitly learns sensor alignment be-
tween LiDAR top-down view and camera front-view, which
makes training the 3D bounding box estimation challenging.
One remedy for this problem is to project camera images
onto the LiDAR top-down view before fusion, similar to [18].

D. Robustness Testing

So far, we have shown how the proposed method works in
datasets with well-aligned sensor settings. When deploying
a multi-modal object detector online, however, sensor mis-
match could occur due to different timestamp (i.e. temporal
misalignment) or calibration errors (i.e. spatial misalign-
ment), which may drastically degrade the perception perfor-
mance. An ideal object detector should not only perform well
in good conditions, but show its robustness against sensor
misalignment as well.

In this work, we evaluate the method’s robustness against
the temporal misalignment. we follow [5] and simulate
the misalignment by randomly shifting all LiDAR point
clouds in a frame following Gaussian distribution with zero
means and increasing deviations, while keeping cameras as
reference. We compare among three models: the fusion net-
work trained without sampling, the one with fixed sampling
(σlz = 0.1m), and the one with our sampling mechanism. All
models are trained with the clean KITTI train set, and tested
with the misaligned val set. Fig. 5 reports the 3D detection
performance in the KITTI “Moderate” setting. At the same
shifting level, our method largely outperforms the models
without sampling up to nearly 20% AP or the one with fixed
sampling, showing its high robustness against noisy data.
Though we only conduct experiments with the KITTI dataset,
similar results are expected in other datasets as well (such
as Bosch and NuScenes).

V. CONCLUSION AND DISCUSSION

We have presented our probabilistic two-stage multi-modal
object detection network that fuses LiDARs and RGB cam-
eras. The method proposes to predict 3D proposals from
the LiDAR branch, and to combine the regional LiDAR
and camera features with a light-weight fusion network. We
explicitly model classification and regression uncertainties in
the LiDAR network, and leverage those uncertainties to train
the fusion network. We evaluate our method on three datasets

with real-world driving scenarios. Experimental results show
that the predicted uncertainties reflect complex environ-
mental uncertainties reflected by the difficulty of human
annotators to label certain objects. Furthermore, modelling
uncertainties helps to improve the detection accuracy and the
network’s robustness, especially in the sensor misalignment
situation.

In this work, we only model uncertainties in the LiDAR
branch. It is a very interesting future work to model un-
certainties in the image backbone and the fusion network.
In addition, to reduce the computational cost of our fusion
network for online deployment, we will introduce the quan-
tization technique [43] into our method.
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