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Abstract— Future self-driving cars must be able to perceive
and understand their surroundings. Deep learning based ap-
proaches promise to solve the perception problem but require
a large amount of manually labeled training data. Active
learning is a training procedure in which the model itself selects
interesting samples for labeling based on their uncertainty, with
substantially less data required for training. Recent research in
active learning has mostly focused on the simple image classifi-
cation task. In this paper, we propose novel methods to estimate
sample uncertainties for 2D and 3D object detection using
Ensembles. We moreover evaluate different training strategies
including Continuous Training to alleviate increasing training
times introduced by the active learning cycle. Finally, we
investigate the effects of active learning on imbalanced datasets
and possible interactions with class weighting. Experiment
results show both increased time saving around 55% and data
saving rates of around 30%. For the 3D object detection task,
we show that our proposed uncertainty estimation method is
valid, saving 35% of labeling efforts and thus is ready for
application for automotive object detection use cases.

I. INTRODUCTION

To drive safely on highways or in urban traffic, future
self-driving cars must be able to perceive and understand
their environment. Object detection is a typical technology
for environmental perception and has long been a challenging
research topic in the field of computer vision and machine
learning. In the past few years, the automotive industry
and many research institutes developed deep-learning-based
approaches to object detection which already produced con-
vincing results. Among them, Faster R-CNN [1], Yolo [2],
SSD [3] (2D object detection) and AVOD [4] (3D object
detection) are widely used network architectures in self-
driving car prototypes.

In general, the automotive industry faces three major
challenges when training neural networks for self-driving
cars. First, a massive amount of manually labeled data
is required for training. Acquiring manual labels is only
the final step of a complex data-pipeline comprising data
collection, data ingestion and data cleansing. Even if manual
labeling efforts are outsourced to labeling specialists, cost
overruns and project delays still frequently occur. Second,
the training procedure itself is time-consuming and requires
considerable computational resources. This hinders fast turn-
around times in the development cycle if developers have to
wait for computational resources to train and evaluate their
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Fig. 1: The Active Learning Cycle

results. Last but not least, the training samples collected from
public traffic scenes are often heavily class imbalanced. For
example, in the KITTI dataset [5], nearly 80% of the labeled
objects are Cars. For self-driving cars, however, the so-called
corner- or edge cases are the training samples that are of real
interest.

A recently emerging research field named Active Learning
aims to resolve the aforementioned issues during the develop-
ment of deep neural networks. The term active learning was
originally used in the pedagogic context in which teaching
strives to involve students in the learning process more
directly. In the context of machine learning, active learning
describes a training procedure where training samples are
selected by the trained neural networks themselves. The
underlying idea is that, if a learning algorithm can actively
choose the data it wants to learn from, it can perform better
than traditional passive learning methods with substantially
less data for training. As illustrated in Fig. 1, active learning
is an iterative training process that consists of the following
three steps.

e A model is trained on labeled dataset L.

e The resulting trained model selects new training sam-
ples A from an unlabeled data pool U, typically based
on their uncertainty of prediction.

o A human annotator labels the selected samples .4 and
adds them to the labeled dataset L.

Most existing methods to estimate the uncertainty of training
samples are based on probability sampling e.g. Monte Carlo
(MC) Dropout [6] or Ensembles [7], [8]. Subsequently, these
methods are combined with an acquisition function that
selects samples out of the unlabeled data pool. Entropy,
mutual information and variation ratio (VR) are widely used
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metrics to quantify the uncertainty of a selected sample [7]—
[12].

Current research in the field of active learning [7], [8], [11]
is mainly focused on the simple task of image classification.
For example, uncertainty estimation using ensembles has
only been studied for this single use case so far [7]. There
still exists a considerable research gap when it comes to
extending active learning to the more complex 2D and 3D
object detection tasks. Filling this research gap is the aim of
our paper.

In this paper, we evaluate advanced active learning strate-
gies for 2D and 3D object detection tasks. The key contribu-
tions of this paper are three-fold. First, we propose different
methods to estimate uncertainty using ensembles for 2D
object detection, which has not been extensively studied yet.
Second, we examine the accuracy and data saving impact
of different active learning strategies, which alleviates the
computational burden incurred by retraining in the active
learning loop. Last but not least, to resolve the issue of
class imbalanced datasets, we examine if active learning is
implicitly able to perform class weighting to some extent,
or if class weighting combined with active learning shows
additional improvement. In a nutshell, we show that active
learning is applicable for the automotive machine learning
use case.

The rest of this paper is structured as follows. In section II,
we give an overview of the related work. In section III, we
propose four methods including Consensus Score, Consensus
Score Variation Ratio, Region of Interest (Rol) Matching,
and Sequential Rol Matching to estimate uncertainty for
2D object detection. In section IV, we evaluate two active
learning strategies for 2D object detection namely Contin-
uous Training (Section IV-A) and Active Class Weighting
(Section IV-B), and we extend active learning to a more
complex 3D object detection architecture and evaluate it on
the KITTI dataset (Section IV-C). Section VI sums up our
findings and points out some possible directions for future
work.

II. RELATED WORK

Active learning is an area of current research, yet there
are surprisingly few authors concerned with the vital tasks
of 2D and 3D object detection. Brust et al. [13] investigated
active learning for YOLO object detectors and presented
an uncertainty estimation method based on the confidence
score of the neural network. Their approach calculates an
uncertainty score with the aggregation functions sum, mean
or maximum of the margin between the highest and second
highest class prediction confidence. Their active learning
approach shows only slightly better results than a randomly
trained baseline, for 50 to 250 sample cycles on the PASCAL
VOC dataset. Kao et al. [14] proposed uncertainty measures
based on the localization tightness and stability. The localiza-
tion tightness measures the difference between the first stage
of the network as Region of Interest (Rol) and the second
stage as the final bounding box, measured by the Intersection
over Union (IoU). The localization stability measures the loU
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between several instances of the same sample affected by
different injected Gaussian noises. While the performance of
their approaches is promising, it lacks in model architecture
independence and time efficiency.

Feng et al. extended their previous publication on uncer-
tainty estimation [15] by active learning [12]. They ran a
two-staged object detector based on Faster R-CNN on a
LIDAR bird’s eye view. They assumed a “perfect feature
extractor” which was simulated with ground truth data as
region proposals. Besides, they trained an object detector
as “real feature extractor”, based on a pre-trained model.
With the feature extractors, they created a dataset for a
classification and localization task containing 30000 cropped
features (region proposals) each. Based on these cropped
features, they applied an ensemble and a MC dropout at
the second stage. By using the “perfect feature extractor”,
they achieved a maximum saving of 61% in the classification
task. For the real proposals, their active learning method still
outperformed the random sample selection but no data saving
is published by the authors.

To reduce the sampling effort Huang et al. [16] used tem-
porally sequential images as an approximation of multiple
forward passes. They calculated the uncertainty of semantic
segmentation for a video with MC dropout using their region-
based temporal aggregation method. The authors used a
single forward pass per frame and calculated the uncertainty
over the time horizon. To account for the movement of
the pixels, they used optical flow. They showed that their
approach was ten times faster than five MC forward passes.

III. UNCERTAINTY ESTIMATION USING ENSEMBLES

For 2D object detection, we prefer ensembles over MC
dropout for uncertainty estimation for the following reasons.
First, existing works [7], [8] already show that ensembles
outperform MC dropout for the image classification task in
terms of data saving rate. Second, unlike for MC dropout,
the network architecture does not have to be modified when
using ensembles. Compared to the already better studied
active learning classification task, the active learning object
detection task requires to include bounding boxes i.e. Rols
into its estimation which sample to select next for label-
ing. As the ensembles sub-models Rol predictions may be
incongruent, they must be matched for each object before
calculating the uncertainty score per object. However, for 2D
object detection task, different objects detected in the same
image might carry different uncertainties. To calculate an
uncertainty score for the entire image, we need to aggregate
uncertainties of individual objects e.g. using max, mean or
sum functions as suggested in [13].

In the remainder of this section, we propose four different
methods to estimate uncertainty using a Faster R-CNN
ensemble network.

Consensus Score We introduce the consensus score 7 €
[0, 1] as an uncertainty metric for 2D object detection ensem-
ble networks. This score is based on localization uncertainty.
Similar to [14], we use IoU as a function to map and weight
different Rols. Let N be the number of output Rols and M
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the number of sub-models in the ensemble. We first calculate
an ToU matrix Q% € RV*N i j € [1, M] by comparing each
Rol from the i-th single forward pass in the Faster R-CNN
ensemble against the j-th. We then identify Rol matches
by finding the maximum IoU value in each row of Q%
noted as max(w¥),n € [1, N]. By subtracting it from one,
the score is proportional to the uncertainty. Our proposed
consensus score is calculated by finding the minimum IoU
value for each Rol-match among all comparisons and taking
the average of them, as expressed in Eq. 1.

)

Fig. 2a shows an example of the calculation of the
consensus score in a ensemble with three sub-models. Each
sub-model’s output is visualized in different colors. The
consensus score in this example is rather small (1 — 0.85 =
0.15), which indicates a low uncertainty of the input image.

VR =1-0.66

loU = 0.85
Consensus Score = 1 - 0.85

loU = 0.85
Consensus Score VR =1 - 0.561

(a) Consensus Score (b) Consensus Score VR

Fig. 2: Methods Based on Consensus Score for Ensembles

Consensus Score VR As combining localization and classi-
fication uncertainty improves the uncertainty estimation [14],
we add a variation ratio (VR) term into our proposed con-
sensus score to incorporate class information. The extended
consensus score is expressed in Eq. 2, with o being the
distribution of detected classes and VR a variation ratio
function.

1 N
’Yvr:]-_ﬁz
n=1

As shown in Fig. 2b, by introducing the variation ratio
term, the uncertainty of the input image increased to 1 —
0.561 = 0.439. This corresponds to the fact that two sub-
models in the ensemble detect a Car whereas the other one
detects a Person.

Rol Matching As Feng et al. [12] achieved better results for
image classification by only incorporating class uncertainty,
we also propose a method called Rol matching for 2D object
detection without considering the localization uncertainty.
The uncertainty score is calculated only based on the dis-
tribution of detected classes of each Rol matched by our
IoU matrix 2 without using the IoU values anymore.

Fig. 3a shows an example of the Rol matching method.

m[i1r,lM}{ max(wi)} - [1 = VR(0n)] (2)

i,J€

873

e o L
Matched Rol as Classification Problem
Apply Acquisition Functions

(a) Rol Matching

tE]

tr2l

t[0]

(b) Sequence Rol Matching Example
Fig. 3: Methods Based on Rol Matching for Ensembles

Sequence Rol Matching The matching approach can also
be extended to a temporal version, i.e., the model is applied
to a sequence of temporally consecutive images. Over time
the objects in the scene are moving and therefore their
location in the images is changing. The Rols describing
these objects will differ and create different samples for
uncertainty estimation, as shown in Fig. 3b. In the figure,
the solid box is the prediction of the current time step
whereas the dotted box is the prediction of the previous
time step. Sampling multiple forward passes per image
can be approximated by sampling along consecutive time
steps. As objects are moving, continuous matching is
necessary. We assume that the sampling rate is high enough,
for the bounding box of an object to still intersect with
its bounding box of the last time step. By matching the
corresponding regions containing the same object, the
network’s uncertainty for this object can be estimated over
a time horizon. As this approach only needs one sampling
step per time step it allows for computationally affordable
live uncertainty estimation. This makes it possible to select
data during driving.

IV. ACTIVE LEARNING STRATEGIES

After introducing uncertainty estimation for the object
detection task using ensembles, we set up an active learning
cycle as shown in Fig. 4 to compare different learning
strategies. The cycle consists of a training phase, a sample
selection phase and an evaluation phase. In the selection
phase, the n most uncertain samples are chosen based on
their uncertainty score as A. As the step size of labels
added A has been shown to have only a small influence
on the uncertainty estimation [17], it will be fixed during
our experiments. We use a Faster R-CNN model with a
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pre-trained ResNet50 Feature Pyramid Network (FPN) [18]
as the backbone. Similar to [12], we replace the model’s
classification head by three fully connected layers, each
with a subsequent dropout layer. This enables us to estimate
uncertainties using MC dropout. MC dropout is used in the
experiments for some strategies.

Training Phase
Start Training
with New Pool

Train on Validate on
Labeled Pool Validation Set

Sample Selection

Ensembles/
MC Dropout
&

Labeled
Pool

Entropy/
Mutual
Information/
Variation
Ratio

Converged
Model

Evaluate on

Test Set

Estimate
Uncertanty

Select
Samples

Results

Unlabeled Pool

Evaluation Phase

Fig. 4: Active Learning Cycle Setup

In the remainder of this section, we examine two different
active learning strategies for 2D object detection and exper-
iment with active learning for 3D object detection.

A. Continuous Training Strategy

Training from scratch in the active learning cycle is usually
a time-consuming procedure. To tackle this problem, we
evaluate a continuous training strategy [9] as shown in
Fig. Sa, where a model M,;_; from the previous iteration
is reused and fine-tuned with an extended label pool L; in
the current iteration. We compare this strategy against the
“training from scratch” strategy where a new model M; is
trained in every iteration using the current labeled pool £;
(Fig. 5b).

— 3 A M A M 3

;

(a) Continuous Training

(v )

(b) Training From Scratch

Fig. 5: Continuous Training vs. Training from Scratch

B. Active Class Weighting

The datasets for autonomous driving are usually class
imbalanced since in most traffic scenes, there are more cars

than pedestrians or motorcycle riders. A common method to
work with imbalanced datasets is to use a class weighted loss
function. Active learning promises to have a similar effect,
as the samples are selected based on their uncertainty and
rarely occurring classes show a higher uncertainty. Therefore,
we compare the method of using a class weighted loss
function with active learning and we investigate the effects by
combining them together, yielding “active class weighting”.
The weights of active class weighting are defined by the
ratio of the number of total labels to that of a specific class.
These weights are used for a class weighted cross-entropy
loss function.

C. 3D Object Detection

3D object detection is perhaps the most important task for
autonomous driving. To our best knowledge, active learning
has not been applied to the automotive 3D object detection
use case yet. Therefore we extend the continuous training
strategy and active class weighing to 3D object detection in
a two-staged AVOD model [4]. As the process of training
AVOD models is quite complex, we perform active learning
with a fixed number of iterations as suggested in [4] instead
of training until convergence. Nevertheless, we compare our
known sub-optimally trained active learning model against
the fully trained AVOD model (Fig. 9).

V. EXPERIMENTS & RESULTS

We evaluate the proposed uncertainty estimation methods
(Section III) and the active learning strategies (Section V)
on the KITTI dataset [S]. For 3D object detection we evaluate
the classes Person, Car and Pedestrian which allows a direct
comparison with the original AVOD model. For the 2D object
detection experiments, we merge the classes Pedestrians,
Cyclists, and Sitting Persons to the class Person and we use
it together with the classes Car, Van and Truck as the target
classes. This yields two classes with high occurrence and two
with low occurrence. The dataset is split into a training set
with labeled and unlabeled pool, a test set and a validation set
used for early stopping. The labeled pool has an initial size
of 2000 and will be increased by 500 (A) at each iteration.
As hyper-parameter optimization was not in the scope of
our project, we use the parameters suggested by Ren et
al. [1] and Ku et al. [4]. For the MC dropout models used
in our experiments we used ten forward passes. To evaluate
accuracy improvements and data savings, we measure the
mean average precision (mAP) over the percentage of used
data. We compare all our experiments with the random
sample selection and a baseline model trained on the entire
training set (Fully Trained).

A. Continuous Training Strategy

We evaluate the continuous training strategy for the 2D
object detection task using MC dropout. Here, we compare
it against the training from scratch strategy.

The results in Fig. 6 show that the continuous training
method outperforms training from scratch. In addition to a
faster convergence and an increased data saving rate, we also
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Active Learning Strategy Comparison
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Fig. 6: Continuous Active Learning vs. Active Learning from
Scratch

save a significant amount of time, which alleviates a part of
the time lost due to the iterative active learning process. All
time and data savings are presented in Tab. I. The continuous
training strategy is about 2.35x less time-consuming than
training from scratch. Based on this finding, we use this
continuous training strategy exclusively for the following
experiments.

Method Training Time Data Saving
Baseline 16 h -
Sequence (3 Frames) Continuous Training 24 h 20 %
MC Dropout Continuous Training 34 h 25 %
MC Dropout Trained from Scratch 79,5 h 10 %
Ensembles Without parallelization 96 h 30 %

TABLE I: Training Times of Different Active Learning
Strategies on the KITTI Dataset with NVIDIA Tesla V100

B. Uncertainty Estimation Using Ensembles

We compare our proposed uncertainty estimation methods
using ensembles against a random sample selection and
training pipeline without using active learning. We use an en-
semble with three sub-models and three consecutive frames
for the sequence Rol matching method. [7] showed that using
more than three sub-models does not further increase the
performance.

Ensembles
0.650 A
0.625-  Fully Trained | =
0.600 A
o
< 0.575
€ —— Sequence Entropy
0.550 1 —— Rol Matching Entropy
0.525 4 —— Consensus Score Variation Ratio
y —— Consensus Score
0.500 4 —— Random
30 40 50 60 70 80 90 100

Used Data [%]

Fig. 7: Ensembles Methods

Our experiment results in Fig. 7 show that the concept
of a consensus score does not outperform a random sample
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selection and is thus not suitable for active learning. This
could be caused by the localization uncertainty, which is
calculated for all Rols, even for the background classes.
Nevertheless, our proposed Rol matching and sequence Rol
matching methods outperform the random sample selection.
By comparing the training time and the performance with
our previous experiment, we observe a trade-off between
time and data saving rate. Table I shows that the faster
method, sequence Rol matching, has the lowest data saving,
while the method with the highest data saving, Rol Matching
Ensembles, is the most time-consuming. MC dropout lies
in between both with a medium time and data saving
rate. Ensembles show the best data saving rate and have
a high parallelization potential which reduces the time-
consumption. Nevertheless, ensembles are computationally
more expensive than MC dropout.

C. Active Class Weighting

We evaluate the proposed active class weighting strategy
with an imbalanced dataset. For this experiment, we estimate
the uncertainty using MC dropout which makes the exper-
imental setup easier. As shown in Fig. 8, weighted classes
in the loss function improve the performance of both the
baseline and our active learning approach. The imbalance of
the dataset seems to bias the selection based on uncertainty,
which is improved through our active class weighting. There-
fore, we believe that active learning should be combined with
class weighting when working with imbalanced datasets.

Class Weighted Loss Function

0.650 1 FEMR TS mcq(15ce e G Hiad — — == = e 2 — = — —
0.625 A
0.600
£
< 0.575 A
0.550 1
0.525 - Random Class Weighted
—— Entropy
0.500 A —— Entropy Class Weighted
30 40 50 60 70 80 90 100

Used Data [%]

Fig. 8: Active Class Weighing

D. 3D Object Detection

For 3D object detection, we propose an active learning
loop using the AVOD object detection model as a proof of
concept. We show that our uncertainty estimation approach
can be applied to more complex 3D object detection models.
For this proof of concept, we use MC dropout for uncertainty
estimation for simplicity.

Our experiment shows a data saving rate of 35% compared
to the baseline approach. However, due to hardware limita-
tions, we were not able to train each model until convergence.
Therefore, we can expect that our demonstrated data saving
gains to be the theoretically possible lower bound. We hope
to show increased data saving rates in future work.
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Fig. 9: 3D Object Detection - AVOD

It is worth mentioning that the AVOD training process
was originally not intended to be applied for active learning.
Adapting it into an active learning cycle was quite challeng-
ing.

VI. CONCLUDING REMARKS

In this paper, we examined active learning on an industrial
use case: object detection for autonomous driving. We pro-
posed different methods to estimate uncertainty using ensem-
bles, and we evaluated two strategies for training 2D object
detection networks, including continuous training and active
class weighting. Using the continuous training strategy, we
showed about 55% training time saving and an increased
data saving rate by 15% compared with “training from the
scratch”. Furthermore, we showed that active learning can be
combined with dataset balancing methods to further improve
the data saving rate. In addition to 2D object detection, we
implemented an active learning proof of concept using a
more complex neural network for 3D object detection, which
enables more data-efficient development of object detectors
in the automotive industry.

Our future work will focus on online uncertainty esti-
mation, i.e., estimating the uncertainty in real-time while
driving. This will enable more efficient data collection as
uninteresting data can be skipped during the data collection
session. Moreover, we will look further into continuous
learning and examine its combination with active learning.
Besides, we will parallelize the training of the different sub-
models.
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