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Abstract— In the context of Intelligent Transportation
Systems and the delivery of goods, new technology approaches
need to be developed in order to cope with certain challenges
that last mile delivery entails, such as navigation in an urban
environment. Autonomous delivery robots can help overcome
these challenges. We propose a method for performing mixed
reality (MR) simulation with ROS-based robots using Unity,
which synchronizes the real and virtual environment, and
simultaneously uses the sensor information of the real robots to
locate themselves and project them into the virtual environment,
so that they can use their virtual doppelganger to perceive the
virtual world.

Using this method, real and virtual robots can perceive each
other and the environment in which the other party is located,
thereby enabling the exchange of information between virtual
and real objects.

Through this approach a more realistic and reliable simu-
lation can be obtained. Results of the demonstrated use-cases
verified the feasibility and efficiency as well as the stability
of implementing MR using Unity for Robot Operating System
(ROS)-based robots.

I. INTRODUCTION

Advanced applications that rely on Intelligent Transporta-
tion Systems (ITS) combine Information and Communication
Technologies (ICT) in a connected environment in which
sensors acquire information relevant for services related
to different modes of transport, contributing to their more
efficient and sustainable use. Before testing the systems in
a real world environment, it is essential that the system
performance is validated in a controlled environment using
simulation frameworks.
In the context of transport logistics, the growth of e-
commerce has increased customer demand and new technol-
ogy approaches need to be developed to cope with the chal-
lenges occurring during the final step of the delivery process
from a facility to the end user (last mile). These challenges
refer, for example, to navigation in an urban environment,
including parking and its effect on fuel consumption, fuel
costs and C02 emissions. Autonomous delivery robots can
help overcome these challenges.

Johannes Kepler University Linz; Chair Sustain-
able Transport Logistics 4.0, Altenberger Straße 69,
4040 Linz, Austria. {yuzhou.liu, georg.novotny,
nikita.smirnov, walter.morales alvarez,
cristina.olaverri-monreal}@jku.at

2 UAS Technikum Wien, Hoechstaedtplatz 6, 1200 Vienna, Austria
3 Ural Federal University, Department of Communications Technology,

Ekaterinburg, Russia

We present a method for implementing mixed reality appli-
cations for Robot Operating System [1] ROS-based mobile
robots in the open source game engine Unity 3D [2], thus
extending the work presented in [3]. Unity 3D has been
widely used in the development of ITS by connecting it
to advanced 3D modeling software for urban environments
including CityEngine [4], Simulation of Urban MObility
(SUMO) [5], and ROS [6], [7], [8], [9], [10].
The connection of Unity and ROS can greatly simplify the
development and simulation process of autonomous delivery
robots.
In this work, we contribute to the field of multirobot simula-
tion by combining a simulated world with the physical world.
This approach makes it possible to use a small number of real
robots in combination with a large number of virtual robots
to perform a multi-robot simulation in a real environment
and therefore obtain more realistic and reliable simulation
results while improving the efficacy of the entire system.
This proposed visualization of robot models and data, also
described as the integration of physical objects into a virtual
environment (Augmented Virtuality (AV)), can be seen as
a special instance of Mixed Reality (MR) [11]. According
to [12] MR has to be able to spatially map physical and
virtual objects alongside one another in real-time in a fusion
of the physical world and the virtual world to create new
environments and visualizations in which physical and virtual
objects coexist and interact in real-time. Therefore, our work
may help lay the foundation for the development of MR
applications for mobile delivery robots in ITS.
The remainder of this paper is organized as follows: Section
II introduces the previous works in the field. The method-
ology to use Unity to create mixed reality applications for
ROS-based robots is presented in Section III. Afterwards, the
validation experiments are evaluated in Section IV. Finally,
Section V concludes the paper and presents possible future
work.

II. RELATED WORK

Before implementing MR applications for ROS-based
robots in Unity, it is first necessary to establish reliable
communication between ROS and Unity. Several libraries
have been written to integrate Unity with ROS. For example,
the rosbridgelib uses rosbridge [13] for communication
and defines messages in Unity to establish bidirectional
communication at a later point [14]. The approach presented
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in this paper adheres to this library and added several scripts
to extend its support for different ROS message types.
It is worth mentioning that Unity is used as a full virtual
simulation tool rather than a mixed reality platform, exam-
ples of the latter being in the modeling and simulation of
the humanoid robot in [15] and the unmanned aerial vehicle
(UAV) project introduced in [16].

As demand changes and mixed reality technologies ma-
ture, applications similar to ours in this area are expected to
increase. Related research that laid the foundation for our
work is for example the implementation of a ROS-based
robot controlled by Unity and VR devices [17]. The authors
successfully imported ROS map information into Unity and
created a new scene accordingly, which also enabled the
visualization of the robot in Unity to some extent. The paper
described the method for sending messages to control the
robot through Unity, but the acquisition and visualization of
laser scan data in Unity was not mentioned, so that the effect
of the process on the final results could not be verified.
In order to solve the problem of matching the robot’s local-
ization and Unity scene, we refer to the work in [18]. The
authors also connected Unity and ROS and accomplished
the synchronization of real and virtual robot, but Unity was
only used as a control medium to transfer commands from
the gaming device to ROS.

A similar method was used in [12] to create a mixed reality
implementation for multiple UAVs based on ROS and Unity.
The UAVs’ positions were tracked through an additional
Virtual-Reality Peripheral Network (VRPN) protocol, which
is a device-independent and network-transparent system de-
signed specifically for VR peripherals [19]. ROS was only
used to control UAVs, but not connected with Unity.
In a further work [20] the cooperative Simultanous Localiza-
tion and Mapping (SLAM) and map merging methods were
used so that 3 robots could derive their relative position and
orientation in the same environment without knowing their
initial position. This implementation solved real-time self-
localization issues.
Another work [21] provided a more detailed discussion
of similar research, further validating the feasibility of the
MR approach and providing a more complete and accurate
mathematical framework. Furthermore, in [22] and [20] the
authors adopted cooperative SLAM and demonstrated the
detection performance of the poses of each robot in the
group. In the last work the authors additionally used ROS
to share robot information related to position, rotation and
scale.
In the work presented here we have successfully imple-
mented mixed reality applications using only Unity and ROS
and a smart mobile device. At the same time, we successfully
enabled the real robot’s ability to perceive both the virtual
environment and other real-world and virtual robots.

III. MATCHING VIRTUAL AND PHYSICAL WORLDS
(MIXED REALITY)

This section explains in detail the process of matching
the virtual and physical worlds using ROS and Unity in two

stages.
1) In the first stage, Unity3D is used to visualize and

project the robot models from the virtual environment
onto the real world.

2) Afterwards, in a second step, we use ROS to share
the sensor data and project the current status of the
real robots to their virtual doppelgangers in the virtual
environment.

A. Visualization in Unity

We explain next the concepts required to apply the pro-
posed method.

1) AR Foundation: We relied on the Unity 3D AR founda-
tion package for implementing augmented reality functions.
The package supports devices such as smart phones or
tablets. We mainly used its planar surface detection function
to overlay the virtual scene on the detected plane and make it
match the physical surroundings. Its world tracking function
made it possible to keep all the information related to the
transform component that is part of each object within the
Unity Scene, and this function is then used to store and
manipulate the position, rotation and scale of the object [2].

2) Modeling and Coordinate Systems: Although the AR
foundation can provide both horizontal and vertical plane
detection and even simple spatial mapping, in order to
obtain better performance, it is still required to model the
environment manually.
Since we used robots that were equipped with 2D Lidars,
we relied on the method in [17] that used a scanned map of
the robots for modeling the environment. But instead of just
using point clouds to represent the map we extended the
approach to interact with the virtual scene by using models
as game objects to rebuild the environment with collider
components that rely on Unity’s built-in collision system.

By importing the map and using the polygon building tool
provided by Unity, we can quickly obtain a rough model of
the desired environment, and then manually adjust to get the
final, more accurate model.
For AR applications, the scaling of the models is very
important. In theory, one unit length in Unity is equivalent
to one meter in reality. We adjusted our model to a scale that
matches reality by measuring and calculating proportions. In
Figure 2a a properly scaled robot model in comparison with
the size of a real robot is depicted.
Finally, we matched the coordinate systems in Unity and
ROS. As Unity’s game objects adopt a hierarchy structure,
by arranging the hierarchies, we were able to obtain a local
coordinate system that was not affected by scale change and
that coincided with the ROS zero point.

3) Installing to Device and Testing: Because the sensors
on the mobile device are needed to complete the AR func-
tion, we implemented an application (APP) and installed it
on an Android smart phone. When the APP started running,
it was necessary to move the camera of the mobile device to
complete the plane detection of the entire environment. At
this time, Unity was not connected to ROS.



Next, according to the previously written scripts, the ex-
perimental scene was initialized by tapping the screen. The
manipulations press and drag with fingers could be used to
fine-tune the transform of the environment. The connection
between Unity and ROS was then established at the same
time as the experimental scenario was initialized. The pro-
posed communication flow is depicted in Figure 1. The effect

Fig. 1. Overview of the communication flow

of matching the virtual scene with the real world, as well as
the proportional relationship between the virtual robot model
and the environment are visualized in Figure 2b.

B. Self-Localization and Data Sharing within ROS

As previously mentioned we used ROS to share the robot
transform information. To this end we adhered to the amcl
package, which is used as a probabilistic localization system
for robots moving in 2D [23], so that their location and
orientation can be recorded to be later shared within the ROS
tf system. Since in our approach the virtual and real scenario
are completely matched with the map, the virtual and real
robots can obtain the relative positions of each other. In fact,
after having synchronized the coordinate systems, a single
robot can also be accurately mapped into the virtual space.
By combining the AR foundation approach with the de-
scribed method, we can then visualize the position of a
real robot in the virtual environment and in the AR scene.
Figure 3a illustrates how a real robot is projected into a
virtual space, the virtual environment and objects can then
be embedded in the real world using mobile devices. After
correctly projecting a real robot into a virtual space, its
doppelganger can be used to emit another set of laser scans.
By sending the scanned data back to ROS the real robot can
then perceive virtual objects. The final AR view is depicted
in Figure 3b. As shown in the upper left corner of the
picture, instead of using the virtual robot model, we used
an additional translucent model as the doppelganger of the
real robot for better visualization purposes.

IV. SYSTEM EVALUATION AND RESULTS

To evaluate the implementation method, we designed two
use-cases as described in this section.

A. Robot Following Behavior

We developed an algorithm to test the feasibility of our
approach by implementing a scenario in which a leading real
robot (leader robot) was followed by a virtual robot (virtual
follower robot) that in turn was followed by a real robot (real
follower robot) as Figure 4 illustrates.
The leader robot was required to perform self-localization,
thereby projecting its position into a virtual environment and
generating a doppelganger. The virtual follower robot was
represented in the Unity environment, so that it could directly
obtain its own transform information and then transfer it
to ROS for sharing. In order for this second robot to
perceive the leader doppelganger in the virtual environment
we implemented a virtual laser scan. The real follower robot
in the third position was then required to perform self-
localization by scanning and measuring the environment, to
be projected into the virtual space. Then using the laser scan
information of the doppelganger in the virtual environment,
the real follower robot was able to perceive the virtual robot
in front and then follow its movement.

(a) Properly scaled virtual robot model (left) located on the detected
plane and compared with the real robot (right)

(b) Illustration of matching the virtual scene with the real world,
as well as the proportional relationship between the virtual robot
model and the environment

Fig. 2. Overview of the virtual robot inside the virtual and
real environment



(a) Projection of a real robot into a virtual space
.

(b) Augmented reality view resulting from the proposed approach

Fig. 3. Visualization of a real robot in a virtual environment
as a result of the matching of scaling and localization

Through this use case, we successfully verify the feasi-
bility of using Unity to perform MR simulation for ROS-
based robots. The transform information of the real robot is
accurately projected into the virtual space. Mutual awareness
between real and virtual robots has also been successfully
established.
In this use case, each robot’s actions are determined by its
own program, rather than an overall control algorithm, which
means that the robots’ transform information is not fully
shared between every robot, and each robot can only sense
the target in front of it based on its own sensors.
In many cases in the real world, robots are controlled by
a central system. In order to verify the performance of
this implementation for this central system, we introduce a
second use-case in the next subsection.

B. Multi-robot Roundabout Entry and Exit Behavior

To test the performance of a multi-robot hybrid simulation
we developed a use case with eight Turtlebot3 [24], two of
which were real and six virtual. Each robot obtained its pose
through ego localization and shared it with the others. The
selected test scenario consisted of two roundabouts with one
lane each that were connected by a two-lane road (one lane
for each direction), as visualized in Figure 5.

Traffic was generated as follows: 4 robots were placed
on each roundabout forming a traffic queue. Each robot was
initialized with a unique speed and controlled to follow the
lane of the roundabout using a PID controller. Then a manual

Fig. 4. Illustration of the performed robot-following behavior
experiment
1) leader robot; 2) real follower robot; 3) virtual follower robot

request was sent to a robot to join the other traffic queue. To
do so, they needed to leave the current queue, drive along the
two-lane road and make a safe turn onto the new roundabout.
Notice that this scenario was designed that only one robot
from one queue can leave per cycle.
Since the robots exhibit different speeds, two algorithms
were used to control the current velocity. To avoid collisions
while being on the roundabout, a basic linear control concept
was applied to alter the velocity of a robot based on the
distance acquired from the simulated Light Detection And
Ranging (LIDAR) sensors inside of Unity. Traffic at the
entrance and exit of the roundabout, on the other hand,
was managed by an autonomous intersection manager (IM).
Notice that each roundabout has it’s own IM to handle the
requests at their intersection. While robots are inside the IM
area they send their current velocity and type of movement
(exit intersection, follow traffic queue, enter intersection)
to the IM which then handles the traffic as described in
algorithm 1.

Algorithm 1: Intersection Manager
input : velocity, movement
output: velocity

queue ← new list
for i ← 0 to # robots in IM area do

queue.append(i)
while True do

for i ← to # queue - 1 do
pose = get pose of robots(queue[i])
time = calculate time to intersection(pose)
if possible collision(time, queue[i+1]) then

adjust velocity of robot(i+1)
else

return velocity
queue.remove(queue[i])



Fig. 5. Scenario description; 1: merging robot sends a request
to leave from roundabout 2; 2: merging robot enters into an
intersection queue; 3: merging robot sends a request to join
roundabout 1 and after that robots from roundabout 1 get a
message to let in the merging robot

After receiving a request, the manager adds the robot’s
request to a queue and handles the incoming robot requests
based on the FIFO principle. The current pose and velocity
of each first robot is used to calculate the time to intersection
(TTI), utilizing a differential drive kinematic motion model,
and calculates possible conflicts for the following robots in
the queue based on this. If a potential conflict is detected
(i.e. collision), the manager adjusts the speed of the robot
whose request arrived after the current first robot. In case of
no conflict, the value returned by the manager is the original
speed of the robot. Finally the IM removes the current request
from the queue and starts over. Figure 6 visualizes the test
scenario. As it can be seen when comparing the left and right
images the IM updated the current velocity of the real robot
that was marked within a circle in the figure, so that it would
not crash into the simulated robot in the roundabout.

Through a more sophisticated simulation, we verified

Fig. 6. Illustration of the experiment performed, in which
a robot waits to be joined in other roundabout by IM;
Left: mixed reality view with virtual and real robots (in
blue); Right: real world view in which the virtual robots
are not visible; Bottom: visualization inside rviz, trajectories
of merging robots are colored in red and orange

the stability of the approach. Whether virtual or real,
the position and orientation information of each robot
can be accurately updated in real-time, and the mutual
perception can help them avoiding collisions with each
other. Meanwhile, this approach of combining a simulated
world with the physical world makes it possible to perform
a large-scale simulation that integrates small-scale field
tests, thus obtaining more realistic and reliable simulation
results than in pure virtual environments and improving the
efficacy of the entire system.

V. CONCLUSION AND FUTURE WORK

The work we presented describes a method relying on
mixed reality to be applied in the testing of delivery robots
behavior and interaction in a realistic simulation framework.
Two concrete simulation examples were described, in which
the visualization was managed by Unity 3D and the data
shared by the robots was managed by the self localization



algorithm that was implemented in ROS.
The results from the use cases showed the feasibility and

efficiency of the Unity-based MR simulation for ROS-based
robots. The matching of virtual and real environments was
established, the mutual perception of virtual and real robots
was successfully achieved as they were following each other.
By using multiple virtual and real robots to simulate complex
behaviors, we also successfully verified the stability of the
proposed system. At the same time, due to the powerful
extend-ability of Unity itself, integrating designed MR use
cases into other large-scale simulations is also possible.

Future work will aim at performing spatial mapping
dynamically to improve the universality of the MR
applications and integrating the results into the “autonomous
vehicles” option of the 3DCoAutoSim simulation
framework [7].
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