arXiv:2003.01149v4 [cs.RO] 5 Feb 2021

Decision-Making for Automated Vehicles Using a
Hierarchical Behavior-Based Arbitration Scheme

Piotr F. Orzechowski'”, Christoph Burgerz, and Martin Lauer”

Abstract—Behavior planning and decision-making are some
of the biggest challenges for highly automated systems. A
fully automated vehicle (AV) is faced with numerous tactical
and strategical choices. Most state-of-the-art AV platforms
are implementing tactical and strategical behavior generation
using finite state machines. However, these usually result in
poor explainability, maintainability and scalability. Research
in robotics has raised many architectures to mitigate these
problems, most interestingly behavior-based systems and hybrid
derivatives.

Inspired by these approaches, we propose a hierarchical
behavior-based architecture for tactical and strategical behavior
generation in automated driving. It is a generalizing and scal-
able decision-making framework, utilizing modular behavior
blocks to compose more complex behaviors in a bottom-up
approach. The system is capable of combining a variety of
scenario- and methodology-specific solutions, like POMDPs,
RRT* or learning-based behavior, into one understandable and
traceable architecture. We extend the hierarchical behavior-
based arbitration concept to address scenarios where multiple
behavior options are applicable, but have no clear priority
among each other. Then, we formulate the behavior generation
stack for automated driving in urban and highway environ-
ments, incorporating parking and emergency behaviors as well.
Finally, we illustrate our design in an explanatory evaluation.

I. INTRODUCTION

Recent years have shown significant progress in the field
of automated driving and advanced driver assistance sys-
tems. While considerable improvements have been achieved
in perception due to advances in deep learning and other
Al technologies, behavior planning and decision-making re-
mains one of the biggest challenges for highly automated
systems. In urban driving, traffic participants are faced with
numerous tactical and strategical choices. Humans decide in
most of these situations, like stopping at a zebra crossing,
choosing an appropriate gap when merging or yielding at
intersections, reactively. Long-term decisions, like goal and
route selection or the choice of driving style and behavior
preferences, consider longer time horizons, though.

For some scenarios, considerable results in behavior and
trajectory planning have already been achieved [1]-[4]. How-
ever, no generalizing and scalable decision-making frame-
work has been found that is capable of combining a variety

"Mobile Perception Systems, FZI Research Center for Information Tech-
nology, Karlsruhe, Germany orzechowski@fzi.de

2Institute of Measurement and Control Systems, Karlsruhe Insti-
tute of Technology (KIT), Karlsruhe, Germany {christoph.burger,
martin.lauer}@kit.edu

of such scenario- and methodology-specific approaches into
one understandable and traceable architecture.

How and when should an AV switch from a regular ACC
controller to a lane change, cooperative zip merge or parking
planner? How can we support POMDPs, hybrid A* and any
other planning method in our behavior generation?

Most state-of-the-art AVs that have at least proven suc-
cessful in the DARPA Urban Challenge [5]-[7] or during test
rides on public roads [8], [9] have used finite state machines
(FSMs) for tactical and/or strategical behavior generation.
FSMs are a useful tool for simple systems with a small
number of behavior options and maneuvers where each state
represents one maneuver or driving mode. In practice FSMs,
even hierarchical FMSs, turn out to be unsuitable for more
complex tasks due to their poor explainability (about the rea-
son why a certain behavior is executed), maintainability (the
effort to refine existing behavior) and scalability (the effort
to achieve a high number of behaviors). These shortcomings
motivate the search for other architectures that can be used
for tactical and strategical behavior generation.

Decision-making is a well known research field in robotics,
also referred to as “robot control” or “action selection” [10].
Generally, the various approaches can be classified into
knowledge- or behavior-based systems.

Knowledge-based systems, like FSMs, typically perform
the action selection in a centralized, top-down manner using
a knowledge database that contains a fused and abstracted
representation of all available sensor data. As a result, the
engineer designing the action selection module (in FSMs the
state transitions) has to be aware of the conditions, effects
and possible interactions of all behaviors at hand.

Behavior-based systems, on the other hand, decouple ac-
tions into atomic simple behavior blocks that should be aware
of their conditions and effects themselves. These modular be-
havior blocks are then combined to more complex behaviors
in a bottom-up approach. Many architectures for behavior
coordination have been proposed. The most prominent are
the subsumption architecture [11], voting systems [12] and
activation networks [13].

In this publication, we propose a hybrid approach combin-
ing the best from both worlds: A hierarchical behavior-based
architecture for tactical and strategical behavior generation
in automated driving. We combine atomic behavior blocks to
more complex behaviors using generic arbitrators. Arbitrators
can again be combined with other arbitrators or behavior
blocks to generate an even more complex system behavior.

10.1109/1V47402.2020.9304723 © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
including reprinting/republishing this material for advertising or promotional purposes, collecting new collected works for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

We explain the promising concept in detail and show early
simulation results. Our approach has been inspired by a
similar, very successful, approach in robot soccer [14].
The main contributions of this publication are:
« an architectural design for AV behavior generation using
a hierarchical behavior-based arbitration scheme, by

extending the existing arbitration approach,
developing a suitable maneuver representation,
defining a set of fundamental driving behaviors and
combining these to an overall system behavior using
arbitrators.

« Early experimental results in the CoInCar-Sim [15].

II. FUNDAMENTALS

A first concept of hierarchical behavior-based arbitration
schemes for behavior generation has been presented in detail
in [14]. This chapter highlights the main ideas.

The concept is based on simple modular behavior blocks
and generic arbitrators.

A. Behavior blocks — How to do things

Behavior blocks are the fundamental building blocks of
a behavior-based architecture. They describe how and when
things can be done.

A behavior block provides three main functionalities:

invocation condition Indicates if this behavior is applicable
in the current situation.

commitment condition Signalizes if a currently active be-
havior could be continued.

command Generates the actual behavior output that can
be passed on to a subsequent execution pipeline or
the actuators. This could be a trajectory, turn signal,
gripping target, etc.

Only if either the invocation or commitment condition is true,

the behavior can be selected and its command function can

be called.

B. Arbitrators — Which thing to do

Arbitrators hierarchically combine behaviors to produce
more complex behavior strategies. They decide which thing
to do.

An arbitrator contains a list of behavior options to choose
from. Each behavior option offers abstract information like
the invocation and commitment condition, which the arbitra-
tor uses to decide which option to execute.

Any problem specific knowledge and environment in-
terpretation is completely encapsulated inside the behavior
block itself. As a result, arbitrators do not need any knowl-
edge about the nature of their underlying behavior options,
but choose behaviors based on abstract information only. This
bottom-up design approach leads to strong functional and
semantic decomposition.

Arbitrators can utilize various schemes to select between
their behavior options. The following have been proposed:
The highest priority first arbitrator organizes its behavior
options in a list ordered by priority. An applicable option
with the highest priority is chosen. The sequence arbitrator

executes its options based on a fixed predefined order. A ran-
dom arbitrator assigns probabilities to its behavior options
and selects one among all applicable options randomly.

Additionally, a novel cost-based arbitration scheme that
is necessary for, but not limited to automated driving is
introduced in section III-D.

Finally, to generate even more complex behavior, an arbi-
trator can also be a behavior option of a hierarchically higher
arbitrator.

C. Design Process

We want to briefly highlight some valuable properties of
the design process when using the hierarchical behavior-
based arbitration scheme.

The first step is to define a minimal set of basic behavior
blocks to tackle the given task. In order to do so, one
should think in a bottom-up approach, meaning a functional
rather than scenario perspective. In this sense, one behavior
block can be applicable in multiple scenarios, while each
scenario could also be tackled by various or sequential
behavior blocks. It might also make sense to design multiple
behavior blocks to achieve the same behavior with different
approaches, e.g. two behavior blocks for follow ego lane: one
behavior block using state lattices, the other optimization.
More importantly, each behavior block can be developed
independently by defining its invocation and commitment
conditions and implementing the command function.

In the second step, these behavior blocks are combined
with an arbitrator while arbitrators can be further stacked
to a hierarchical graph. Here, scenario specific knowledge
can be used to find a good behavior selection strategy.
Each arbitrator can also decide if an active behavior will be
interrupted in favor of a better option, even if the commitment
condition is true. Nevertheless, none of the behavior blocks
has to be modified to be added into the arbitration graph.

If this initial graph turns out not to be sufficient, it can be
easily extended by defining a new behavior block and adding
it to one of the arbitrators. None of the existing behavior
blocks has to be modified to achieve this. The graph can
also be reordered or new arbitrators introduced seamlessly.

Finally, the decoupling of behavior blocks confines poten-
tial errors and enables proper unit testing. Additionally, the
arbitrators are so simple that a formal verification should be
possible. Both are important steps towards functional safety.

III. APPLICATION TO AUTOMATED DRIVING

This chapter describes the main contribution of this publi-
cation: how a hierarchical behavior-based arbitration scheme
can be utilized for decision-making in automated driving.

In contrast to classical behavior-based systems each be-
havior block is not directly connected to the sensors and
actors. Instead, the input is an abstract environment model
that contains a fused, tracked and filtered representation of
the world. The behaviors’ output is also in a more generic
form that can be passed to a trajectory planner or controller.
In this sense, we follow the sense-plan-act paradigm in the
overall software structure [10] but employ a behavior-based
approach in the decision-making module.

u—....__._‘_‘___....._

Figure 1: Maneuver corridor for a lane change, right bound in
green, left bound in red, reference line in blue. The planned
trajectory as circles, one circle per time step.

A. Environment Model

The environment model in our implementation contains
a lanelet map [16], planned route, ego motion state and
detected objects with prediction. The map describes drivable
areas, distinct lanes, parking lots, traffic rules, etc. The route
is provided by a routing module. The ego motion state mainly
depicts the current pose and velocity of the ego vehicle.
Currently, we assume that the objects are given with a
decoupled prediction. A generic decision-making framework
should support both open-loop and closed-loop prediction
though. Therefore, integrated planning and prediction within
the behavior blocks is also possible in our approach.

B. Maneuver Representation

As we aim for a generalizing approach that is applicable
to various driving environments our maneuver representation
should be as task-agnostic as possible. It should fit all relevant
use cases and environments of automated driving, namely
highway, rural, urban and parking. However, the proposed
representation and interfaces would also work for other
environments like off-road driving.

Our behavior blocks represent basic driving maneuvers
such as “follow the ego lane”, “merge into traffic” or “park
near goal”. In general, we can distinguish between maneuvers
in a structured or unstructured environment. Urban and
highway scenarios provide road boundaries or even distinct
lanes, while parking lots and off-road areas feature open
space like scenarios.

Therefore, we use a twofold maneuver representation:
Driving commands in structured environments use a corridor-
based maneuver representation. It consists of a maneuver
corridor, reference line, predicted objects and the chosen
maneuver variant. The corridor is usually generated from
map data [16], but could also be provided online, e.g. from
semantic segmentation [17]. The reference line is an approx-
imation of the centerline and can serve as a rough positional
reference. Additionally, velocity objectives are given along
this line, e.g. derived from the speed limit and curvature. The
object list contains all objects relevant for this maneuver, their

predictions as well as virtual objects indicating stop positions.
Finally, the maneuver variant defines the chosen homotopy
class, as discussed in [18]. An example of a corridor-based
driving command is shown in Fig. 1.

Driving commands in unstructured environments directly
use a trajectory to represent the requested maneuver. We
did not choose a more abstract representation in this case,
in order to support a wide variety of use cases in such
environments.

Depending on the command representation type, the sys-
tem following the decision-making module runs different
pipelines to execute these maneuvers. Corridor-based ma-
neuvers are passed to a trajectory planner, e.g. [19] or [20],
followed by an appropriate controller. While trajectory-based
driving commands are directly handed over to a trajectory
controller that is tuned for slow velocities and is capable of
backward driving, as needed for maneuvers like parking.

C. Driving Maneuvers — How to drive

Following the behavior-based approach we begin with
designing atomic behavior blocks for simple tasks, before
stacking them together in section III-D. Here, we do not
attempt to present a feature-complete list with all necessary
behaviors. Instead, we focus on explaining the main design
concept using some hand-picked example behaviors, that
should compile a decent start to develop an AV. This stack
can then be extended iteratively by more specialized behavior
blocks addressing specific driving situations. Furthermore, a
behavior block can compute its maneuver command with
any preferred state-of-the-art method. For better clarity and
conciseness, the behavior blocks used in our evaluation are
explained in detail while remaining behaviors will only be
described briefly.

An urban environment is probably the most challenging
one for automated driving. We can think of at least three
basic driving maneuvers needed in an urban setting:

FollowEgoLane As long as the ego pose is within any urban
lane of our route our vehicle could follow it in ACC.
That is — without traffic — also the case for intersections,
so we ignore these at this point. Later on, a special
higher priority intersection behavior will take care of
traffic rules and all the other challenges of intersections.
invocation condition True, as long as the ego pose
matches a lanelet along our route.

commitment condition Same as the invocation condi-
tion, but as executing this behavior will keep the
vehicle in its lane the commitment condition should
always evaluate to true.

command A maneuver corridor is constructed from
consecutive lanelets along our route, starting at the
ego lanelet. In case a lane change is necessary to
follow the route, the FollowEgoLane corridor will end
at the last lanelet where such a lane change would be
possible, as shown in Fig. 6. Leading vehicles along
this corridor (also considering predictions) are flagged
as ACC objects in the maneuver variant.

Follow Ego Lane
Change Lane Left
Change Lane Right

Merge Into
Lane Left

Approach Gap

[Nose In

Merge Into Gap
Approach Gap

Merge Into
Lane Right

Nose In

Merge Into Gap

Change Highway
Lane Left

Change Highway
Lane Right

Exit From Highway

Avoid Collision
In Last Resort

$

l% Parking

1 Cross
9 Intersection

|

utomated
Driving

B

$ Highway Driving

Safe Stop

Figure 2: Full arbitration graph of the proposed minimal behavior set for automated driving. Basic behavior blocks are drawn
with round corners, arbitrators have sharp corners. The vertical ordering of behaviors depicts their priority or sequence in
case of priority or sequence arbitrators. Icons by Font Awesome — CC BY 4.0 License.

ChangelLane Lane changes, on the other hand, are only
possible when the current ego lane has a directly ad-
jacent reachable lane on the left or right side with a
safe distance to the following and leading vehicles. The
ChangeLane component is defined w.r.t. the supposed
changing direction and instantiated once for each direc-
tion to improve reusability.

invocation condition True as long as the current ego
lanelet has a directly adjacent reachable lanelet in
the respective direction with a big enough gap to
safely change into: The closest leading and follow-
ing objects in the target lane should have a lon-
gitudinal spatial and temporal distance greater than
df,},iad, dﬁiﬁmd, TrC fffiiad and TTC Eil:nd respectively.

commitment condition In order to produce consistent
driving behavior, the commitment condition is true
until the lane change maneuver has been completed
or properly aborted. The lane change is successfully
completed as soon as the full ego shape is within
the target lane. In case the selected gap becomes too
small, the lane change is aborted with commitment
condition true until the ego shape is fully within the
starting lane again.

command Similar to FollowEgoLane a maneuver cor-

ridor is constructed along our route, but also contains

directly adjacent reachable lanelets, as shown in Fig. 1

and 6. The ego lane within this corridor is cut after
LaneChange ce . .

d max to enforce a lane change within this dis-

tance. The maneuver variant contains properly flagged

leading objects in the start and target lane, as well as

following vehicles in the target lane.

CrossIntersection One characteristic of urban environments
are numerous signalized or unsignalized intersections
that need specific behavior. An AV has to yield to
super-ordinate traffic participants and take special care
of vulnerable road users (VRUs) and occlusions [21].

In dense traffic it might be necessary to perform lane
changes in three consecutive phases [22]. These can be
designed as behavior blocks as well and put into sequence

in section III-D:

ApproachGap The most promising gap will be approached
laterally by de- or accelerating.

IndicateIntention Once the gap has been reached the vehi-
cle will indicate its intention using the turn signals.
MergeIlntoGap As soon as the gap size is big enough, the

vehicle can safely merge into it.

Another typical application for AVs is driving on high-
ways. Many occurring behaviors are similar to those provided

for urban environments. High velocities and special traffic
rules justify distinct highway behavior blocks though.

MergeOntoHighway High relative velocities and sometimes
short onramps pose a challenge when entering highways.
Thus, MergeOntoHighway could also be modeled with
sequential sub-behaviors, to decompose the problem.

FollowHighwayLane The typical ACC behavior that can
already be found in some of the modern series cars.

ChangeHighwayLane Changing lanes on highways can be
modeled as a multi-phase behavior or as one integrated
interaction aware behavior, using e.g. POMDPs [23].

ExitFromHighway Exiting from highways can be as simple
as changing to a new diverging lane or as challenging as
crossing traffic that is meanwhile entering the highway.

In the beginning, end or even during an automated drive,
the vehicle has to park in a suitable place. Usually, path or
trajectory planners based on graph search methods are used
in unstructured environments like parking lots [24].

LeaveGarage When starting a ride, LeaveGarage brings the
AV from the garage onto the track.

ParkNearGoal As soon as the AV is close to its goal and
a suitable parking lot is found, the vehicle can reduce
its speed and park into this parking lot. Notice, that the
search for a parking lot is not included here. It might be
modeled as another behavior block or supplied by the
routing module.

invocation condition True if the AV is near standstill
(Vego < VE"®), the parking lot closer than 7B

and no dynamic objects within rf;??p e

commitment condition True until the parking position
is reached with rﬁgﬂng precision. An arbitrator can
use this information to prevent other behaviors from
taking over during a tight parking maneuver.

command A Hybrid Curvature trajectory is generated

based on [24], assuming a static environment.

Finally, we add fail-safe emergency behaviors, in case a
dangerous unforeseen traffic situation evolves or as a fall
back if no other behavior block is applicable.

EmergenyStop In case an unavoidable collision will be
anticipated, the EmergenyStop behavior will provide a
full-stop trajectory to reduce damage and fatalities.

EvadeObject If a collision could be avoided laterally,
EvadeObject will provide an evasive maneuver like [25].

SafeStop As a fail-safe fallback for any system failure or
if no other behavior block provides feasible commands,
SafeStop will bring the vehicle to a safe stop.

D. Arbitration Scheme — Which maneuver to drive

Now that we have developed a couple of basic behavior
blocks, we can use them to compose the overall behavior for
automated driving, as shown in Fig. 2, starting bottom-up.

We follow a similar notation to [14], denoting the behavior
options of an arbitrator with O agprrratorName, Using round
brackets “()” for an ordered list and curly brackets “{}” for
a set of options. Basic behavior blocks are highlighted with
ItalicNames and arbitrators with CAPITALNAMES.

In an urban environment possible behaviors are Follow-
EgoLane, ChangeLane, MERGEINTOLANE and CROSSIN-
TERSECTION. In order to clear intersections as soon as
reasonably possible and not to change lanes unintentionally
in an intersection, CROSSINTERSECTION has clear priority at
intersections. The remaining urban behaviors typically have
no clear and consistent priority over each other though —
yet the most reasonable one should be chosen.

As none of the existing arbitration schemes (by priority,
sequence or random) are sufficient for this task, we define a
new cost-based arbitrator that selects the behavior option with
the lowest expected cost. A hysteresis prevents oscillating be-
havior choices. By introducing cost arbitrators, the decision-
making concept can be extended to dynamically changing
preferences.

However, cost arbitrators should be used with care. First
of all, the cost estimates of an arbitrators behavior options
have to be comparable. This could easily lead to cross-
dependencies of behavior blocks. Secondly, if the cost con-
tains too many obfuscated objectives, the selection process
becomes difficult to understand. Both are properties we
actually want to avoid. Therefore, we advise to use cost
arbitrators rarely and with simple, generic costs. In our case,
we use a simple estimate of the expected travel velocity:

OureanDrIVING = S{FollowEgoLane,
ChangeLaneLeft / -Right,
MERGEINTOLANELEFT / -RIGHT}

As discussed in section III-C lane changes in dense traffic
can be decomposed into three stages. As a result, a sequence-
based arbitrator is used to compose MERGEINTOLANE:

OwmerceintoLane = Y= (ApproachGap, IndicateIntention,

MergelntoGap)
Highway behaviors are combined using a cost arbitrator:

Omignwaybriving = ${MergeOntoHighway,
FollowHighwayLane,
ChangeHighwayLaneLeft / -Right,
ExitFromHighway}

In case of PARKING at most one option is feasible after
all, such that a trivial priority-based arbitrator can be used:

Oparxing = 13 (LeaveGarage, ParkNearGoal)
The emergency maneuvers for unavoidable collisions are
grouped together using a cost-based arbitrator estimating the
expected damage. In such a way, it chooses the option with

the lowest expected damage:

O AvOIDCOLLISIONINLASTRESORT = $ {EmergenyStop, EvadeObject}

ParkNearGoal - Q @ Q Q : e Q
ChangeLaneLeft -
FollowEgoLane ﬂ
ChangeLaneRight - U U U
SafeStop ; ;

0 100 200

300 400 500 600

Time [s]

Figure 3: Behavior choices in the experiment driving the whole test track.

1m Dich Pfad
CVIM

Facherbac

FC1921

ten
INNENSTADT-0ST OSTSTADT

~“”'° Hauptfriedhgs®
Karlsruher
Parkgarage Schlossplat Institut fir

Technologie Turkisches @

%,
ADISIDQ %

To ? e
Ll Essenweinstralie @B

Durla
ik Kronenplatz (Kaiserstr) KIT-C
Q Markeplatz o8 P

Figure 4: Test track running 5.7km through Karlsruhe,
Germany. Start and end position is a parking lot on the
university campus. Tiles © 2020 Google, Map data © 2020
GeoBasis-DE/BKG.

Change Lane Left

Safe Stop

Figure 5: Example arbitration graph, as used in our simulative
experiments. Colors depict the state at point E: Grey: invoca-
tion condition false, dark green: active behavior branch, light
green: utility (normalized inverse costs, see also Fig. 6).

Finally, these arbitrators and the SafeStop fallback are
composed together to the top-most priority-based arbitrator:
O avromarenpriving = 18 (AVOIDCOLLISIONINLASTRESORT,

PARKING, CROSSINTERSECTION,
URBANDRIVING,
HIGHWAYDRIVING, SafeStop)

IV. EXPERIMENTS

In this section, we show the applicability of the proposed
concept to utilize a hierarchical behavior-based architecture
for behavior generation in automated driving.

A. Setup

The explanatory example performs basic urban driving
behaviors on a simulated 5.7 km test track based on our real-
world test route in Karlsruhe, Germany. The route, shown
in Fig. 4, contains segments with speed limits of 30 kTm,

50 kTm and 60 1%“, is crossing or turning at 12 intersections,
traversing one roundabout and ends at a parking lot.

We use the ROS-based open-source simulation framework
ColnCar-Sim [15]. One great advantage of this framework
is that it provides the same interface as our test vehicle
Bertha [8]. Hence, we can develop, test and deploy the same
behavior and planning pipeline in ColnCar-Sim and Bertha.

Our basic example maneuvers for this track are: Park-
NearGoal, FollowEgoLane, ChangeLane (one instantiation
for left, another for right lane changes) and SafeStop. Lane
following and both lane change behaviors are combined
within a cost-based URBANDRIVING arbitrator. Whereas
parking, urban driving and the safe stop fallback constitute
the overall behavior using a priority-based AUTOMATED-
DRIVING arbitrator. Fig. 5 illustrates this arbitration graph.

This design has the following motivation. ParkNearGoal
is only applicable in the vicinity of the goal and a nearby
parking lot. Thus, as long as the ego vehicle is still on the
route FollowEgoLane is and ChangeLaneLeft or Change-
LaneRight might be applicable. URBANDRIVING will select
the most promising one, w.r.t. the expected average velocity,
routing costs and lane change penalties. As soon as the
vehicle approaches its goal, FollowEgoLane will bring it to a
stop within the last lanelet. Then, ParkNearGoal will become
applicable, chosen by priority and lead the car into its parking
lot. When the parking maneuver is finished, ParkNearGoal
will render inapplicable again. At that point also none of the
URBANDRIVING behaviors are applicable any more because
the car has left the route. As a result AUTOMATEDDRIVING
selects the lowest priority behavior SafeStop. This is a good
illustration of how the fallback behavior prevents undefined
states and keeps the vehicle in a safe position.

B. Results

Fig. 3 shows the resulting behavior selection over time.
The whole route takes 9:40min and features the expected be-
havior characteristics. The vehicle starts leaving the campus
area by following the lane. At intersection A, it changes to the
right lane in order to take a turn into a north-east direction.

At point B, it takes another right turn following the ego lane
and has to change to the left lane. When approaching the
next intersection C, the ego vehicle changes onto the exit
lane in order to turn into south-east direction. At ¢ = 339 s
it approaches and passes the roundabout D.

Fig. 6 shows the two applicable behavior options at point
E, where the route leads onto the “Adenauerring” again. The
route continues with a right turn from the rightmost lane,
while the ego is on the leftmost lane still. This is a suitable
scenario to explain the cost-based arbitration in detail. The
urban driving cost estimate incorporates the average expected
travel velocity, routing costs and penalizes lane changes:

J = =0 + N CNeeded * JLCNeeded s without lane change

J=-0+ TLCNeeded * JLCNeeded + L]LCManeuvr:rv otherwise

As a simple, yet effective heuristic, we estimate 9, the ex-
pected average velocity of this maneuver, from the maneuver
corridor length and speed limit as shown in Fig. 6. For
routing, we charge each lane change needed to follow the
route after this command with Jicneedea = 10 kTm Lane
change behaviors themselves are penalized with a lower
JLCManeuver = D 1% Hence, the arbitrator generally prefers
the follow lane behavior as long as it matches the route. As
soon as one or multiple lane changes will be necessary, this
maneuver will become more favorable.
At point F, the behaviors have these costs:

JFollowEgoLane =-25.0+1-10.0
JChangeLaneRight =-334+0-10.0+5.0

-15.0
-28.4

Consequently the cost-based arbitrator chooses Change-
LaneRight, which has lower cost than FollowEgoLane, as
also illustrated in Fig. 5.

An interesting part is directly after taking the right turn
at point £ from t = 422s to t = 436s. Here, the vehicle
performs two consecutive lane changes in order to pass this
two-lane road from the rightmost lane to the exit lane. This
is especially noteworthy, as no double lane change or other
hand-crafted behavior has been defined for such a scenario.
The behavior emerges purely because the routing has been
incorporated into the cost estimate.

The road leads back to the campus again, where the vehicle
slows down and stops at the end of the route. Finally, the
parking behavior becomes active and brings the car into its
parking lot. After finishing the parking maneuver, the safe
stop behavior is the last suitable option and keeps the car at
a standstill.

Please also consider our video: youtu.be/qdlwchDGA_g

V. CONCLUSIONS AND FUTURE WORK

This publication presented the following contributions:

An extension to the hierarchical behavior-based arbitration
concept proposed in [14]. We introduced a cost-based arbi-
tration scheme that is helpful when multiple behavior options
are applicable but have no clear and consistent priority among
each other.

We have formulated a behavior generation stack for AVs
based on the hierarchical behavior-based arbitration scheme.

FollowEgoLane: ChangeLaneRight:

Figure 6: FollowEgoLane and ChangeLaneRight maneuver
corridors at point E. The route continues to the right at this
point. As a result, the FollowEgoLane corridor ends in 74 m,
while the ChangeLaneRight corridor has a length of 243 m.

It consists of maneuvers for urban and highway environ-

ments, contains parking and emergency behaviors, and pre-

vents undefined states with a fallback safe stop behavior.
We have shown the usefulness and applicability of our

design in an explanatory evaluation on a simulated route.
The key advantages of the approach are:

« Scenario-specific solutions can be combined easily.
In the experiments, five different behaviors have been
employed to handle various scenarios, from four-way
intersections, T-junctions, a roundabout to multi-lane
bypass roads and parking.

« It supports different planning approaches.

We utilized two different trajectory planners in our
experiments. Urban corridor-based maneuvers used an
optimization-based planner similar to [19], while the
parking maneuver generated Hybrid Curvature trajec-
tories with an RRT* motion planner [24]. But also dif-
ferent approaches could be used for the same behavior.

o The resulting behavior can be well explained.

The strongly modular design significantly improves un-
derstandability compared to FSMs or classical behavior-
based systems. Each invocation condition can be well
understood; the selection logic of arbitrators is compre-
hensive. As a result, the hierarchical decision-making
process can be well explained and traced over time.

« It can be iteratively extended by more behaviors.
In order to add the parking behavior to our behavior gen-
eration, the definition of its invocation and commitment
conditions was sufficient to add it to the AUTOMATED-
DRIVING arbitrator. Thanks to the strong decoupling,
no changes to any other behavior block were necessary.

« The modularity supports robustness and efficiency.
Each of the behavior blocks is self-contained, such that
occurring failures are contained as well and do not affect
the overall system stability. In case of a failure, the sys-
tem will degrade seamlessly by ignoring this behavior
option. Furthermore, the atomic structure allows to eval-

https://youtu.be/qdIwchDGA_g

uate behavior options in parallel to increase efficiency.
Strong modularity has many more advantages, among
others, reusability and maintainability.

Complex behavior emerges from simple components.
Complex system behavior, as multiple consecutive lane
changes to approach an exit lane, emerges from the
arbitration scheme without the need for hand-crafted
decision or planning logic.

These benefits have led to a smooth development process
with promising results, as outlined in section IV. Thus,
we look forward to further enhance the numerous existing
behavior blocks, extend the behavior stack by e.g. our MIQP
approach for cooperative zip merges [26] and most excitingly
to integrate this stack on our test vehicle Bertha.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

REFERENCES

S. Hoermann, F. Kunz, D. Nuss, S. Reuter, and K.
Dietmayer, “Entering crossroads with blind corners. A
safe strategy for autonomous vehicles,” in IEEE Intell.
Veh. Symp., Jun. 2017.

C. Hubmann, J. Schulz, M. Becker, D. Althoff, and
C. Stiller, “Automated Driving in Uncertain Envi-
ronments: Planning With Interaction and Uncertain
Maneuver Prediction,” IEEE Trans. Intell. Veh., vol. 3,
no. 1, Mar. 2018.

M. Bouton, A. Nakhaei, K. Fujimura, and M. J.
Kochenderfer, “Scalable Decision Making with Sensor
Occlusions for Autonomous Driving,” in IEEE Int.
Conf. on Robot. and Automation, May 2018.

M. Naumann, H. Koénigshof, and C. Stiller, “Provably
Safe and Smooth Lane Changes in Mixed Trafic,” in
IEEE Intell. Transp. Syst. Conf., Oct. 2019.

M. Buehler, K. lagnemma, and S. Singh, Eds., The
DARPA Urban Challenge: Autonomous Vehicles in
City Traffic, red. by B. Siciliano, O. Khatib, and F.
Groen, vol. 56, Springer Tracts in Advanced Robot.
Berlin, Heidelberg: Springer, 2009.

A. Bacha, C. Bauman, R. Faruque, M. Fleming, C. Ter-
welp, C. Reinholtz, et al., “Odin: Team victortango’s
entry in the darpa urban challenge,” J. of Field Robot.,
vol. 25, no. 8, 2008.

M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D.
Dolgov, S. Ettinger, et al., “Junior: The Stanford entry
in the Urban Challenge,” J. of Field Robot., vol. 25,
no. 9, 2008.

J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T.
Strauss, C. Stiller, er al., “Making Bertha Drive —
An Autonomous Journey on a Historic Route,” IEEE
Intell. Transp. Syst. Mag., vol. 6, no. 2, Sum. 2014.
M. Aeberhard, S. Rauch, M. Bahram, G. Tanzmeister,
J. Thomas, Y. Pilat, et al., “Experience, Results and
Lessons Learned from Automated Driving on Ger-
many’s Highways,” IEEE Intell. Transp. Syst. Mag.,
vol. 7, no. 1, Spr. 2015.

B. Siciliano and O. Khatib, Eds., Springer Handbook
of Robotics, Springer Handbooks, Springer Interna-
tional Publishing, 2016.

[11]

[12]

[16]

[21]

R. Brooks, “A robust layered control system for a
mobile robot,” IEEE J. on Robot. and Automation,
vol. 2, no. 1, Mar. 1986.

Julio K. Rosenblatt, “DAMN: A distributed architec-
ture for mobile navigation,” J. of Exp. & Theor. Artif.
Intell., vol. 9, no. 2-3, 1997.

Pattie Maes, “How to do the right thing,” Connection
Science, vol. 1, no. 3, 1989.

M. Lauer, R. Hafner, S. Lange, and M. Riedmiller,
“Cognitive concepts in autonomous soccer playing
robots,” Cogn. Syst. Res., vol. 11, no. 3, 2010.

M. Naumann, F. Poggenhans, M. Lauer, and C. Stiller,
“ColnCar-Sim: An Open-Source Simulation Frame-
work for Cooperatively Interacting Automobiles,” in
IEEE Intell. Veh. Symp., Jun. 2018.

F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf,
M. Naumann, F. Kuhnt, er al., “Lanelet2: A high-
definition map framework for the future of automated
driving,” in Int. Conf. on Intell. Transp. Syst., 2018.
A. Meyer, N. O. Salscheider, P. F. Orzechowski, and
C. Stiller, “Deep Semantic Lane Segmentation for
Mapless Driving,” in IEEE/RSJ Int. Conf. on Intell.
Robots and Syst., Oct. 2018.

P. Bender, O. S. Tas, J. Ziegler, and C. Stiller, “The
combinatorial aspect of motion planning: Maneuver
variants in structured environments,” in IEEE Intell.
Veh. Symp., IEEE, 2015.

J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Tra-
jectory planning for Bertha — A local, continuous
method,” in IEEE Intell. Veh. Symp., Jun. 2014.

B. Gutjahr, L. Groll, and M. Werling, “Lateral Vehi-
cle Trajectory Optimization Using Constrained Linear
Time-Varying MPC,” IEEE Trans. Intell. Transp. Syst.,
vol. 18, no. 6, Jun. 2017.

P. F. Orzechowski, A. Meyer, and M. Lauer, “Tackling
Occlusions & Limited Sensor Range with Set-based
Safety Verification,” in Int. Conf. on Intell. Transp.
Syst., IEEE, Nov. 2018.

J. Nilsson, M. Brinnstrom, E. Coelingh, and J.
Fredriksson, “Lane Change Maneuvers for Automated
Vehicles,” IEEE Trans. Intell. Transp. Syst., vol. PP,
no. 99, 2016.

C. Hubmann, J. Schulz, G. Xu, D. Althoff, and C.
Stiller, “A Belief State Planner for Interactive Merge
Maneuvers in Congested Traffic,” in Int. Conf. on
Intell. Transp. Syst., IEEE, Nov. 2018.

H. Banzhaf, M. Dolgov, J. Stellet, and J. M. Zollner,
“From Footprints to Beliefprints: Motion Planning un-
der Uncertainty for Maneuvering Automated Vehicles
in Dense Scenarios,” in Int. Conf. on Intell. Transp.
Syst., IEEE, Nov. 2018.

M. Werling and D. Liccardo, “Automatic collision
avoidance using model-predictive online optimiza-
tion,” in IEEE Conf. on Decision and Control, 2012.
C. Burger and M. Lauer, “Cooperative Multiple Vehi-
cle Trajectory Planning using MIQP,” in Int. Conf. on
Intell. Transp. Syst., IEEE, Nov. 2018.

	I Introduction
	II Fundamentals
	II-A Behavior blocks — How to do things
	II-B Arbitrators — Which thing to do
	II-C Design Process

	III Application to automated driving
	III-A Environment Model
	III-B Maneuver Representation
	III-C Driving Maneuvers — How to drive
	III-D Arbitration Scheme — Which maneuver to drive

	IV Experiments
	IV-A Setup
	IV-B Results

	V Conclusions and Future Work

