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Abstract— The ability of autonomous vehicles to maintain
an accurate trajectory within their road lane is crucial for
safe operation. This requires detecting the road lines and
estimating the car relative pose within its lane. Lateral lines
are usually retrieved from camera images. Still, most of the
works on line detection are limited to image mask retrieval and
do not provide a usable representation in world coordinates.
What we propose in this paper is a complete perception
pipeline based on monocular vision and able to retrieve all
the information required by a vehicle lateral control system:
road lines equation, centerline, vehicle heading and lateral
displacement. We evaluate our system by acquiring data with
accurate geometric ground truth. To act as a benchmark for
further research, we make this new dataset publicly available
at http://airlab.deib.polimi.it/datasets/.

I. INTRODUCTION
The ability to drive inside a prescribed road lane, also

known as lane following or lane centering, is central to
the development of fully autonomous vehicles and involves
both perception and control, as it requires to first sense
the surrounding environment and then act on the steering
accordingly.

Although perception and control are strongly intercon-
nected within this problem, the current literature is partial
and fragmented. On the one hand, we have works on lateral
control that assume the trajectory to be given and focus on
the control models and their implementation [1]. On the other
hand, instead, the perception side is mostly centered on the
mere line detection, which is often performed only in image
coordinates, so that no line description in the world reference
frame is ultimately provided [2].

To plan the best possible trajectory, however, it is neces-
sary to retrieve from the environment not only the position
and shape of the line markings, but also the shape of the
lane center, or centerline, and the vehicle relative pose
with respect to it. This is particularly useful in multi-lane
roadways and in GNNS adverse conditions (e.g. tunnels and
urban canyons).

At the same time, the technology now commercially
available offers only aiding systems. These only monitor
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Fig. 1. Overview of the output of our system: lateral lines (green),
centerline (orange) and relative pose heading and lateral displacement (red).
On the right, reconstructed world representation of the scene.

the line position in the strict proximity of the vehicle and
are limited to either issue a warning to the drivers (line
departure warning systems) [3], or slightly act on the steering
(lane keeping assist) to momentarily adjust the trajectory
for them [4], although they remain in charge of the vehicle
for the entire time [5]. Only a handful of more advanced
commercial systems actually do provide a lane following
mechanism, but even in this case it is just for limited
situations, such as in presence of a traffic jam (Audi A8
Traffic Jam Pilot [6]), when the vehicle is preceded by
another car (Nissan Propilot Assist [7]), or when driving in
limited-access freeways and highways (Autosteer feature in
Tesla Autopilot [8]).

What we propose in this paper is, instead, a complete per-
ception pipeline which enables full lateral control, therefore
capable not only to slightly correct the trajectory, but also to
plan and maintain it regardless of the particular concurring
situations. To this end, we design our perception system to
provide not only a mathematical description of the road lines
in the world frame, but also an estimate of shape and position
of the lane centerline and a measurement of the relative pose
heading and lateral displacement of the vehicle with respect
to it.

The scarcity of similar works in the literature leads also to
the absence of related benchmarking data publicly available.
The published datasets in the literature of perception systems
only focus on the mere line detection problem [9], even
providing no line representation in world coordinates. In
addition, most of these datasets do not contain sequential
images [10], [11], or if they do [12], [13] the sequences are
still not long enough to guarantee a fair evaluation of the
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system performance over time. No dataset publicly available
reports a way to obtain a ground truth measure of the relative
pose of the vehicle within the lane, which is crucial for
a complete evaluation of our findings. For this reason, we
proceeded to personally collect the data required for the
validation of our system and we release these data as a further
contribution of this work.

To generate an appropriate ground truth and validate our
work, the full knowledge of the position of each line marking
in the scene was required. As their measurement is hardly
feasible on public roads, we performed our experiments
on two circuit tracks, which we could, instead, fully ac-
cess. Although this might seem a simplified environment,
the tracks chosen actually offer a wide variety of driving
scenarios and can simulate situations from plain highway
driving to conditions even more complicated than usual urban
setups, making the experiments challenging and scientifically
significant.

This paper is structured as follows. We first analyze the
state of the art concerning line detection, with a particular
interest in the models used to represent street lines. Then
we proceed with an analysis of the requirements that these
systems must satisfy to provide useful information to the
control system. Next, in Section IV, we describe our pipeline
for line detection and, in Section V, how information like
heading and lateral displacement are computed. Lastly, we
introduce our dataset and perform an analysis on the accuracy
of our algorithms compared to a recorded ground-truth.

II. RELATED WORK

Lane following has been central to the history of au-
tonomous vehicles. The first complete work dates back to
1996, when Pomerleau and Jochem [14] developed RALPH
and evaluated its performance with their test bed vehicle,
the Navlab 5, throughout the highways of the United States.
Other works, at this early stage, focused mostly on the
theoretical aspects, developing new mathematical models for
the lateral control problem [15], [16].

At this early stage, the task of line detection began to
detach from the rest of the problem [17], [18], finding
application, later on, within the scope of lane departure warn-
ing systems [19]. In this context, traditional line detection
systems can be generally described in terms of a pipeline
of preprocessing, feature extraction, model fitting and line
tracking [9], [20], [21]. In recent years, learning methods
have been introduced into this pipeline. Very common is the
use of a Convolutional Neural Network (CNN) as a feature
extractor, for its capability of classifying pixels as belonging
or not to a line [22].

Final output of these systems is a representation of the
lines. In this regard, a distinction is made between parametric
and non-parametric frameworks [21]. The former include
straight lines [23], used to approximate lines in the vicinity
of the vehicle, and second and third degree polynomials,
adopted to appropriately model bends [24], while the latter
is mostly represented by non-parametric spline, such as cubic
splines [2], Catmull-Rom splines [25] and B-snake [26].

While parametric models provide a compact representation
of the curve, as needed for a fast computation of curve-
related parameters, non-parametric representations can model
more complex scenarios as they do not impose strong con-
straints on the shape of the road.

As the sole objective of line detection systems is to provide
a mathematical description of the lines, any of the described
line models is in principle equally valid. For this reason,
all of these studies strongly rely on a Cartesian coordinate
system as the most intuitive one. In the literature on lateral
control instead, the natural parametrization is preferred, as it
intrinsically represents the curve shape in terms of quantities
directly meaningful for the control model (e.g., heading,
radius of curvature, etc.). In this regard, Hammarstrand et
al. [27] argue that models based on arc-length parametriza-
tions are more effective at representing the geometry of a
road. Yi et al. [28] developed their adaptive cruise control
following this same idea and discuss the improvements
introduced by a clothoidal model.

Other works in lateral control typically focus on the con-
trol models adopted, often validating their findings on pre-
defined trajectories. While this is mostly performed through
computer simulations [28], [29], Pérez et al. [1] make their
evaluations on DGPS measurements taken with a real vehi-
cle. Ibaraki et al. [30] instead, estimate the position of each
line marking detecting the magnetic field of custom markers
previously embedded into the lines of their test track.

Only few works incorporate the line detection into their
system, aiming at building a complete lane following ar-
chitecture. In particular, Liu et al. [31] first detect the
line markings through computer vision and represents them
in a Cartesian space, then they reconstruct the intrinsic
parameters needed for control. To remove this unnecessary
complication, Hammarstrand et al. [27] directly represent the
detected lines within an intrinsic framework and are able to
easily obtain those parameters. Their line detection system,
however, relies not only on vision to detect the line markings,
but also on the use of radar measurements to identify the
presence of a guardrail and exploit it to estimate the shape
of the road.

In recent years also end-to-end learning approaches have
been proposed. Chen and Huang [32] developed a CNN-
based system able to determine the steering angle to apply
to remain on the road. In the meantime, Bojarski et al.
[33] present their deep end-to-end module for lateral control,
DAVE-2, trained with the images seen by a human driver to-
gether with his steering commands, and able to drive the car
autonomously for 98% of the time in relatively brief drives.
Nonetheless, strong arguments have been raised against the
interpretability of end-to-end systems and, ultimately, their
safety [34].

Our perception system improves the state of the art as it
directly provides the quantities necessary in lateral control,
while relying on vision and exploiting a compatible road
representation. Furthermore, an experimental validation is
conducted on a real vehicle, considering different scenarios,
driving styles and weather conditions.



Fig. 2. Road representation used in lateral control, highlighting the road
centerline as a parametric curve in the vehicle reference frame, and the
vehicle relative pose as heading Θ = ϕ− ψ and lateral displacement ∆.

III. REQUIREMENTS FOR LATERAL CONTROL

To properly define a lateral control for an autonomous
vehicle, three inputs are essential:
• vehicle lateral position with respect to centerline;
• relative orientation with respect to the ideal centerline

tangent;
• roadshape (of the centerline) in front of the vehicle.
In [35] the roadshape is described through third order

polynomials in a curvilinear abscissa framework (s − y)
that is centered according to the current vehicle position.
The most important advantage with respect to Cartesian
coordinates (X − Y ) is that each road characteristic can be
described as a function of one parameter (i.e., the abscissa
s), thus each function that approximates the lane center is
at least surjective. This property is very important because
it is retained along with the whole optimization horizon in
model predictive control approaches [35]. Fig. 2 depicts an
example of such representations.

What is proposed in the following is a pipeline to compute
the three parameters required by the control system: vehicle
orientation, lateral offset and road shape, in an unknown
scenario without the help of GPS data.

IV. LINE DETECTION

To estimate the required parameters, we need to acquire a
representation of the lane lateral lines in the scene.

At first, we adopt a purpose-built CNN to determine
which pixels in an acquired frame belong to a line mark-
ing. Our architecture, trained using the Berkeley DeepDrive
Dataset [36], is based on U-net [37], but with some signi-
ficative changes to improve the network speed on low power
devices and allow predictions at 100 Hz. In particular, the
depth is reduced to two levels, and the input is downscaled

to 512x256 and converted to grayscale. With these changes
the network requires only 5ms to predict an image on our
testing setup, a Jetson Xavier.

The obtained prediction mask is then post-processed
through two stages. At first, we apply an Inverse Perspective
Mapping (IPM) and project it into the Bird’s Eye View
(BEV) space, where the scene is rectified and the shape of
the lines reconstructed. In this space, then, the predictions
are thresholded and morphologically cleaned to limit the
presence of artifacts. The result is a binary mask in the BEV
space, highlighting what we refer to as feature points.

Next, a feature points selection phase separates the points
belonging to each road line of interest, discarding noisy
detections at the same time. Algorithms for connected com-
ponents extraction and clustering easily fail as soon as the
points detected are slightly discontinuous, and have usually
a strong computational demand. Therefore, we develop for
this task a custom algorithm based on the idea that the lateral
lines are likely well-positioned at the vehicle sides when
looking in its close proximity. Once they are identified there,
then, it is easier to progressively follow them as they move
further away. Exploiting this concept, our window-based line
following (WLF) algorithm is able to search for a line in the
lower end of the image and then follow it upwards along its
shape thanks to a mechanism of moving windows.

The line points collected Pli = (xi, yi)i are then passed to
the fitting phase. Here each line is first temporarily fit to a
cubic spline model to filter out the small noise associated
with the detections while still preserving its shape. This
model is however too complex and thus hard to further
manipulate. To obtain a representation useful for lateral
control, we propose to represent our line in a curviliear
framework (s − ϑ). The conversion of the modeled lines
into this framework requires a few steps, as the transition is
highly nonlinear and cannot be performed analytically. We
first need to sample our splines, obtaining a set of points
S′(x,y) = {(x′i, y′i)}i=0,...,n. Fixing then an origin on the first
detected point (x′0, y

′
0), we measure the euclidean distance

∆si between each point and its successor and the orientation
of their connecting segment ϑi with respect to the x axis. For
small increments ∆si then, we can assume:

si =

∫
ds ≈

i∑
k=0

∆sk (1)

obtaining a set S(s,ϑ) = {(si, ϑi)}i=1,...,n. The main ad-
vantage obtained is that this set, while still related to our
Cartesian curve, is now representable in the (s−ϑ)-space as
a 1-dimensional function:

ϑ = f(s) (2)

which can be easily fit with a polynomial model, final
representation of our lateral lines.

As last step of our algorithm, the temporal consistency
of the estimated lines is enforced in several ways. The
information from past estimates is used to facilitate the
feature points selection. In particular, when a line is lost



because no feature points are found within a window, we
can start a recovery procedure that searches for more points
in a neighborhood of where the line is expected to be.

Although the algorithm could already properly function, a
further addition is the introduction of the odometry measures,
to improve the forward model of the road lines and increase
the robustness of the system. Indeed, while we are driving
on our lane, we can see its shape for dozens of meters ahead.
Thus, instead of forgetting it, we can exploit this information
as we move forward, in order to model not only the road
ahead of us, but also the tract we just passed. This is crucial
to be able to model the road lines not only far ahead of the
vehicle, but also and especially where the vehicle currently is.
To do so, we only need a measurement of the displacement of
the vehicle pose between two consecutive frames. We obtain
this information from the encoders of the vehicle, which were
readily accessible to us. Nevertheless, visual odometry could
be used, alternatively, in order to entirely rely on vision. With
these measurements, we can store the line points detected at
each time step and, at the next step, project them backwards
to reflect the motion of our vehicle, finally adding them to the
new detections before the line is fitted. As we move forwards,
more and more points are accumulated, representing regions
of the road not observable anymore. To avoid storing too
complex road structures then, we prune old portions of the
road as we move away from them, maintaining only past line
points within 5–10 meters from our vehicle.

Furthermore, while the literature is mostly oriented to-
wards Bayesian filters (mostly KF and EKF) to track the
model parameters, we adopt an alternative perspective. It
is important to notice that Bayesian filters directly act on
the parameters of the line after the fitting, and for optimal
results they require external information about the motion of
the vehicle. As our line detection system relies instead on
vision, we employ an adaptive filter based on the Recursive
Least Square (RLS) method [38]. In particular, we design
this filter to receive as input, at each time step t, the set of
line points observed in the respective frame. With these, its
overall model estimate is updated, following a weighted least
squares scheme. Entering the filter with a full weight, points
are considered to lose importance as they age, and thus their
weight is exponentially reduced over time. The model we
consider is a cubic polynomial in coordinates (s− ϑ):

ϑ(s) = wTφ(s) = w3s
3 + w2s

2 + w1s+ w0 (3)

where

w =
(
w3 w2 w1 w0

)T
(4)

φ(s) =
(
s3 s2 s 1

)T
(5)

At a given time t, we observe the points {(st,i, ϑt,i)}i=1,...,n,
and we can then build:

Φt =

φ(st,1)T

...
φ(st,n)T

 =

s
3
t,1 s2

t,1 st,1 1
...

...
...

...
s3
t,n s2

t,n st,n 1

 (6)

We consider our measurements to be constituted of a deter-
ministic term, to be estimated, and a stochastic term, to be
removed:

ϑt = Φtw + ηt, ηt ∼ N (0, Σ) (7)

With this in mind then, at a given time t, we can update our
model w with a forgetting factor µ by computing, for each
i = 1, . . . , n:

µ̃ =

{
µ if i = 1

1 otherwise
(8)

et,i = ϑt,i −wTφ(st,i) (9)

R̃ =

(
1 +

1

µ̃
φ(st,i)

T Rφ(st,i)

)−1

(10)

R =
1

µ̃

(
R− 1

µ̃
Rφ(st,i) R̃φ(st,i)

T R

)
(11)

∆w = eti ·Rφ(st,i) (12)
w = w + ∆w (13)

where R and w are updated at each step. The main advantage
of this approach is that no assumption is made on the
behavior of the parameters and it is instead only the accu-
mulation of line points through time to smooth the results.
The recursive formulation then makes the computation fast
and efficient.

V. CENTERLINE AND RELATIVE POSE
ESTIMATION

Given the representation of the lateral lines, it is important
to model the lane centerline and the relative pose of the
vehicle, measured in terms of its heading Θ and lateral offset
∆ with respect to the centerline.

As no parallelism is enforced between the lateral lines, an
analytical representation of the centerline is hard to find,
but we can reconstruct its shape with some geometrical
consideration and exploiting the line representation adopted.
In particular, we devise an algorithm to project the points
from both lateral lines into the same (s− ϑ) plane, and we
fit these points with a single model, equally influenced by
both lines. In the best scenario, this would require each line
point to be projected towards the center, along the normal
direction to the road. This projection, particularly impractical
in Cartesian coordinates, is easily achieved in the space
(s− ϑ).

We assume, for the time being, that the lane has a fixed
curvature. Moreover, if we take into account the center of
curvature C of any road line, we also make the following
assumptions:
• the two lateral lines (ll,lr) and the centerline (lc) share

the same center of curvature (C):

Cll ≡ Clr ≡ Clc ≡ C (14)

• the center of curvature varies smoothly:

Ct ≈ Ct−1 (15)



Fig. 3. Representation of the geometrical transformation performed for
the centerline estimation, highlighting each quantity involved.

With this setup, we can define the following procedure, to
be repeated for both lateral lines (generically indicated as l).
We refer the reader to Fig. 3 for a graphical interpretation
of the quantities involved.

1) Compute Ct from lt−1
c , using its heading and radius

of curvature. Define the orthogonal to lt−1
c as llc (in

green).
2) Find the line ll0 passing through Ct and Pl0 , the first

line point in l.
3) Find the line ll1 passing through Ct and Pl1 , the

second line point in l.
4) Compute Rl = ||Pl0 −C

t||2.
5) Compute the angle ∆ϑl1 between ll0 and ll1 .
6) Compute ∆sl1 = Rl ·∆ϑl1 .
7) Compute ∆sc1 = Rc ·∆ϑl1 .
8) Obtain the ratio rsl =

∆sl1
∆sc1

.
9) Compute the angle ∆ϑl0 between llc and ll0 .

10) Define, for convenience,

sc0 = Rc ·∆ϑl0 (16)

At this point, with the ratio in Equation (16), we can
define a coordinate transformation from the lateral line to the
centerline and vice versa, all remaining into the parametric
framework. For any line point (sli , ϑli):

sci = sc0 + rsl (sli − sl0) = sc0 + rsl · sli
ϑci = ϑli

(17)

Notice that, although we think of this projection in the
Cartesian space, we only define a linear transformation in
the s−ϑ frame, aiming at rescaling each line model in order
to make their shapes comparable. Although the assumptions
made do not hold in general scenarios, this produces an
acceptable approximation of the expected results.

With this procedure then, we are ultimately able to take
all the points detected on both lines and collapse them onto
the centerline.

As done for the lateral lines, the points can be fit with a
cubic polynomial in (s − ϑ) and the result tracked through
an RLS framework.

A. Relative pose estimation

Given the centerline model, we notice that the heading of
the vehicle is represented by the value of ϑ(s) in a particular

Fig. 4. Representation used in the vehicle relative pose estimation,
including state and observation variables for the EKF filter adopted.

point, to be determined. Finding the exact point however is
not simple, as we want to perform this measurements exactly
along the line passing through the center of mass of the vehi-
cle CM . As this requires us to pass from intrinsic to extrinsic
coordinates, no closed form formulas are available, and we
have to solve a simple nonlinear equation. In particular, as
illustrated in Fig. 4, we need to look for a line l̃, passing
through CM and crossing the centerline lc perpendicularly.
Formally, we search for a value s̃, corresponding to a point
Oc along the centerline, such that:

CM ∈ l̃
Oc ∈ l̃
l̃ ⊥ lc

(18)

This can be easily done translating this conditions in the
corresponding geometrical equations and considering that,
for parametric representations:

x =

∫
cos(ϑ(s))ds, y =

∫
sin(ϑ(s))ds (19)

Once this point is found, heading (Θ) and lateral displace-
ment (∆) are:

Θ = ϑ(s̃) (20)

∆ =

{
+||Oc − CM ||2 if Ocy ≥ 0

−||Oc − CM ||2 if Ocy < 0
(21)

To maintain the temporal consistency of the vehicle pose,
we set up an Extended Kalman Filter (EKF). We take as
measurements the Cartesian position of the points PL and
PR, intersections of the lateral lines with l̃ (see Fig. 4),
and maintain a state composed of ϑ, heading of the vehi-
cle relative to the centerline, ρ, signed normalized lateral
displacement, and w, width of the road. Notice that we
formally split the lateral displacement ∆ into w and ρ,
measuring respectively the width of the lane and the relative
(percentage) offset with respect to it. This is done on one
hand to simplify the definition of the measurement function
and thus obtain faster convergence, and on the other hand
to obtain the additional estimate of w, potentially helpful



(a) Track Aci-Sara Lainate

(b) Monza Eni Circuit

Fig. 5. The two racetracks used to collect our dataset.

in control. This allows us to produce approximate estimates
even when the tracking for one of the two lateral lines is
lost, as we can locally impose parallelism and project the
detected line on the opposite side of the lane, allowing our
system to be resilient for short periods of time.

Mathematically, the state space model representation of
our system can be shown as:

x =

ϑρ
w

 , z =


xPL

yPL

xPR

yPR

 (22)

xt = xt−1 + wt, wt ∼ N (0, Q) . (23)
zt = h(xt) + vt, vt ∼ N (0, R) . (24)

where the measurement function h is:

h(x) =


xCM − w

2 (1− ρ) sinϑ
yCM + w

2 (1− ρ) cosϑ
xCM + w

2 (1 + ρ) sinϑ
yCM − w

2 (1 + ρ) cosϑ

 , (25)

with CM = (xCM , yCM ) center of mass of the vehicle.

VI. EXPERIMENTAL VALIDATION

The dataset used for our tests is made publicly available
at http://airlab.deib.polimi.it/datasets/.

All data have been acquired on the Aci-Sara Lainate (IT)
racetrack and on the Monza Eni Circuit track (Fig. 5). The
two circuits present an optimal configuration for real street
testing with long straights, ample radius curves and narrow
chicanes. The dataset is acquired using a fully instrumented
vehicle, shown in Fig. 6. Images with resolution 672 × 376
are recorded using a ZED stereo-camera working at 100Hz.
Car trajectory and lines coordinates are registered using a
Swiftnav RTK GPS.

Fig. 6. Image of the experimental vehicle used for the dataset acquisition.

(a) Track A - Centered (b) Track A - Oscillating

(c) Track B - Centered (d) Track B - Racing

Fig. 7. Comparative example of the three driving styles recorded.

The ground truth creation process requires to map the
desired area and retrieve the lines GPS coordinates. Then,
the road centerline has been calculated considering the mean
value of the track boundaries and sampled to guarantee a
point each ds = 0.5m. This value of ds allows avoiding the
oversampling of GPS signals while ensuring smoothness and
accuracy of the road map. After that, third order polynomials
have been derived at every ds along the centerline for
the following 30 meters. Thanks to the experimental data
collected, the lateral distance from the centerline is computed
as the minimum distance to the closest point of the centerline
map. The relative angle with respect to the centerline is
instead evaluated by approximating the centerline orientation
computing the tangent to the GPS data.

For the tests, we recorded multiple laps, with different
speed, from 3m/s up to 15m/s and different driving
styles. In particular, we considered three different trajectories
(Fig. 7), one in the middle of the road, representing the
optimal trajectory of the vehicle. Then, one oscillating, with
significative heading changes, up to 40◦ to stress the limits
of the algorithm, with particular focus to the heading value.
Lastly, one on the racing line, often close to one side of the

http://airlab.deib.polimi.it/datasets/


TABLE I
RESULTS OBTAINED WITH DIFFERENT DRIVING STYLES

MAEΘ [◦] MAE∆ [m] Avail %

Driving style: centered
Track A - Trajectory 1 2.892 0.820 99.71
Track B - Trajectory 1 1.642 0.453 99.91

Driving style: oscillating
Track A - Trajectory 2 3.862 0.946 100.00

Driving style: racing
Track B - Trajectory 2 3.120 0.581 95.92

track and on the curbs, to better examine the computed lateral
offset. Moreover, the recordings were performed in different
weather scenarios, some on a sunny day, others with rain.
This guarantees approximately one hour of recordings on
two race track, one with length 1.5 km and one with 5.8 km
extension, for a total of 30 km, with multiple driving styles
and mixed atmospheric condition. With those described, we
evaluate the performance of our system in delivering the
necessary information for the lateral control, i.e. the relative
pose of the vehicle (Θ, ∆). The estimation is performed
on four rides (two on each available track), covering three
driving styles. To compare the results with the ground truth,
we measure the mean absolute error reported on the entire
experiment, considering only the frames where an estimate
was available. A measure of the relative number of frames
for which this happens (Avail %) is also considered as an
interesting metric. The results are reported in Table I. For
further reference, the behavior of our estimates over time
for the most significant experiments is presented in Fig. 8.

From these experiments, we observe how the system is
able to provide an accurate estimate of the required data for
lateral control, while maintaining a high availability. Indeed,
the errors registered for the lateral offset account for only
5−10% of the lane width, which lies between 9 to 12 meters
for the tracks considered, while the errors in the heading, of
about 3◦, are comparable to the ones experimentally obtained
using a RTK GPS. Furthermore, the error values remain
considerably low also in non-optimal scenarios (Track A
Trajectory 2, Track B Trajectory 2) where the vehicle follows
a path considerably different from a normal driving style.

VII. CONCLUSIONS

In this paper, we propose a perception system relying on
vision for the task of lateral control parameters estimation.
This system is able to detect the lateral lines on the road and
use them to estimate the lane centerline and relative pose of
the vehicle in terms of heading and lateral displacement. As
no benchmarking is publicly available, a custom dataset is
collected and made openly available for future researches.
The results obtained indicate that the proposed system can
achieve high accuracy in different driving scenarios and
weather conditions. The retrieved values are indeed com-
parable to the one calculated by a state of the art RTK GPS,

while compensating for its shortcomings.
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