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Abstract— Although the number of camera-based sensors
mounted on vehicles has recently increased dramadéilty, robust
and accurate object velocity detection is difficult Additionally,
it is still common to use radar as a fusion systemWe have
developed a method to accurately detect the velogibf object
using a camera, based on a large-scale dataset eotkd over 20
years by the automotive manufacturer, SUBARU. The pposed
method consists of three methods: a High Dynamic Rge
(HDR) detection method that fuses multiple stereo idparity
images, a fusion method that combines the result$ monocular
and stereo recognitions, and a new velocity calcdlan method.
The evaluation was carried out using measurement giees and
a test course that can quantitatively reproduce seve
environment by mounting the developed stereo cameran an
actual vehicle.

I. INTRODUCTION

In recent years, the role of sensors for autonorddumg

Fig.1 Detection results of our camera system. Left: lldegironment for
most research; Right: Bad environment in the realdvWe focus on real
world robustness at low cost using the camera-sydyem.

Although there are several studies by using dataseth as
night [4] and fog [5], almost no data are foundudig more
severe conditions such as dirt or raindrop on as¥ireld, etc.,
which are common environment for vehicle drivingditions.
There are several reasons for this. It is diffidoltcreate a
common dataset suitable for researches, becausenége
differs depending on sensor types and exposurengett
Furthermore, the appearance of raindrops on theshiald

(AD) and advanced driver assistance system (ADA&) hgreatly changes by the specifications of lens, distance

increased. There are various types of sensors sisch
millimeter wave radar, lidar, and camera. Amongrthéhe
performance of camera has improved dramatically wie

progress of image processing technologies sucheap d

learning. In addition, only cameras can detecepasgtsuch as
traffic signs and color of traffic lights. For tleeseasons, most

recent vehicles are equipped with cameras as sthnd

equipment. Furthermore, a stereo camera, one afaimera
systems, is known as a versatile and cost-effestvsor. It
has the features of camera and may also genestd@ck data
like lidar.

However, the camera system has some constraists.
detection performance is often restricted undetirenment
such as night or rain. The accuracy of distancevafatity is
lower than that measured by radars. For this reasamy
vehicles are equipped with both cameras and milémeave
radar as a fusion system. If the camera-only systam
accurately and robustly detect objects, high-castioh
systems will not be necessary.

In spite of this, most researches related to vifons on
only detection ratio, and very few focusing on aecy and
real-world robustness (Fig.1). Although the recsotks of
[1] and [2] present an approach of accurate detect object
distance using the stereo camera, they do not ametiie
robustness at severe environment such as rainyhereand
the accurate detection of object velocity.

One reason for such limited studies is that, fomyna
researchers, datasets are very limited. The fafGdayScapes
Dataset [3] focuses mainly on data at daytime gmodiitions.
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between the windshield and the camera, and the system
too.

In this work, we use a huge dataset in real wasltected
over 20 years by the automotive manufacturer, SUBAR,
and propose some of key technologies to deteateioeity of
gbject robustly and accurately.

First, we developed a new HDR detection approaaigus
multiple stereo images with different exposures.eWhan
image is captured with a bright exposure in a rainy
environment at night, the light of the vehicle rdkmp is
reflected in the raindrops, and it makes difficalgenerate the

curate distance of the vehicle. Therefore, we tuse
distance images that are a stereo distance imaugraged
with bright exposure and a stereo distance imagergéed
with dark exposure, as well as the method to coenplae
reliability in post-processing to detect an object.

Second, we developed three fusion systems withifure
of stereo-based object detection, mono-based otiggettion
by right camera, and another mono-based objecttitmteby
left camera, and the method for switching thosegeition
outputs appropriately.

Finally, we developed a new velocity calculationtimog
suitable for image recognition that can balancpaesiveness
and stability even in bad environment, insteadraditional
Kalman filter [7].

We summarize our main cntributions as follows:
1.Proposal of multi-exposure stereo disparity fasio
2.Proposal of stereo and mono detection fusion.

3.Proposal of new velocity calculation method slédor
image recognition in a real-world environment.
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The devices for detecting the distance and veloofty
objects using a stereo camera have been developeddng

RELATED WORKS

time. Among them, [6] is known as the world's firs

mass-production vehicle with an in-vehicle steramera. In
the past, the devices consisted of small VGA-siZ&D
cameras with very limited resolution, brightnesajrfe rate,
and dynamic range. However, the
improvement of image sensors allows us to getgelamount
of information.

What is important for a camera device is to imprtwe
accuracy of an image obtained from a sensor. gabworld
road environment, it is necessary to acquire agénmwith a
very high dynamic range, such as acquiring a dajkod at
night and a brake lamp of a vehicle at the same.timorder
to solve such a problem, [8] proposes a metho@érating a
stereo image for a pair of stereo matching imaggsuced
with three different exposures and combining therest
images. However, the Middlebury Stereo Datasetd instéhat
research are ideal and far from the road environmerhave
to adapt.

Since the stereo camera has two monocular canibeas,
distance and velocity can be calculated not onlgh whe
stereo camera but also with the monocular camérereTare
several methods for calculating the distance atatitg using
a monocular camera. Stein et al. [9] have propasdidtance
estimation method based on the angle of view abvdtiem of
the preceding vehicle. However, this method velige errors
when pitching or on slopes. Although distance aelbaity
can be calculated from local features such as edges
corners on the image [10], it is difficult to cdlate local
features in bad weather. In addition, a methodatfutating
the distance and velocity by fusion between a molaoc
camera and a stereo camera has been proposebitiétrors
occur in both the stereo camera and the monocalaiea
when the image is disturbed in bad weather. We qz®@m
method to calculate the reliability of a stereo esamand a
monocular camera and to improve the stability id Wwaather
by considering the case where both are unreliable.

Finally, a very important technique for detectimgadbject
with a camera is the method of velocity calculatigvhile
there are many researches of techniques for degeami object
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Fig. 2 The architecture of our stereo camera gyste

recent dramatic

in an image, the methods for calculating the véjoof the
object has not changed for a long time. For exaple
Kalman filter proposed by Kalman in 1960 [8] idldtieing
used in many fields. In general, the method toutate the

1'\/elocity from the image is calculated by differatitig the

distance between the times, but the accuracy is abéar

distance and severe environment. The Kalman fitten

Cﬁlculate an appropriate value corresponding tatheunt of
Aoise in the observation, but the response tenks tielayed.
Although the Kalman filter is a general-purposecahition

method for various observation targets and has exemded
to a method for fitting more complicated modelss firoblem

has not been improved basically. We propose a rdetho
improve this problem by performing filtering focngion the

vehicle motion characteristics observed in the inag

In this chapter, we describe our method for perfiogm
robust and accurate object recognition with theesteamera.

METHODOLOGY

A. The Architecture of Our Sereo Camera

The stereo camera we have developed consists of two
CMOS image sensors at a frame rate of about 50QX)F
The CMOS sensors are capable of outputting multiple
exposures (T1 and T2), and T1 exposure and T2 arpase
sequentially captured. The distance of the obgectlculated
from the disparities from the stereo camera usihg t
trigonometric function (1). Baseline lengith focal lengthf,
and sensor pitchv are the fixed parameters in the system, and
in our research, the camera specifications ardéenrity (2).

The stereo disparity is calculated by the FPGA, wamid
the image processing of object detection is peréatoy the
CPU. In addition, in order to accelerate legacy hirae
learning that can be performed with very compalciutation,
the integrated images of brightness and the edgegth are
calculated by the FPGA.

Lxf
D= 1
wxd ()
D =560000/d ()]

D=Distance(mm)
d=disparity(pix)

B. Multi-Exposure Disparity Fusion

The developed stereo camera captures two exposure
images, long exposure for object and lane dete¢liah and
short exposure for light and traffic sign detect{f@g), in one
frame (Fig.3). High dynamic range can be obtainéith &
single image by HDR rendering of a multi-exposurage.
However, in order to accurately and robustly detacious

frame

brightness
T1 T2

Exposure time -
Fig.3 Our multi-exposure.T1 is long exposure foject and lane
detection. T2 is short exposure for light and tcasfgn detection.T1 and
T2 are captured in one fram
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Fig.4 Our disparity map and HDR rending disparity mapigh

dynamic range scene. Ours is more dense withogée

objecs even at night, it is necessary to cover 1000 tithe:
range When such a wide ran is combine, information loss
at the time of compression is large and accurategration
cannot be performe For this reason, we use two expos
images specific to he targe without compositing an
compressing

Also, if the stereo matching is performed after the
synthesis, the disparity accuracy deteriorates ttuahe
nor-linear compression. Therefore, the stereo matclhsr
performed on each of the two expce image: However,
since no-compression synthesis is possible between rity
maps, each disparity mais synthesized based on
composition method to create a disparity fusion.rmiagreby
a single disparity map having a high dynamic racage be
used without lowering the disparity accure

Our Composition Method

We use a method of performing stereo matc
processing without compression on each of T1 andamnd
combining T1 disparity map and T2 disparity mapiaft the
correspondincoordinates of the T1 disparity map and the
disparity map, more reliable disparity is adoj (Fig.4).

Thestereo matching methwoutputs asparse disparity me
that consiss ofonly reliable disparities. At the same time,
degree of reliability calculated from the edge rggté is
addecas shown in reference . At the coordinates of intere
it is determined which of the disparities T1 and t62use
based on the reliabiy shown ir the TABLE I. Basically, it
fills in the form, but if both T1 and T2 have disiyg the
larger ofreliability is adopted. Ireliability is also the sam
T2 is preferentially adopted because dark imagesless
likely to produce le-right differences due to disturbanc

TABLE I. T1, T2 disparitycompositiol judgment tabl

Tl
Disparity exist Disparity none
T2 | disparity | if T1 Reliability > T2 | adoptT2

exist Reliability then

adoptT1

else:

adoptT2
disparity | adoptT1 None
none

Fig.5 Reliability heat map.T1 disrily ma is more reliableand
adaptecin dark scen.

T1 image

Fig.6 Region map used T2 disparitT2 disparity contributes in be
environnent.

such as raindrops near the ligource Fig.5) (Fig.6). For this
reason, there & still some topics t research in ordeto
consistentlyadopt T2 disparit'

C. Sereo and Mono Detection Fusion

Secon,, we describe the method of fusion of the re¢ of
detectiois from mono and stereimagesWhen using isterec
imagge, if there are raindrops or dirt, it difficult to calculate
the accuratevelocity of the preceding vehiclln our system
the left and right monocular cameras detect thegulieg
vehicle and select the camera with better concs for the
detectior (Fig.7) Ther, the velocityis calculatedby the
monocular came or stereo came. In the velocity
calculatiot usingthe monocular camera, a method was L

Fig.7 Top: $ereodisparity may Middle: Rightcamera image
Bottom: Leftcamera imac. In this scene, the result of detect
from the leftcamera is select.



Fig.8 Left: Normal image. Center: Depth histogramage. Right:
Depth histogram image in bad weather.

based on changes in the width of the image of theggling
vehicle.

In bad weather, the velocity may be unstable evasrvthe
distance can be calculated by the stereo cameesefbine, our
system uses the stereo velocity ), monocular velocity V),

and predicted velocity\(, ) for stabilization and outputs the
fusion velocityV; as:

Vg X W, + Vi X W, +V, xW,
W, + Wy, +W,,
Ve (Rs>2)

V, is the velocity of the stereo and uses the diffeze
from the past stereo distance to calculate thecitgloR; is
the stereo reliability and is calculated based fwn depth
histogram of the preceding vehicle. The depth bistm is a
histogram that summarizes the same depth distahteeo
height direction. In bad weather, the number of thlep
histograms also decreases because the distanceathdie
calculated decreases. In such case, the calculaitidistance
and velocity becomes unstable, so the stereo ildjals
calculated based on the number of depth histog(&ims).

The threshold for the number of depth histogranesi dsr
reliability depends on the distance and is deteedhioy the
four states; TRUST, STABLE, MAYBE, and NONE (Fig. 9
Depending on the determined state, the sterediléla R,
and stereo weightV; are defined as shown in Table II. The

monocular weight\,, is defined as follows.

W, = (3xR,)? (4

R, is the monocular reliability in the range of 0ltoT his
value is calculated based on the similarity betwberiexture
(edge histogram) and the previous image, the amafunt
change in the angle of view at the bottom of threceding
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Fig.9 Relationship of depth histogram and distance.

TABLE Il. STEREO RELIABILITY Ry AND STEREO WEIGHT Wy

R Ws
TRUST 3 9
STABLE 2 4
MAYBE 1 1
NONE 0 0

vehicle, and so oV, is the predicted velocity and is
calculated as follows.

V. = min(Vi-1,Vi-s + A_g X SxAt),(A_s < -0.1G)
P Vi (eis)

A _g is the acceleration of the preceding vehicle lee$or

frame, that is the latest frame when the stereamiie could
be calculatedV,_; andV,_g represent the velocity 1 frame

before and&frame before. At is the length of 1 frame time If
both the stereo velocity and the monocular veldoggome
unstable when the preceding vehicle deceleratlessahan
-0.1G, it is dangerous if the preceding vehiclerapphes, so
the velocity in consideration of deceleration isgicted. The
expected weightV,, is defined as follows.

©)

W, = @3-R)x(3-3xR,) (®)

As described above, both stability and responss&i®
deceleration from a preceding vehicle are achieweh in
bad weather.

D. Velocity Filter

Then, we describe the method of calculating theoisi
of an object. This is basically written in a veimple formula
as shown in (7). The velocity is calculated by etintiating
the object distanceD; detected from the latest image
captured, the object distan€®_; detected from the image
captured at 1 frame before, at the imaging timeriat At.

— Dy - Dy
At

V=Velocity(mms)
D=Distance(mm)
t=time(s)

Vi )

In this case, filtering process is performed gedhera
because the raw velocity has large errors. Theaypiethod
of the filtering process is to compare the previ€ilisred

velocity VN,_; with the current raw velocil, and use the
weightGV to determine how much it affects the final filtegi
velocity VN, (8). Our proposed filter basically has the same
structure, but the feature is to uSain=S which takes into

account the past motion of the object (9). Theidefathe
method for determinin§is described as follows.

N =WN; +GV x(V; =N4) ®



VS, =VS; 3 +Sx(V, -VS,) 9)
GV = gain for velocity [min:0, max:1]
VN (mmvs) = filtered velocity by normal method
VS (mmvs) = filtered velocity by Saito method (ours)
S= Saito Gain

Sis basically determined based on the acceleratidhe

the system is extended by adding a process of oot
whether the value is greatly out of range.

The monitoring process is performed v (S for
Monitor), which is similar toS (14). SM is calculated by
comparing the value obtained by applying the lBa® the
previous acceleration and the current acceleraione asS
The acceleratiorAM, is calculated not by the velocifS

object (10). AN,_; is the filtered acceleration at 1 frame beforebut by the velocityN, by the normal filtering method (15).

It can be calculated by the normal filtering metliodevery
frame (11). The feature of our filter is that wheamparing

this AN,_; with the current raw accelerati®tg , AN,_; is
multiplied byB(=Bias Gain) (10). The raw acceleratioAS
is calculated by differentiating the differencevbegn the raw
velocity V; and the previous velocityS,, (12), but the value
generally includes very large errors. If the changsveen the
previous acceleration and the current acceleratiolarge,
normally the weight should be large. But in our moek, if an
error occurs in the same directionAds,_; , a strong weight is
used, and if an error on the opposite side ocairgieak
weight is used, by using the value of the prevaeceleration
AN,_; amplified by Bias (10). The outp&is divided from

N

= (14)
|(AN_; xB) - AM|
am, = YW (15)
At

SM=Saito Gain Monitor
AM(mm/s"2)=Acceleration for Monitor

Finally, we describe a method for rejectiggby SM
(Algorithm 1). First, it is determined whether thalue ofSis
abnormally small by comparing it witdTh. Then, in order to
determine whethefS is sufficiently smaller tharSM, for
example, the value is compared with a value obthimg

the value ofN to normalize the gain so that it is used with anultiplying SM by RT, and if the threshold is satisfied,is

weight of 0 to 1, and limit the weighS so that it does not
become too strong (10) (13).

N

S= (10)
|(AN,_; x B) - AS||
AN = AN,_, +GAx (% -ANiy) (1)
V, -VS
AS, =t Tot-1 12
' At 12
S=min(LTh,S) (13)

N=Normalize Parameter
B=Bias Gain Parameter
AS (mnVs"2) = Acceleration
AN (mm/s*2) = filtered Acceleration by normal method
GA=Gain for Acceleration ([min:0, max:1)
LTh=Limit Threshold

However, once the ground truth of the velocity anel
calculated velocityVS greatly deviates, the valudS

always becomes large, and it may remain divergetowi
being converged for a long time. In order to sohie problem,

Algorithm I: Limit

if S <MThthen
if S < (SMXRT)then
S = min(LThM,SM)
end if
end if

MTh=Monitor Threshold parameter
RT = Reject threshold parameter
LThM = Limit threshold parameter

rejected and the value 8M is applied. However, in order to
prevent the value @&V from affecting too much, the value of
LThM is limited so that the value 8V does not become too
large.

IV. EXPERIMENT

A. Experimental Setup and Data.

In our experiments, we mounted a stereo cameranon a
actual vehicle and measured the velocity in anahcttiving
environment. There are mainly two types of expenitsi€ne
is the test driving confirmation by trained tesidrs on data
of over 400,000 km on actual roads around the w&#tond
is more quantitative measurement, in which two sypé
opposing characteristics, responsiveness and istabite
measured with respect to a specified operatioreatf a
preceding vehicle on a test course. This paperritbescthe
latter quantitative evaluation results.

Antenna Antenna

Target Vehicle Subject Vehicle

Fig.10 VBOX3iSL RTK GPS Unit

Fig.11 Image under test condition (30mm/h artficainfall)
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Fig.12 Graphs show the velocity of the precedielicle in case of
deceleration pattern of 100 kph to 0 kph 0.3 G.

TABLE Ill. THE DELAY FORGT AT 72KPH IN FIG.12.
Filter Delay
Kalman Filter 970ms
QOurs 485ms

Al.Measurement Device

Data measurement includes the true value of theingov
velocity of the object. The two cars are equippsdth va
VBOX data logger that can log distance/velocityhwtiie =
27.8mm/s accuracy GPS (Fig.10). The velocity cated by
this is used as a ground truth. Vehicle movemamsttested by
several patterns of velocity, distance, and movénfeom
constant to deceleration, from constant to acdaterafrom
acceleration to deceleration, etc.

A2. Test Course
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Fig.13 Graphs show the velocity of the precedingiale in case of 40
kph constant driving in raining condition.

TABLE IV. THE DESPIRSION OF VELOCITY INFIG.13.

Filter Dispersion
Kalman Filter 466ms/s(&)
Ours 392ms/s(&)

velocity filter and comparison results in a badissnment in
which the disparity fusion and the mono fusionadded.

Fig.12 shows the velocity responsiveness of ouhatkt
compared to the traditional Kalman filter in a siengood
environment. It is test data for a deceleratioriepat(0.3 G)
from a distance (about 55 m) where the conditions f
calculating the responsiveness are severe. It feen b
confirmed that the response is higher than thattodiditional
Kalman filter. The TABLE lll shows the delay for Gat

In addition to measuring the characteristics in djoo’2kph from 100kph.

environment, the characteristics in bad environmethich
had been difficult to quantify, are also measufida test was
conducted at JARI's (Japan Automobile Researchitues}
specific environment area. It is possible to meutadly
generate a certain amount of precipitation in toigrse. The
tests were conducted based on rainfall of 30 mFigh11).

B. Algorithm Parameters

The parameters of velocity filter used in all oualeations
are shown in TABLE V.

C. Results

Firstly, we describe the results of tests on th
responsiveness and stability of the velocity usimly the

TABLE V. VELOCITY FILTER PARAMETERS

Parameters Values

GV 1/ (Distance(mm) / 3500 + 1
N 980

B 16

GA 1/21

LTh 1/5

MTh 1/17

RT 1/4

LThM 1/15

On the other hand, Fig.13 shows the comparisaitsesf
stability in raining condition using the same pagtens. While
achieving high responsiveness, it is possible ttpuua
relatively stable value even in the case of antiopataining a
large number of errors by the velocity filter.

Secondly, we show the comparison results in a bad
environment, in which all of the three methods@rmbined,
i.e. the multi-exposure disparity fusion, the stead mono
detection fusion, and the velocity filter. Fig. lbg/s the same
deceleration pattern as in Fig.12 in raining coadit The

140
e
— Ours: 1disparity, 2mono, 3filter
test: filter only
— test: 2mono, 3filter only
— test: 1disparity, filter only

12000

4

10000

velocity (mm/s)

2000

time (ms)

)

20 270 20

Fig.14 100 kph to 0 kph 0.3G deceleration in badrenment. 1:
Multi-exposure disparity fusion, 2: Stereo and mono detection fusion,
3: Velocity filter. Graphs show the effectiveness.
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graphs show that the combination of each methottibates
to the final results. Comparing the target non-claia rate
per frame of this scene, 12.23% without 1 and&9%. with 1
only, 0.00% with 1 and 2 . In such a non-constpaed scene,
a high observation rate has an effect of respondiitigout
bias to prediction.

V. CONCLUSION

In this work, we proposed that the robust and ateur
object velocity detection can be achieved with the
camera-only system. The use of cameras is exparfiding
ADAS to more advanced AD. We described the result o
simple scene when detecting the back of a precadihigle,
mainly considering the application in ACC (Adapti@euise
Control). In the future, however, a technology thatects
road environments with more complex trajectorieslyécts
will be needed. As we proposed, the detection nuetiso
important, and research for more complex objeatsiai¢o be
developed in the future.

REFERENCES

[1] P.Pinggera, D. Pfeiffer, U. Franke, and R. Mestempw Your Limits:
Accuracy of Long Range Stereoscopic Object Measengsn in
Practice,” in ECCV, 2014, pp. 96-111.

[2] Peter Pinggera, Uwe Franke, Rudolf Mester, “Highfé?enance Long
Range Obstacle Detection Using Stereo Vision”, IBEEE/RSJ
International Conference on Intelligent Robots &ystems (IROS),
2015

[3] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enisre R.
Benenson, U. Franke, S. Roth, and B. Schiele. ‘€ityscapes dataset
for semantic urban scene understanding'Piaceedings of the IEEE
conference on computer vision and pattern recognition (CVPR), pages
3213-3223, 2016.

[4] D. Dai and L. Van Gool. Dark model adaptation: Seticaimage
segmentation from daytime to nighttime. In IEEE ehniational
Conference on Intelligent Transportation Systerog 82

[5] C. Sakaridis, D. Dai, and L. Van Gool. Semantic gipgscene
understanding with synthetic data. Internationairdal of Computer
Vision, 2018.

[6] K. Hanawa and Y. Sogawa: “Development of Stereo gena
Recognition System for ADA,” in Proc. IEEE Intekigt Vehicle
Symposium’01, 2001.

[71 R.E. Kalman, "A new approach to linear filtering daprediction
problems”, Trans. ASME, J. Basic Eng., 82-1, 354%50)

[8] Tara Akhavan, Hyunjin Yoo, Margrit Gelautz, “A framwork for HDR
stereo matching using multi-exposed images”, In {DR3.

[9] G.P. Stein, O. Mano, A. Shasua: "Vision-based ACithwa single
Camera: Bounds on Range and Range Rate Accuractglligent
Vehicles Symposium 2003, pp.120-125 (2003)

[10] R. Nevatia: “Depth measurement by motion stereogm@uter
Graphics and Image Processing, 5, pp.203-214 1976

[11] Haruki Matono, Hiroto Mitoma, “Distance calculatiafevice and
distance calculation method”, WIPO Patent 201313294
2013-02-06.



