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Abstract— Mixed-Integer Quadratic Programming (MIQP)
has been identified as a suitable approach for finding an
optimal solution to the behavior planning problem with low
runtimes. Logical constraints and continuous equations are
optimized alongside. However, it has only been formulated for
a straight road, omitting common situations such as taking
turns at intersections. This has prevented the model from being
used in reality so far. Based on a triple integrator model
formulation, we compute the orientation of the vehicle and
model it in a disjunctive manner. That allows us to formulate
linear constraints to account for the non-holonomy and collision
avoidance. These constraints are approximations, for which
we introduce the theory. We show the applicability in two
benchmark scenarios and prove the feasibility by solving the
same models using nonlinear optimization. This new model will
allow researchers to leverage the benefits of MIQP, such as
logical constraints, or global optimality.

I. INTRODUCTION

The scope of a behavior planning component for au-
tonomous driving is calculating a plan to safely navigate
through traffic reaching a desired state. This plan is usually
defined as a sequence of future states or waypoints, which is
then passed to a trajectory tracking controller. If those points
cannot be followed, because they do not account for the non-
holonomy of the vehicle, safety is at risk and eventually
collision can occur.

Optimization-based methods incorporate a model of the
kinematics, which is propagated for a given planning time
horizon, and usually formulate constraints to account for
feasibility and safety while constructing a cost function to
account for comfort and other desired aspects. Although
local continuous optimization such as sequential quadratic
programming (SQP) has been applied in reality [1], mixed-
integer programming (MIP) offers multiple benefits that are
favorable for optimal behavior planning. First, MIP will yield
an optimal solution, whereas SQP only guarantees yielding
a local optimum. Secondly, it allows logical and integer
constraints to be incorporated, whereas they usually lead to
numerical issues with continuous solvers. MIP cannot use a
non-linear vehicle model, such as the bicycle model, as the
resulting optimization problem is hard to solve. Past studies
used second- or third-order integrators to mitigate that [2, 3].

However, the proposed methods can only be used on a
small subset, namely straight roads, and become invalid in
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Fig. 1: Overview of our approach. From an arbitrary environment
shape and a non-trackable reference trajectory, we compute an
optimal motion. By over-approximating the collision shape of
the vehicle with adapted constraints for different orientations, our
model is globally valid and avoids arbitrary obstacles.

any other environment (roundabouts, intersections), or even
during obstacle avoidance at low speeds, as the valid scope
of the model formulation is limited. This poses the question
of how to formulate a generic globally valid linearized
model with correct vehicle dynamics in a MIP framework
as sketched in Fig. 1.

We contribute a model applicable to the full-fledged range
of orientations for the vehicle, featuring
• linear over-approximating collision constraints,
• linear non-holonomy constraints of the vehicle,
• the methodology to compute all model parameters by

linear least-square fits and
• a detailed study of the feasibility of the model.

II. RELATED WORK

Ziegler et al. [1] proposed an optimal control problem,
where they apply the cost functionals and constraints shown
in Table I. They use a triple integrator as vehicle model,
while bounding the curvature to account for non-holonomy.
The Bertha-Benz drive showed the applicability of the triple
integrator model if correctly constrained. Their approach
yields a non-linear optimization problem, which is solved
using SQP but only finds a local optimum. Motivated by that,
approaches for maneuver planning [4, 5] have focused on
finding the correct maneuver in a preliminary step. However,
these approaches usually rely on a geometric partitioning of
the workspace and thus scale poorly, and cannot be extended
to account for any interactive or cooperative planning.

Nilsson et al. [6] introduce two quadratic problems (QP)
for longitudinal and lateral control based on a linear double-
integrator model. To account for non-holonomy, the authors
use a linear inequality constraint that couples lateral and lon-
gitudinal velocity. However, this is only valid for small yaw
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TABLE I: Comparison of model approaches. We express linear functionals using 1 , quadratic using 2 , and all other non-linear functionals
using n . The counterparts 1 , 2 , and n express functionals that are not (and cannot be) implemented. We compare cost functionals
that we assume to be desirable, mostly following [1]. j� denote the cost terms, κ the curvature, v the velocity, and a the acceleration.

Source Ziegler et al. [1] Gutjahr et al. [7] Nilsson et al. [6] Qian et al. [3] Frese and Beyerer [2]
Problem formulation SQP QP for long, lat each QP for long, lat each MIQP MILP
Model triple integrator Frenet bicycle model double integrator double integrator double integrator
Reference frame Cartesian, fixed Frenet, streetwise Cartesian, fixed Cartesian, fixed Cartesian, fixed
Non-Holonomy Constraint κ, n κ, 1 vx, vy are coupled, 1 vx, vy are coupled, 1 alat, 1
Acceleration Constraint |a| 2 1 n n approximated, 1
Collision Shape disks disks road-aligned rectangle road-aligned rectangle road-aligned rectangle
Collision Check to everything everything road-aligned rectangle road-aligned convex polygon non-convex road polygon
Collision Constraint n 1 1 1 1
jveloctiy n 2 n n n
jacceleration 2 2 2 2 1 , 2
jjerk 2 2 2 2 , see [11] 2
jyawrate n 2 using κ̇ 1 n n n
jreference n 2 n n n
Validity any road / orientation any road / orientation straight road, aligned with road (orientation-wise)
Multi-Agent no no no yes, see [11] yes

angles and will yield non-drivable trajectories at intersections
and roundabouts for example, since the road curvature is not
taken into account.

Gutjahr et al. [7] introduce two longitudinal and lateral QP
in the Frenet frame based on the bicycle model. The model
yields good results for driving in static environments. Similar
to Ziegler et al. [1], this approach relies on a maneuver
selection, as shown by Esterle et al. [8]. However, the
transformation of all obstacles to local coordinates is costly
and with an increasing number of obstacles outweighs the
benefits of the fast QP.

Miller et al. [9] base their work on [7] and formulate
two consecutive longitudinal and lateral programs using
mixed-integer quadratic programming (MIQP) similar to [6],
but in local street-wise coordinates instead. However, the
approach cannot account for any model-based prediction or
multi-agent planning. Also separating longitudinal and lateral
control yields sub-optimal solutions and limits the solution
space.

Frese and Beyerer [2] propose a double integrator based
Mixed Integer Linear Programming formulation, leverag-
ing its capability of yielding an optimal solution. That
comes with the fact that both only linear constraints and
objective functions can be formulated. We thus analyzed
the formulations in Table I in terms of linear functionals
1 , quadratic 2 , and non-linear functionals n . The non-

holonomy is assured by bounding an approximation of the
lateral acceleration. However, that is only valid for small
yaw angles, and yields a lot of invalid solutions [10]. The
collision checks are modeled with an arbitrary road polygon
using a disjunctive collision check with convex polygons.
They also propose to check for collision using rectangle-
based vehicle-approximation of consecutive states, with each
variant introducing a lot of invalid trajectories [10].

Qian et al. [3] apply the double integrator to MIQP. Similar
to Nilsson et al. [6], they model the non-holonomy by
bounding the lateral velocity, which is only valid for straight
roads and if the vehicle is road-oriented. Even when avoiding
an obstacle, the yaw angle may exceed 20 degrees, which
can yield bends in the optimized trajectories that cannot

be executed with a real vehicle. The work is thus limited
to straight roads and straight driving, whereas turning at
intersections is not possible. With the quadratic cost function
of a MIQP, differences to longitudinal or lateral values (such
as acceleration) are only possible if the reference signal is
zero (such as for acceleration). Thus, deviations from the
absolute velocity cannot be expressed. Burger and Lauer [11]
extend the work of Qian et al. [3] to the cooperative setting
by extending the state space to multiple agents. However,
also the limitations of the formulation are inherited.

Kessler and Knoll [12] formulate an MIP to select an
optimal cooperative behavior for a set of agents. Instead
of relying on a model within the optimization, they use
motion primitives, which makes it applicable in arbitrary
environments. However, with a narrow discretization, the
optimization problem becomes large.

To summarize, no method currently exists to apply the
advantages of MIP (global solution, logical constraints) to
generic environments.

III. REGION-BASED LINEARIZATION APPROACH

Following Qian et al. [3], we model the vehicle as a
third-order point-mass system with positions px(t), py(t),
velocities vy(t), vy(t), and accelerations ax(t), ay(t) as
states. Jerk in both directions jx(t) and jy(t) are inputs of the
model. As we aim to formulate the vehicle model as linear
constraints, all non-linearities have to be eliminated. In the
following, we will introduce how we guarantee the validity of
the model for all orientations and perform collision checks.

A. Discretized and Disjunctive Modeling of the Orientation
Although the vehicle’s orientation θ is not part of the

state space, we will need it for a sufficient collision check
in Cartesian coordinates within the optimization problem.
We assume perfect traction and therefore neglect vehicle
and tire slip. It can be calculated using θ = atan(vy/vx).
However, this equation is non-linear, as are the trigonometric
operations

sin(θ) = sin(atan(vy/vx)) (1a)
cos(θ) = cos(atan(vy/vx)) (1b)



vx

vy

vxmax

vymax

α

β

γ

δ Region i

(0, 0)

Region 1

Region N
4

. . .

...

Fig. 2: Construction of region i described through two lines (0, 0)−
(α, β) and (0, 0) − (γ, δ) following Eq. (2)

are necessary to calculate the front axle position. To
formulate collision constraints, we thus need to linearize
Eq. (1). For our model to be valid for orientations θ ∈
[0, 2π], we discretize the orientation by introducing regions
in the (vx, vy) plane, see Fig. 2. The regions are defined by
the area between two line segments starting at the origin.
Consequently, for every (vx, vy) point within a region i,
the following inequalities hold with region-dependent line
parameters:

αvy ≥ βvx (2a)
γvy ≤ δvx (2b)

Having done this, we will subsequently formulate model
equations that are valid in each region with different param-
eters. These are listed in Table II.

For driving comfort reasons, most motion planners limit
the maximum longitudinal and lateral acceleration, decel-
eration, and jerk. From these desired values in the driving
direction of the vehicle, we compute region-specific bounds
in global x, y coordinates. This is done by rotating the
original longitudinal and lateral limits along with the vehicle
orientation. As the orientation angle, we chose the mean
angle of the respective region. This ensures that we comply
with the original bounds in driving direction in terms of
absolute values and directions.

TABLE II: parameters from fitting or preprocessing used throughout
this paper. Region dependency is denoted by r.

Parameter Description
αr x value of region r lower region borderline
βr y value of region r lower region borderline
γr x value of region r upper region borderline
δr y value of region r upper region borderline

Pr
cos polynome linear in vx, vy upper-bounding cos(θ)

Pr
cos polynome linear in vx, vy lower-bounding cos(θ)

Pr
sin polynome linear in vx, vy upper-bounding sin(θ)

Pr
sin polynome linear in vx, vy lower-bounding sin(θ)

Pr
κ polynome linear in vx, vy lower-bounding the κ

Pr
κ polynome linear in vx, vy upper-bounding the κ

urx, urx lower and upper jerk limit in direction x
ury , ury lower and upper jerk limit in direction y
arx, arx lower and upper acceleration limit in direction x
ary , ary lower and upper acceleration limit in direction y

%r the region r is allowed for the current scenario

Region 1

Region 2

Region 3

Region 4

θ

f(θ)

Fig. 3: Exemplary non-linear function and the respective piecewise
linear upper and lower bounds.
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Fig. 4: Vehicle model with wheelbase l and disk-based collision-
shape of radius r. The variables in red are unavailable in the MIQP
model formulation. The orientation θ is defined clockwise.

B. Over-Approximating the Collision Shape

If the orientation is known, a common strategy to approx-
imate the vehicle shape is by using three circles with radius
r for the rear axle, middle position, and front axle similar to
[1], as this allows for efficient collision checking to arbitrary
polygons. We aim for a linear vehicle model, so the true
(highly non-linear) orientation is unknown. As we only have
an approximated orientation but do not want to underestimate
any collisions, we choose to compute the upper and lower
bound of the sine and cosine of the orientation. Fig. 3
illustrates this idea. With that and the vehicle’s wheelbase
l, we then calculate upper and lower bounds for the x and
y position of the front axle.

fx := px + l cos(θ) (3a)
fx := px + l cos(θ) (3b)

fy := py + l sin(θ) (3c)
fy := py + l sin(θ) (3d)

Permuting fx, fx with fy, fy yields four circles for the
front axle, which represent an over-approximation of the true
front axle circle, as shown in Fig. 4. For now, we chose to
not model the middle point of the vehicle, as this increases
the complexity of the model. However, a similar approach
can be applied to the mid axle. We now present two methods
for obtaining bounds for the sine and cosine.

1) Constant Approximation: We propose a constant ap-
proximation of the sine using the maximum and minimum
orientation for each region.

sin(θ)=̃ max[sin(atan(δr, γr)), sin(atan(βr, αr))] (4a)
sin(θ)=̃ min[sin(atan(δr, γr)), sin(atan(βr, αr))]. (4b)
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Fig. 5: Plot of sin(θ) = sin(atan(vy/vx)) with respect to vx
and vy . The function is obviously highly non-linear but can be
approximated in a piecewise linear fashion.

The cosine is calculated accordingly. With a higher number
of regions, the error for this type of approximation will
decrease. Note that this is only valid as long as a region
is not defined over multiple quadrants, since sine and cosine
are only monotonic functions within a quadrant.

2) Velocity-Dependent Approximation: To preserve the
linearity of the constraints, only a linear combination of the
state variables can be computed. We chose to upper bound
the sin(θ) term by a first order polynomial depending on
region r with three parameters p�

sin(θ)=̃p00 + p10vx + p01vy := Pr
sin(vx, vy) (5)

and analogously fit such linear polynomials for the lower
bound of the sinus Pr

sin function and the bounds of the
cosine Pr

cos and Pr
cos. The methodology how we compute

these parameters p� is introduced in Section IV-A. This
approximation will lead to a front axle position that depends
on the respective velocity terms. However, that is not the case
if the orientation can be calculated analytically and leads to
high errors for low velocities.

C. Modelling the Non-Holonomics

Previous MIQP formulations [3, 11, 13] have approxi-
mated the non-holonomics by bounding acceleration in x
and y direction and by coupling the velocities via vy ∈
[vx tan(θmin), vx tan(θmax)], with θmin and θmax being the
valid orientation range of that model. However, decoupled
acceleration bounds cannot yield a non-holonomic behavior.
Ziegler et al. [1] calculate the curvature using

κ =
vxay − vyax

3

√
v2
x + v2

y

(6)

and formulate the bound constraints κ ∈ [κmin, κmax].
However, Eq. (6) is highly non-linear and thus curvature
constraints cannot be expressed as a linear constraint for
MIQP. To obtain constraints dependent on ax, ay , we trans-
form κmax, κmin using Eq. (6) to

κmax
vx

3

√
v2
x + v2

y +
vy
vx
ax 1 ay (7a)

κmin
vx

3

√
v2
x + v2

y +
vy
vx
ax 0 ay. (7b)
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Fig. 6: Errors of the piecewise linear fitting using 32 regions of
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We can then apply the concept of region-wise linearization
described in III-A to obtain linear constraints and fit two
linear polynomials for upper Pr

κ and lower Pr
κ bounding

the curvature as shown in Section IV-B.

IV. FITTING METHOD

In this section, we will briefly describe how we fit the
parameters in III-B.2 and III-C. All fits are done on a region-
wise basis and yield polynomials of the form of Eq. (5).

A. Fitting the Front axle Position

In Section III-B, we motivated the need to linearize the
trigonometric functions Eq. (1a) and Eq. (1b), which depend
on vx and vy . Both sine and cosine are highly non-linear, in
Fig. 5 we show the sine function. We formulate the problem
to find a piecewise upper bound to a two-dimensional nonlin-
ear function of vx and vy as a linear least-squares problem
with linear constraints. Fig. 6 shows the errors we obtain
from the fitting. For the upper and lower bounds of the sine
and cosine function the orientation error is always below
0.16 rad. Due to

sin(vx = 0, vy → ±0) = ±∞ (8a)
cos(vx → ±0, vy = 0) = ±∞, (8b)

we get the highest error close to the origin. For higher
velocities, the errors are significantly smaller due to a better
approximation of the non-linear function.

Table III shows the positional error of the front axle for a
range of orientations in the first quadrant in comparison to
the constant approximation (denoted by const.). We observe
that the upper and lower bound always have different signs,
which means that the actual axle position is always within
that. This shows the validity of the over-approximation of
the front axle. As expected, the error becomes smaller with
an increasing number of regions, as we are using smaller
linear pieces to approximate the non-linear functions. In
general, the error of the velocity-dependent approximation is
smaller than for the constant approximation. For velocities
/ 0.1m/s, a constant approximation yields smaller errors,
as motivated by Eq. (8). Implementing an optimal transition
strategy between the two approximations is the subject of
future work.



TABLE III: Absolute positional errors (fx − [fx, fx]) and (fy −
[fy, fy]) for the approximation of the front rear axle in meters.

θ v 16 regions 32 regions 64 regions 128 regions

0°

const. x 0.21, 0.00 0.05, 0.00 0.01, 0.00 0.00, 0.00
y 0.00, -1.07 0.00, -0.55 0.00, -0.27 0.00, -0.14

0.1 m
s

x 0.20, -0.01 0.07, -0.01 0.01, -0.01 0.01, -0.01
y 0.01, -0.97 0.01, -0.52 0.01, -0.09 0.01, -0.01

20 m
s

x 0.01, -0.08 0.01, -0.03 0.01, -0.01 0.01, -0.01
y 0.01, -0.01 0.01, -0.01 0.01, -0.01 0.01, -0.01

45°

const. x 0.00, -0.61 0.00, -0.35 0.00, -0.18 0.00, -0.09
y 0.91, 0.00 0.42, 0.00 0.20, 0.00 0.10, 0.00

0.1 m
s

x 0.01, -0.61 0.01, -0.36 0.01, -0.17 0.01, -0.03
y 0.89, -0.01 0.43, -0.01 0.18, -0.01 0.03, -0.01

20 m
s

x 0.04, -0.19 0.02, -0.12 0.02, -0.06 0.01, -0.02
y 0.27, -0.11 0.14, -0.05 0.06, -0.02 0.02, -0.01

90°

const. x 0.00, -1.07 0.00, -0.55 0.00, -0.27 0.00, -0.14
y 0.21, 0.00 0.05, 0.00 0.01, 0.00 0.00, 0.00

0.1 m
s

x 0.01, -0.98 0.01, -0.53 0.01, -0.10 0.01, -0.01
y 0.20, -0.01 0.07, -0.01 0.01, -0.01 0.01, -0.01

20 m
s

x 0.01, -0.01 0.01, -0.01 0.01, -0.01 0.01, -0.01
y 0.01, -0.08 0.01, -0.03 0.01, -0.01 0.01, -0.01

B. Fitting the Curvature

As we discussed in Section III-C, we approximate the
curvature constraints by Eq. (7). We choose to fit the poly-
nomials Pr

κ on

κmax
vx

3

√
v2
x + v2

y ≡Pr
κ ≥ ay −

vy
vx
ax (9a)

κmin
vx

3

√
v2
x + v2

y ≡Pr
κ ≤ ay −

vy
vx
ax (9b)

and use these polynomials in inequality constraints bounding
a9 as Eq. (9) indicates. We approximate the term vy

vx
in

the MIQP formulation by the mean orientation within the
respective region, using the region boundaries, see Eq. (2).
The larger the regions (the fewer number of regions), the
higher the error will be. We then solve two unconstrained
linear least-square problems by minimizing the error to
Eq. (9a), yielding the linear polynomial Pr

κ, and Eq. (9b),
yielding Pr

κ.

V. FORMULATING THE PLANNING PROBLEM AS
MIXED-INTEGER QUADRATIC PROBLEM

We model the planning problem as MIQP without restrict-
ing the validity scope of the model. The vehicle motion
model is formulated as discrete linear constraints. Using
binary variables, we ensure collision-freeness and a correct
non-holonomic motion of the vehicle. A quadratic objective
function keeps the solution close to the reference.

Subsequently, we use the nomenclature for the decision
variables introduced in Table IV. The subscript �ref denotes
the respective reference. We optimize a discrete time range
from k2 to kN with ∆t increment. By K , we denote the time
interval [k1, . . . , kN ]. All decision variables are initialized
with the current state of the vehicle at k1. We bound the
speed by the minimal and maximal values v and v from
the fitting, as our approximations are only valid there. The
subscript �9 denotes the respective term for both, x and
y direction. In the following, we will use this notation for
compactness of the equations wherever it does not lead to
ambiguousness.

TABLE IV: Decision variables used throughout this paper, with
discrete time dependency k, region dependency r, environment
dependency λ, and obstacle dependency .

Variable Description Range
px(k), py(k) vehicle rear axle center position free
vx(k), vy(k) vehicle velocity in x, y direction [v, v]
ax(k), ay(k) vehicle acceleration in x, y direction [a, a]
ux(k), uy(k) vehicle jerk in x, y direction [u, u]

fx(k), fy(k) upper bound of the vehicle front axle
center position

free

fx(k), fy(k) lower bound of the vehicle front axle
center position

free

ρ(k, r) region r the vehicle is in at time k binary
Ψ(k) no region change allowed binary

e(k, λ) vehicle is not inside the environment
sub-polygon λ at time t

binary

op(k, ) vehicle does not collide with obstacle
at time t at the reference point p

binary

A. Formulating Reference Tracking as Objective Function

As cost function J , we chose the weighted sum of position
and velocity distance to the reference. For acceleration and
jerk, we aim to minimize the squared values to avoid
changes. Suitable cost terms q� balance the solution.

J =
∑
k∈K

(
qp(px(k)− px,ref (k))2 + qp(py(k)− py,ref (k))2

+ qv(vx(k)− vx,ref (k))2 + qv(vy(k)− vy,ref (k))2

+ qaax(k)2 + qaay(k)2 + quux(k)2 + quuy(k)2
)

(10)

To formulate a MIQP problem, the objective function has to
be a sum of squared or linear terms. Therefore, we cannot
use the absolute velocity (or acceleration) in the objective,
since with |v| =

√
(v2
x + v2

y), the term (|v|2 − |vref |2)2 is
not quadratic. Similarly, costs on the angular velocity would
result in non-quadratic terms. Furthermore, as we do not
calculate a distance to objects in the model, we cannot use
these distance terms in the cost function. Note that with this
formulation of the objective function we track a reference
trajectory and not a reference path.

B. Formulating the Vehicle Model as Constraints

The vehicle dynamics are defined by:p9(ki+1)
v9(ki+1)
a9(ki+1)

=

1 ∆t ∆t2/2
0 1 ∆t
0 0 1

p9(ki)
v9(ki)
a9(ki)

+

∆t3/6
∆t2/2

∆t

u9(ki)

∀ki ∈ [k1, . . . , kN−1] (11)

With this linear model correct non-holonomic motion as well
as correct acceleration and steering angle limits are only
valid around a small reference orientation. We overcome this
property by introducing validity regions, see Section III-A.
The set of regions covering the full orientation of 360 degrees
is denoted by R. By the superscript �r, we denote region-
dependent parameters in the following. All region-dependent
parameters are summarized in Table II.

We set the binary decision variable ρ(k, r) defining in
which region r the vehicle is in at time k according to the two



lines defining the region, cf. Eq. (2). We force the solution
to lie in exactly one region.∑

r∈R

ρ(k, r) = 1 ∀k ∈ K (12)

Since with an increasing number of regions, the evaluation
time of the model increases as well, we a-priori restrict the
optimization to only use a set of allowed regions and pre-
compute a parameter %r accordingly. Non-allowed regions
are those that cannot physically be reached anyway within
the planning horizon. To implement logical constraints, we
use the well-know technique of introducing a big constant M
to switch inequalities. The intuitive explanation of the now
often used term M(1 − ρ(k, r)) is ”this equation is active
if and only if region r is active at time-step k”. The active
region is set by the following set of constraints:

αrvy(k) ≥ βrvx(k)−M(1− ρ(k, r)) (13a)
γrvy(k) ≤ δrvx(k) +M(1− ρ(k, r)) (13b)

∀k ∈ K , ∀r ∈ R, if %r(r) = 1

Regions marked as non-possible by %r may not be se-
lected. With this implementation, the model formulation is
generic for all scenarios.

ρ(k, r) = 0 ∀k ∈ K , ∀r ∈ R, if %r = 0 (14)

We impose region-dependent limits on acceleration and
jerk to make sure we always meet the correct absolute
possible acceleration and jerk. As acceleration a9 and jerk
u9 are defined in a global system, the limits are rotated with
the regions. In Eq. (15), we only state the constraints for the
acceleration, the formulation for jerk is alike. Note that the
speeds are naturally bounded correctly by Eq. (13).

a9(k) ≤ ar
9

+M(1− ρ(k, r)) (15a)

a9(k) ≥ ar
9
−M(1− ρ(k, r)) (15b)

∀k ∈ K , ∀r ∈ R, if %r = 1

C. Modeling the Non-Holonomy as Constraints
To ensure a correct non-holonomic movement of the

vehicle, we limit the lateral acceleration using the maximal
available curvature per region as motivated in Section III-C.
We fit lower and upper linear approximation polynomials Pr

κ

and Pr
κ dependent on vx, vy , and the region r. The following

constraints model the inequalities bounding the curvature κ
as stated in Eq. (7).

ay(k)− βr + δr

αr + γr
ax(k) ≤

Pr
κ(vx(k), vy(k)) +M(1− ρ(k, r)) +MΨ(k) (16a)

ay(k)− βr + δr

αr + γr
ax(k) ≥

Pr
κ(vx(k), vy(k)) +M(1− ρ(k, r)) +MΨ(k) (16b)

∀k ∈ K , ∀r ∈ R, if %r = 1

r

λ1
λ2 λ3

λ4

r

1
Λ

Fig. 7: Schematic sketch showing how the environment polygon Λ
is shrieked by the collision circle radius r and split into several
convex polygons λ�. Obstacles � are also inflated with r.

At very low vehicle speeds, too tight curvature constraints
limit the acceleration so that other accelerations than zero
are not possible. In contrast, too loose curvature constraints
will violate the non-holonomy. We therefore introduce a
minimum speed limit. If either |vx| or |vy| is below that
limit, regions changes are not allowed, which we indicate by
setting the binary helper variable Ψ to true.

ρ(ki, r)− ρ(ki−1, r) ≤ 1−Ψ(ki) (17a)
ρ(ki, r)− ρ(ki−1, r) ≥ −1 + Ψ(ki) (17b)

∀ki ∈ [k2, . . . , kN ], ∀r ∈ R

D. Approximating the Front Axle Position as Constraints

In Section III-B we introduced the concept of how to
approximate lower and upper bounds for the position of the
front axle of the vehicle. Using this idea, we formulate con-
straints performing an (over-)approximative collision check
for the front axle instead of computing the intersection or
distance of the actual vehicle shape with obstacles or the
environment. We calculate the lower and upper bounds f9,
f9 of the true, unknown, front position (fx, fy) with respect
to the current region r where l denotes the wheelbase of the
vehicle. We only state the equations for the upper bounds
here, the lower bound constraints are formulated alike.

M(ρ(k, r)−1)≤fx(k)−px(k)−lPr
cos(vx(k), vy(k))

(18a)

M(1−ρ(k, r))≥fx(k)−px(k)−lPr
cos(vx(k), vy(k))

(18b)

M(ρ(k, r)−1)≤fy(k)−py(k)− lPr
sin(vx(k), vy(k))

(18c)

M(1−ρ(k, r))≥fy(k)−py(k)−lPr
sin(vx(k), vy(k))

(18d)
∀ki ∈ K , ∀r ∈ R, if %r(r) = 1

E. Constraints Limiting the Model to Stay on the Road

This section introduces how we enforce the vehicle to stay
within an environment modeled as an arbitrary, potentially
non-convex closed polygon Λ [2]. The environment is de-
flated with the radius of the collision circles, see Fig. 7. Non-
convex environment polygons are split into several convex
sub-polygons λ. We enforce the vehicle to be in at least



one of these convex sub-polygons. These sub-polygons are
represented by a set of line segments, denoted by l, between
two points al and bl. With this strategy, the polygon-to-
polygon collision check narrows down to a point-to-polygon
check.

We enforce the rear axle position p9 and the lower
and upper bounds of the front axle position, namely the
four points (fx, fy), (fx, fy), (fx, fy), and (fx, fy), to be
within the environment polygon. Each set of constraints is
formulated in a similar manner, Eq. (19) states the equations
for the point (px, py). The decision variable e models that all
five points do not collide with the environment sub-polygon
λ at time k. By l9, we here denote bl

9
− al

9
for x and y

respectively.

lx(py(k)− aly)− ly(px(k)− alx) ≤ −Me(k, λ) (19)

∀k ∈ K , ∀l ∈ λ, ∀λ ∈ Λ

To ensure that all vehicle points are at least within one of
the environment polygons, we set∑

λ∈Λ

e(k, λ) ≤ |Λ| − 1 ∀k ∈ K , (20)

where |Λ| denotes the number of convex sub-environments.

F. Formulating Collision Avoidance as Constraints

We enforce the vehicle to not collide with an arbitrary
number of static or dynamic convex obstacle polygons O .
Non-convex obstacle shapes as described in Section V-E split
into several convex ones. The obstacles are inflated with the
radius of the collision circles, cf. Fig. 7.
l again denotes one line segment of one obstacle within

the set of obstacles O with startpoint al and endpoint bl.
We enforce the vehicle rear axle position p9 and the four
permutations of the front axle bounds to be collision-free. In
contrast to the environment, which we assume as constant
over time, the obstacle polygons may vary their position
and shape over time, but preserve the polygon topology.
By decision variables o9, we indicate whether none of the
five points collide with the obstacle . Eq. (21) states the
inequalities for the point (px, py) constraining op. The four
points representing the collision shape approximation of the
front axle f9 are each taken into account by four more sets
of similar decision variables o9 and sets of inequalities.

lx(py(k)− aly)− ly(px(k)− alx) ≤Mop(k, l) (21)

∀k ∈ K , ∀l ∈ , ∀ ∈ O

Denoting the number of line segments in a sub-polygon
by ||, we enforce each of the five points to not lie within an
obstacle. ∑

l∈

op(k, l) ≤ || − 1 ∀k ∈ K , ∀ ∈ O (22)

G. Optimization Problem

Collecting all constraints from above, the final optimiza-
tion problem can be written as

minimize (10)

subject to (11), (12), (13), (14), (15), (16),

(17), (18), (19), (20), (21), (22)

The formulation is a standard MIQP model that can be solved
with an off-the-shelf solver. For a faster optimization solu-
tion, we bound acceleration a9 and jerk u9 with constant
values a, a and u, u respectively. We chose these values as
minima and maxima of the region-dependent limits ar

9
, ar
9

and ur
9

, ur
9

respectively.

VI. EVALUATION

We will now evaluate our model in two different scenarios.
We prove in Section VI-A, that the result of the optimization
is a drivable trajectory for a non-holonomic vehicle model.
Section VI-B show the performance in an obstacle avoidance
scenario. We only apply cost term on reference position
tracking. We use a model with 32 regions and velocity-
dependent front axle approximation.

A. Preserving the Non-Holonomy

To show the effectiveness of our constraints guaranteeing
non-holonomic motions, we optimize two different reference
trajectories, both forming a circle to perform a 90-degree
turn. While it is preferable to only generate reference tra-
jectories with only valid curvatures, this example clearly
shows that our model preserves the non-holonomy. The same
property is also necessary for obstacle avoidance. As baseline
algorithms for comparison we implemented two SQP-based
optimization models, one using a standard bicycle model and
another using the same triple integrator as our MIQP model
but with a nonlinear curvature constraint, following Eq. (6).

Fig. 8 shows the results for a turning radius that our
vehicle model is able to follow. Our optimization yields a
trajectory that closely follows the reference. However, the
second reference in Fig. 9 models a turning radius that is too
small (the curvature of the reference exceeding the limits).
As desired, our model does not follow the reference and
yields a trajectory that stays within the curvature bounds.
As we fit the curvature approximation polygons in the mean
of each region (see Section IV-B), we can slightly exceed
the curvature bound at region boundaries. This can easily be
mitigated using a safety margin.

B. Avoiding Dynamic Obstacles within the Road Boundaries

The second example considers a two-lane road, where the
ego vehicle drives at the speed of 30km/h and approaches
a slower vehicle traveling at 10km/h. There is oncoming
traffic in the other lane traveling at 30km/h. The reference
trajectory represents the center line of the right lane traveling
at the reference speed. We obtain deterministic predictions of
those two traffic participants and include them as dynamic
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Fig. 8: Feasible reference: Our model stays within the curvature
bounds (lower) and shows good trajectory tracking behavior as
the reference implementations using an SQP optimizer does (upper
left). The true front axle position is always within the lower/upper
bound approximation rectangles of the front axle (upper right).
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Fig. 9: Infeasible reference: All three optimization solutions cannot
track the reference despite operating at maximum curvature.

obstacles in our optimization. Fig. 10 shows that the op-
timizer is able to find a trajectory that overtakes the red
vehicle in front and goes back to the right lane to avoid the
green, oncoming vehicle. We observe that the acceleration
in the y-direction stays within the acceleration limits. It is
much closer than the curvature-induced acceleration limit
following Eq. (16), which is reasonable, as lateral movement
in straight scenarios traveling at moderate or high velocities
is constrained by the inertia of the vehicle, not the non-
holonomics.

VII. CONCLUSION AND FUTURE WORK

We introduced a novel mixed-integer formulation for the
behavior planning problem. We showed the correct non-
holonomic motion of our optimized result for arbitrary road
curvatures and arbitrary orientations of the vehicle. Using lin-
ear overapproximations of the collision shape, we enable the
MIQP formulation to not cause any collisions. This provides
us with a solution method, that obtains kinematically valid,
globally optimal solutions avoiding obstacles without any
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Fig. 10: An Overtaking scenario with oncoming traffic. The upper
figure shows the trajectories for the ego vehicle (blue) and the
other traffic participants (red, green). ay of the planned trajectory
stays within the region-dependent acceleration bounds as well as
the bounds approximating the curvature limit.

form of randomness. This property is certainly a favorable
feature for validation and certification. This will enable us
in the future to apply the MIQP behavior planning model
in real-road driving scenarios using our institute’s research
vehicle [14]. Future work will expand this framework to
the multi-agent case for cooperative planning as well as
to investigate the benefits from logical constraints for the
formulation of traffic rules.
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