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Abstract— Estimating the current scene and understanding
the potential maneuvers are essential capabilities of automated
vehicles. Most approaches rely heavily on the correctness of
maps, but neglect the possibility of outdated information.

We present an approach that is able to estimate lanes without
relying on any map prior. The estimation is based solely on the
trajectories of other traffic participants and is thereby able
to incorporate complex environments. In particular, we are
able to estimate the scene in the presence of heavy traffic and
occlusions.

The algorithm first estimates a coarse lane-level intersection
model by Markov chain Monte Carlo sampling and refines it
later by aligning the lane course with the measurements using a
non-linear least squares formulation. We model the lanes as 1D
cubic B-splines and can achieve error rates of less than 10cm
within real-time.

I. INTRODUCTION

Highly accurate maps are seen as essential base for en-
vironment perception [1]. Maps, that have a high precision
and allow for precise localization, ease a lot of difficult per-
ception tasks. For example, recognizing the road boundary
may be simplified to efficient map lookups.

Nevertheless, maps are a static representation of a dyna-
mically changing world. Road layouts and, thus, the routing
are prone to changes due to construction sites leading to
expensive and frequent map updates.

Most presented approaches are suitable for lane estima-
tion in simple environments like almost straight roads or
highways, but lack the ability to estimate the complexity of
urban intersections. The focus on (simple) lane estimation
tasks was mainly motivated by the TuSimple challenge,
that provided a highway video dataset with lane boundary
annotation.1. More complex and urban datasets currently lack
sufficient and precise lane information in intersections and
if anything provide rough estimates on center lines.

In the following, we present an approach that is able to
estimate the intersection including the lane course precisely
as depicted in Figure 1. We base the estimation on the
detection and the tracking of other vehicles passing the
intersection.

In order to determine the most probable estimate for an
intersection at once, the maximum of the posterior distribu-
tion has to be calculated, which is highly intractable for the
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Fig. 1: Results of our lane estimation approach. The estima-
tion is based solely on trajectories crossing the intersection.
Aerial images: City of Karlsruhe, www.karlsruhe.de

complexity of an intersection model. Markov chain Monte
Carlo is a sampling based approach especially designed to
overcome the complexity of the posterior. Thus, similar to
[2], we apply a two-stage setting, facilitating Markov chain
Monte Carlo (MCMC). At first, we estimate the coarse
structure of the intersection leading to an initial lane-level
model. Here, we examine a multitude of hypotheses on
the intersection structure using MCMC sampling. Given
the coarse estimate, which we assume to be correct up to
the exact lane courses, the lane course estimation can be
formulated as a least-squares problem.

We present our work structured as the following: At first,
we examine related work in Section II. In Section III, the
coarse parameter estimation is presented that estimates the
position of arms and the number of lanes as well as the
center position of the intersection. On the basis of this, we
present our B-Spline model and the lane course refinement
in Section IV We evaluated our approach on simulated
trajectories and present the results in Section V.

II. RELATED WORK

In recent years, many approaches dealt with lane esti-
mation and rough intersection estimation. Only a few ap-
proaches aim at precise, lane-level intersection estimation
which is necessary for driving across.

Many approaches, for estimating lanes or intersections,
used camera images and their cues. However, the image
domain is not particularly suitable for huge intersections.
Interesting cues like curbs and markings might be occluded
in heavy traffic and the image coordinate system induces an
imprecision for distant areas due to perspective distortion.
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This makes it especially hard to detect road areas in huge
intersections solely based on camera information, e.g. if a
lane or a curbstone is represented by just a few pixels.

Thus, focusing on different sensor data or aggregated
camera data is far more promising for more complex environ-
ments like urban intersection. Occlusions could be tackled by
e.g. aggregating multiple frames in a topview grid, but still
lack the precision in distance.

Map Generation: Apart from image cues, some ap-
proaches based their estimation on the trajectories of traffic
participants. They mostly facilitated fleet data and thus relied
on a multitude of measurements.

Roeth et al. [3], for example, determined the connection
of incoming and outgoing lanes. Similar to our approach,
they applied a MCMC algorithm, but only sample connecting
pairs instead of geometric properties or lane courses.

As an extension, they presented an approach that is able
to estimate the exact lanes inside of an intersection [4].
Since they aim at offline map generation, they do not regard
any execution time limits and thus rely on complex and
time consuming models. Here as well, MCMC sampling
was successfully applied to overcome the complexity of
intersections.

Similarly, Busch et al. [5] employed trajectory clustering
for estimating the center lines of the lanes. The cluster
representative was modeled with cubic 2D splines and, thus,
implicitly smooth. They also used an MCMC based ap-
proach, but evaluated different clustering hypotheses without
explicit intersection models.

However, approaches aiming at map generation used fleet
data and assumed a huge number of trajectory detections
per lane and, thus, show increased computation times. In
addition, a majority of these approaches leverage complex
models that still can not be applied in a real-time approach
with fewer measurements.

Online Lane Estimation: On comparison, Geiger et al.
[6] estimated the intersection geometry in an online manner
using the RGB images of an ego vehicle. The approach
achieved promising results because they incorporated object
detections instead of the direct use of camera data. The
viewing angle in the dataset, however, was limited to a
single camera and lacked sensors facing to the sides. This
was sufficient for the specific dataset with only small in-
tersections. Consistent with this, the intersection model was
limited and assumed only a single lane per driving direction
and collinearity of the crossing arms. This might have been
sufficient, but will not suffice for big, urban intersections.

In 2019, we [2] presented a first approach on estimating
the lane course of intersections within real-time. Here, we
used the trajectories of other traffic participants as mea-
surements, but only required a few of them. We estimated
the lanes in a two-stage approach fully based on MCMC
sampling. First, we estimated the intersection parameters
and, based on that, we refined the lanes using a multitude
of samples similarly in the manner of MCMC. We showed
that the division into two steps reduces the search space and,
thus, the computation time radically. We could estimate the
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Fig. 2: Parametric model of an intersection I = (c, A). The
base is a center point c with a set of arms A. Each arm
is defined as a = (α, g, E,O,w) with angle α describing
the orientation in the intersection and g enabling a structural
separation between driving directions on the same arm. The
number of entries E and exits O in conjunction with the
width w of the lanes determine the overall layout of the
intersection.

coarse parameters in less than 50 ms, but experienced slow
convergence for the lane estimation with execution times
above 100 ms. In addition the resulting lane courses lacked
smoothness despite an additional smoothness term in the
MCMC evaluation.

Thus, in this work we present how to overcome the draw-
backs of a purely MCMC based approach and emphasize the
advantages of representing lanes with B-splines.

III. INTERSECTION PARAMETER ESTIMATION

Analogous to [2]–[6], we apply MCMC sampling to
the problem of estimating the coarse intersection parame-
ters. Thus, we sample different intersection models from
a Markov chain, accepting a new estimate only, if it is
sufficiently close or better than the previous estimate.

A. Intersection Parameter Model

We use the model presented in [2], that is constructed as
depicted in Figure 2. An intersection I = (c, A) is based at
a center point c. It is comprised of a set of arms A with
arm a = (α, g, E,O,w) having several parameters assigned.
An arm a has an angle α describing the orientation in the
intersection according to its coordinate system. g enables a
structural separation between driving directions on the same
arm and describes the gap between the lanes with different
driving directions. The number of intersection entries E
and exits O in conjunction with the width w of the lanes
determine the overall layout of an intersection.

B. Markov chain Monte Carlo Sampling

We start with an initial intersection model I and itera-
tively modify a single parameter according to Algorithm 1.
The step probabilities presented here, have been empirically
determined and might differ for different driving scenarios.
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Fig. 3: Two-steps approach: Using only trajectories of other traffic participants, we first estimate a coarse parameter model
(a) using MCMC sampling. For this, we split the trajectories into two distinct parts at the closest point to the estimated
center (b). The estimated parts are connected using the trajectories and used as initial lane courses for a novel B-spline
refinement (c).

Adding an arm to the model, requires a more sophisticated
approach than the other sampling steps. A new arm is
sampled by drawing from a uniform distribution spread
across the gaps between existing arms while maintaining a
minimum angular distance of 25◦ to the existing arms.

Most of the sampling steps follow the detailed balance
equation required by the Metropolis algorithm [7]. However,
when modifying the number of arms of the estimate, we
did not design a symmetric step. However, the Metropolis-
Hastings algorithm [7] allows for incorporating imbalanced
sampling probabilities. In addition, we extend (and reduce)
the state space, when adding (and removing) and arm, so we
need to model reversible jumps as well.

Thus, in each iteration, we evaluate the posterior proba-
bility P (I ′|Z) and perform a Metropolis-Hastings step [7],
where the trajectory data Z is evaluated against the new
model I ′.

In summary, all models I ′ that can not comply with the
acceptance criterion2

u ≤ A(I ′, I) =
P (I ′|Z)P (I → I ′)

P (I|Z)P (I ′ → I)

1
Ts

, (1)

are rejected from the sampling and future models are only
based on the previous model I . Here, u ← U [0, 1] is a
uniformly distributed random variable. For better conver-
gence we apply simulated annealing with Ts as the annealing
parameter.

By following these principles we will only accept samples,
that follow the target posterior distribution of P (I|Z). Thus,
the advantage of MCMC is that we only need to sample
from a simple prior distribution P (I) and thereby estimate
the maximum of the more complex posterior distribution
P (I|Z). This is especially necessary, if the posterior is
intractable like here.

Please note, that we do not estimate the width of the lanes,
but assume a fixed value w = 2.7 m. Since we base our
estimation on trajectories and, thus, use cues related to the
centerline of a lane, the width is hardly observable.

The evaluation of the model requires the calculation of
the posterior probability P (I|Z). Because we only need a

2The Jacobian for the reversible jump is neglected here.

Algorithm 1 Sample new intersections by modifying a single
parameter at a step.
ω ← U [0, 1]
if ω < 0.3 then

rotate a random arm by ∆α← U [−6◦, 6◦]
else if ω < 0.52 then

shift center by {∆c, φ} ← U([0 m, 6 m]× [0, 2π])
else if ω < 0.68 then

change gap by ∆g ← U [−1.8 m, 1.8 m]
else if ω < 0.73 then

θ ← U [0, 1]
if θ < 0.5 then add arm (see subsection III-B)
else remove arm a← UD(A)
end if

else
θ ← U [0, 1]
if θ < 0.5 then

γ ← U [0, 1]
if γ < 0.5 then add lane to the left
else add lane to the right
end if

else remove lane l← U(E ∨O)
end if

end if

relation between the posterior probabilities of two intersec-
tions as shown in Equation 1 and according to the rules of
Bayesian theory we only need to calculate the likelihood
P (Z|I) and a prior probability P (I) for each intersection.
Thus the acceptance criterion becomes

u ≤ A(I ′, I) =
P (I ′)P (Z|I ′)P (I → I ′)

P (I)P (Z|I)P (I ′ → I)

1
Ts

. (2)

The prior P (I) is modeled uninformative.
Assuming independent measurements

P (Z|I) =

Z∏
z

P (z|I). (3)

For the likelihood P (z|I) of each measurement z =
(x, y, φ, t, id), we further assume the positions (x, y) of the



trajectories to be normally distributed around the center line
of the lane. The angular deviation of the orientation φ of a
vehicle in these positions and the center line is also assumend
to be normally distributed.

For both measures, we only regard the closest estimated
lane with the same semantic driving direction (incoming
or outgoing) for the evaluation of each measurement. We
assume the remaining associations to vanish and thus be
neglectable in favor of a faster computation time. We also
found, that modeling the distribution of the number of
trajectories per lane as a multinomial distribution improves
the results.

The transition probabilities between the sampling steps
P (I → I ′) and vice-versa can be inferred from the pro-
babilities and distributions shown in Algorithm 1. E.g. the
probability of changing the angle of an arm by 2◦ can be
formulated as

P (α′ = 32◦|α = 30◦) = PRot · PU [−6◦,6◦](∆α = 2◦). (4)

PRot describes the probability of choosing the rotation step3.
Finally, the accepted models converge to the maximum

of the posterior distribution of the intersection. With this
estimate, the most probable intersection model, given the
measured trajectories is determined. The resulting model,
represents the intersection already very precisely, but pro-
vides no information on the connectivity of lanes and the
lane courses.

IV. LANE COURSE REFINEMENT

Using the coarse intersection parameters and the trajecto-
ries (cf. Figure 3a), an initial estimate on the connectivity of
the lane stubs can be made by connecting all stubs passed
by the same vehicle (cf. Figure 3b). When estimating a
connection between the lane stubs, we get an initial lane
model, that reduces the refinement of the center lines to a
least-squares problem. When modeled as 1D cubic B-splines
we implicitly enforce the lanes to be drivable corridors
and the residuum can be determined based on the distance
between the splines and the trajectories.

A. Lane Model

We define each intersection for the lane course estimation
as depicted in Figure 3c as a set of full lanes l ∈ L. Each l =
(e, o, Zl) is constructed from an entry lane stub e ∈ E and
an exit lane stub o ∈ O (stubs are visualized in Figure 3b).
Each full lane is represented by a cubic B-spline.

Each measurement trajectory is defined as z ∈ Z which
has nearest neighbor assignment θE : z → e and θO : z → o,
respectively, to the closest exit o and entry e.

B. Initialize Lanes Based on Estimated Parameters

The estimated intersection parameters of Section III are
used for initializing the lane course estimation. The associa-
tions θE and θO have been calculated that describes, which
entry and exit is closest to a trajectory. This association can

3here: PRot = 0.3

be used to assign each entry lane stub a set of exit lane stubs
that are connected by at least on trajectory (cf. Figure 3b).
We use the association to initialize a lane l with two straight
lane stubs (e and o) and a straight connection between them.

The angle α of an arm describes the angle of the lane
and with the gap width g in combination with the number
of lanes Ea resp. Oa and the lane width w an initial lane
can be calculated. A resulting initial lane model is depicted
in Figure 3b.

The corridor connecting two associated lane stubs is
initialized straight. Since the estimated entry and exit lane
stubs of the parameter estimation only have an angle α the
initial model can only assume straight arms that will be
refined.

C. Uniform Cubic B-Splines

For the lane refinement, we represent each center line by
an 1D cubic B-spline with equidistantly placed knots [8]. A
cubic B-spline is a piece-wise polynomial function defined
in variable x.

The B-spline curve is defined as a linear combination of
n+1 control points ci and B-spline basis functions Ni, k(x)
with

fl(x) =

n∑
i=0

ciNi,k(x). (5)

Thus, for each part of the spline, k control points influence
the positioning and by changing these control points the
spline curve can be fitted to any function of interest. In
addition, the resulting spline model is implicitly smooth up to
the (k−2)th derivative, which is sufficient for lane modeling
with k = 4 [5], [9].

For easing the later fitting of the lanes, we define the spline
models in rotated coordinate systems as depicted in Figure 4.
We take the set of all assigned trajectories and set the x-axis
of the lane-specific coordinate system (depicted in green and
red) to the average direction of all assigned trajectories. The
origin is set to the origin of the fixed world coordinate system
(depicted in black).

For representing a lane, we use an uniform cubic 1D B-
spline. We define the spline as fl : x → y and thus can
only adjust the y-coordinate of the lanes (see Figure 4).
However, with the rotated coordinate system modifying only
one dimension of the problem is sufficient for fitting the lanes
to the trajectories while maintaining low complexity of the
optimization problem.

D. Least Squares Formulation

We estimate the lane course and thus implicitly the in-
tersection by constructing a least squares problem using the
previously defined lane splines. As stated above the param-
eters of the cost functor are the 1D control points c4. Using
the trajectories Zl, we can optimize the spline parameters.

Given a the point p = (x, y) of a trajectory z, we can
project the point into the coordinate system of the assigned
spline l. Given its x-coordinate pxl we can calculate the

4Here, we use 20 control points for each lane.
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Fig. 4: Each lane spline (green and red) is defined in a
separate coordinate system. The x-axis is aligned with the
average direction of all assigned trajectories. Each spline
is defined as fl : x → y and thus the optimization only
affects the visualized moving direction (small arrows). For
the residuals of the optimization, the distance d⊥ as well as
the distance between estimated center line and the trajectories
is used. Best viewed in color.

distance along the y-axis to the closest spline point fl(pxl )
given with Equation 5. Thus, for each trajectory point we
construct the residual as

e1 = (pyl − fl(p
x
l ))2. (6)

After 10 iterations, we add a second residual to the
problem that specifically takes into account that neighboring
lanes should have the same border points. We found it to be
beneficial for the quality of the results to first optimize only
the lane course and later on regard the bounds.

For a equidistantly sampled set of evaluation points a on
a lane spline A, we calculate the distance to all lanes B,
that were estimated as neighbor by the parameter estimation
(Section III).

We project the evaluation point aA into the coordinate sys-
tem of spline B. Given the x-coordinate axB and Equation 5
we get the point on B with fB(axB).

Given that, the spline distance d⊥ in point aA is defined
as the dot product of the distance between the two points ayB
and fB(axB) and the normal na of the spline A in point aA

d⊥ = na · (ayB − fB(axB)). (7)

Since we create an initial lane for all combinations of
traveled exits and entries (see Section IV-B) a single entry
(or exit) might have multiple overlapping lanes, that have
different destinations (or origins). Lane A and C in Figure 4
share an exit but have different entries. Thus, we construct
a cost functor e2, that has two minima, so lanes either fully
overlap and thus have a distance d⊥ = 0 or be adjacent with
d⊥ = w. This way, we can have multiple splines representing
the same entry, but diverge into multiple exits and vice-versa
with

e2 = ((d⊥ − 0) · (d⊥ − w))2. (8)

For the residual, we only regard points, where the distance
d⊥ is less than a threshold δ > w.

In a postprocessing step, we combine all estimated lane
courses into lanelets [10] and merge lane estimates, that con-
verged onto the same center line, into a single lanelet. This
way we end up with a consistent, map-like representation.

V. EVALUATION

The presented approach has been evaluated on 1000 si-
mulated intersections and 14 real-world intersection geome-
tries from Karlsruhe, Germany. For all these intersections
we simulated trajectories traveling along each lane. Each
lane generated randomly between three and five trajectories.
The individual measurement points of the trajectories were
equidistantly initialized every 1 m and distorted by white
Gaussian noise ∆zi ← N 2(0 m, 1 m).

The coarse parameter estimation has not been quantita-
tively evaluated as it did not change significantly compared
to [2].

For the evaluation of the lane estimation we measure
the average orthogonal distance between the estimated lane
center line and the center line of the ground truth lanes.

As described in [2] we can freely weigh the precision
against the execution time of the parameter estimation,
neglecting convergence quality. Thus, we base our evaluation
of the lane estimation on two settings for the parameter
estimation. The presented results here are initialized with
either the results after 5000 or 10000 sampling steps in the
parameter estimation. The calculation of these samples takes
49 ms and 94 ms, respectively.

With the estimated parameter model, we can refine the lane
courses within 47 ms independent of the quality of the pa-
rameter estimation. With the 5000-sample parameter model,
we achieve an average center line deviation of only 7 cm.
If we generate 10000 samples in the parameter estimation,
we can further improve the result of the lane estimation by
1 cm. [2] achieved an average deviation of 14 cm after more
than 100 ms. Thus, we could halve both the error and the
execution time, here.

For real-world geometries we can show, that our approach
is able to estimate the lanes with an average deviation
of 10 cm after 34 ms. Example results for the real-world
geometries are depicted in Figure 5. We added aerial images
for visualization, but only used the geometries for generation
of the trajectories and evaluation.

VI. DISCUSSION AND FUTURE WORK

We showed an approach that is able to estimate the lane
course of intersections up to an average error of only a few
centimeters based on trajectories of other traffic participants.
Further we could achieve faster execution times of less than
50 ms compared to a fully MCMC approach by leveraging
a least-squares formulation.

Using the trajectories as measurement, we robustify the
estimation for heavy traffic situations where visual cues like
markings and curbs might be occluded. Additionally, the
calculation of trajectories is ideally based on multiple sensors



Fig. 5: Example results of real-world intersections. As we do not estimate the width of a lane, the border visualization can
mislead, but the centerlines are estimated with deviations of less than 10 cm on average. Best viewed in color. Aerial images:
City of Karlsruhe, www.karlsruhe.de, dl-de/by-2-0

or at least a sensor like lidar or radar with a far field of view.
As discussed in Section II, an estimation purely based on
camera information is not sufficient due to distortion induced
imprecision.

Our approach is evaluated with simulated data. This is
due to the fact, that no dataset exists that contains precise
lane information in intersections combined with sensor data
from a vehicle. In the future, we would like to evaluate the
approach further on data taken by a measurement vehicle.

Since the model is highly flexible, we can easily add new
cues on the road and lane layout. Each measurement has to
be represented in a probabilistic manner for the MCMC and
one has to built a suitable residual for the refinement.

Thus, including markings or curbstones, will be an easy
task. When including those or measurements related to the
lane width or border, the model can easily be extended to a
width estimation both in the parameter estimation for a lane
as a whole as well as in the lane refinement for each section
of the spline individually.

We believe that this builds a solid foundation for further
work in the direction of lane-level intersection estimation for
the purpose of mapless driving, map verification and map
updates, all in a real-time feasible manner while driving.
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