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Abstract

Current state-of-the-art object detection algorithms still
suffer the problem of imbalanced distribution of training
data over object classes and background. Recent work in-
troduced a new loss function called focal loss to mitigate
this problem, but at the cost of an additional hyperparame-
ter. Manually tuning this hyperparameter for each training
task is highly time-consuming.

With automated focal loss we introduce a new loss func-
tion which substitutes this hyperparameter by a parameter
that is automatically adapted during the training progress
and controls the amount of focusing on hard training ex-
amples. We show on the COCO benchmark that this leads
to an up to 30 % faster training convergence. We further
introduced a focal regression loss which on the more chal-
lenging task of 3D vehicle detection outperforms other loss
functions by up to 1.8 AOS and can be used as a value range
independent metric for regression.

1. Introduction
State-of-the-art object detection based on Convolutional

Neural Networks (CNNs) currently can be seen as a com-
petition between so called one-stage detectors [20] and two-
stage approaches [9]. While the latter achieves better accu-
racy performances e. g. on one of the currently challenging
object detection benchmarks, the COCO benchmark [19],
they usually suffer from longer run times. As the num-
ber of candidate objects processed in the second stage is
not known in advance, the run times furthermore are only
roughly predictable in advance.

In contrast, one-stage detectors usually have faster and
predictable run times, but are suffering from worse detec-
tion accuracy. In [18] the class imbalance has been iden-
tified as a source for this performance gap. Two-stage ap-
proaches avoid the imbalance problem as they filter most of
the background before classification due to their first region
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Figure 1. Focal loss has introduced a method of weighing samples
based on their prediction quality. However this weighing is con-
stant during training (blue dashed line). We propose to automat-
ically change the focus dependent on the training progress mod-
eled as the expected probability of a correct prediction p̂correct.
When the progress is low the focus is only on the worst predic-
tions (p̂correct = 0.01, orange). As the progress improves (green)
the automated loss shifts the focus to include better predictions
only down weighting excellent predictions (p̂correct = 0.7, red).

proposal step (e.g. RPN [29], Selective Search [37], Edge
Boxes [39] or DeepMask [23, 24]). In the second stage,
methods like fixed background ratio [8] or online hard ex-
ample mining (OHEM) [33] are used, to finally balance the
training data.

For one-stage detectors, the situation is more challeng-
ing: As the detector needs to learn to distinguish between
foreground classes and all possible background scenery it
has to see a lot of possible background data. For this rea-
son, the mentioned two-stage methods are not easily appli-
cable to one-stage detectors. As a lever to increase accuracy
the loss functions receive rising spotlight. Early one-stage
object detectors made use of static loss functions – mean-
ing that the hyperparameters of the loss were not changed
during training of the network. As a first step to mitigate
the class imbalance problem, so called α-balancing was
added to the loss function to weight the losses for different
classes/background according to their relative frequency.
This mechanism was introduced to prevent the detectors
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Figure 2. We propose two methods to estimate γ dependent on the
training progress. The first method controls the relative weight
mass assigned to examples that perform below average. Having
this at a percentage at 0.7 percent between p and 1.0 performed
best in our experiments. The second method uses the Shannon
information of a correct prediction. I(correct). The weight dis-
tribution they assign to a given training progress is similar. With
a low training progress both assign weights only to the worst ex-
amples (bottom left) while at a high training progress both only
reduce the weights for the best predicted examples (top right).

from always predicting the dominant class which usually
is background. A first step towards a dynamic loss func-
tion was done by applying α-balancing to each minibatch
separately.

With RetinaNet [18], additionally to the class distribu-
tion dynamics, a data centric dynamic was added to the loss
function they called focal loss. For each prediction, its dif-
ficulty in each iteration is calculated based on the estimated
probability for the correct class. The influence of this infor-
mation to the loss function is controlled by adding a manu-
ally tuned hyperparameter γ.

In this paper, we propose a new loss function based on
the focal loss [18] to automatically handle the class imbal-
ance problem. Our Automated Focal Loss no longer relies
on the manually tuned hyperparameter γ for balancing be-
tween easy and hard training examples. We present two
methods for automatically adapting the dynamic difficulty
term during training process as shown in Figures 1 and 2.

Finally we show that with our automated focal loss train-
ing converges to the same AP as the static focal loss [18] on
the COCO benchmark, while converging in 30 % less time.
Furthermore we tested our automated focal regression loss
on the challenging KITTI 3D Object Detection dataset [6]
demonstrating its effectiveness on less extensive datasets.
On this dataset we outperform other losses and show that
adding automated focal regression adds a slight edge to our
loss over only using automated focal classification.

2. Related Work
CNN based Object Detection: The idea of detecting

objects with the help of CNNs goes back to 1998 when
LeCun et al. [16] extended the initial CNN classification
approach also done by LeCun et al. [15] to the ability of de-
tecting objects within an image. This network transforma-
tion which later was named Fully Convolutional Network
(FCN) [21] implicitly models a sliding window within the
network structure.

This architecture was the foundation of OverFeat [31],
one of the first modern CNN based object detectors. To-
gether with SSD [20, 4], YOLO [26, 27, 28] and the most
recent RetinaNet [18] OverFeat spans the class of so called
one-stage object detectors. They consist of one single con-
volutional network which extracts features, predicts object
positions and classifies the objects.

The other large class of CNN object detectors are the so
called two-stage approaches which adopted the two stages
of classical object detection approaches into CNN architec-
tures. In this classical chain, detection and classification of
objects are separated into two different steps where classi-
fication between foreground object and background is ap-
plied upon the detection results. Detections in these ap-
proaches are usually called region proposals and do have to
be thought of as candidate regions within an image where
an object could be present. Region-CNN [8] was the first
of these approaches while still using a Support Vector Ma-
chine (SVM) for the classification task after extracting fea-
tures with a CNN. The following adaptions of this ap-
proach [7, 29, 10, 9, 17] turned the classification part com-
pletely into a CNN and enhanced the region proposal gen-
eration which dramatically increased the detection speed.

The differences between the one-stage and two-stage ap-
proaches have been mainly in execution speed and detec-
tion accuracy. While two-stage approaches usually reached
a higher detection accuracy but to the cost of a longer ex-
ecution run time. With the emergence of RetinaNet [18]
using a focal loss function with an one-stage approach, they
could achieve an comparable accuracy to recent two-stage
approaches.

3D Vehicle Detection: Detection is not only limited to
the case of two dimensional detection in the image plane.
Recent approaches [25, 12] have extended the approach of
two dimensional detection to the challenging task of detec-
tion in the space of the three dimensional world. The sub-
field of three dimensional vehicle detection is actively re-
searched due to the development of autonomous vehicles.
There are various approaches to estimate the pose of ve-
hicles. They can be broadly divided into two categories.
The first category indirectly estimates the pose and dimen-
sions of the vehicle in the three dimensional space. In gen-
eral these approaches estimate features or constraints onto
which a template is fit. Approaches like DeepMANTA [1],
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BoxCars [35, 22] and MergeBox [5] are some of the best
performing in this category. On the other hand there is the
category of networks which directly predict the bounding
box in three dimensional space like [2] and the simple 3D
detector we propose to test our loss on the challenging task
of three dimensional detection. The latter category does not
have issues with the approximation due to limitations of the
template fitting and is a solution only requiring neural net-
works and no complex custom made post processing logic.

Loss Functions for Object Detection: The loss func-
tion as one crucial part of each one-stage object detection
system usually can be divided into three parts: The loss
function used for object classification, the analogue func-
tion for object position regression as well as the method
for combining these two functions into the final loss func-
tion. For classification loss usually Softmax cross en-
tropy [31, 27, 4] or Sigmoid cross entropy [18] are used.
In [26], a L2 loss is used for the classification part. So
called α-balancing is used to balance the influence of dif-
ferent samples based on their class distribution in the train-
ing set [20]. In [20] also a dynamic weighting of training
samples according to their difficulty is done.

For the position regression task, the L2 loss [31, 26],
its variant smooth L2 loss [20] or the similar smooth L1
loss [4] are commonly used functions. The combination of
different loss functions is better known from multitask net-
works like Multinet [36] or [13] but classification and de-
tection can also be seen as tasks within a multitask network.
Object detection networks usually make use of a simple sum
of losses [26] or a weighted sum of losses [31, 20, 4].

3. Automated Focal Loss
The focal loss as introduced by [18] eliminates the need

for hard negative mining [33] and helps with the problem of
imbalanced data. However, as stated in the original work,
focal loss still needs α-balancing to successfully achieve
competitive results on the COCO dataset [19]. By automat-
ing the focal loss and dynamically adjusting the focus (γ)
to the current training progress, we found that neither hard
negative mining nor α-balancing or any other method of
simplifying the training is required. Automated focal loss
enables the neural network to automatically focus itself
onto the most important examples for the current training
progress.

To correctly define and apply automated focal loss, a for-
mal definition as done by [18] is required. The first step is
to define the probability of the correct class. This means
assigning the probability mass of the class that is the cor-
rect solution for the task to a variable. In case of a posi-
tive sample, this is the probability that the network assigned
the class and in the other case it is the probability that the
network did not assign to the class. This leads to a defini-
tion of pcorrect and the simplified cross entropy for a single

example as follows:

pcorrect =

{
p if y = 1,
1− p else.

(1)

LCE = − log(pcorrect) (2)

The loss can be weighted with a dynamic factor w which
is dependent on the probability of the correct result pcorrect.
This factor defines which training samples the network is
most focused on at any given point during the training.

Lfocused = w · L, w = (1− pcorrect)γ (3)

So the focused loss as introduced by [18] is dependent on
the weight which is computed using pcorrect and a γ which
defines the amount of focus that is intended. Inspecting the
derivative for the network variables net reveals the weight
w remains unchanged in the derivative as a constant.

∂Lfocused
∂net

= w · ∂L

∂net
(4)

A high γ (e.g. γ = 5) weights down all samples and gra-
dients that are approximately correct while focusing on the
examples which are yielding poor performance. However,
as the training progresses the number of poorly classified
examples decreases. This leads to down-weighting an in-
creasing number of samples in the loss and therefore in the
gradients as well, leading to a significant drop in training
speed due to decreasing gradients. On the other hand having
a too low γ (e.g. γ = 0) reduces the impact of the weighting
factorw. However, on complex tasks such as COCO and 3D
detection, this will render the network incapable of learning
the problem. Especially when the data is imbalanced the
network can easily be overwhelmed by the dominant data.

We propose to adapt γ during the training progress over
time overcoming the limitations of choosing a fixed γ. At
the beginning of the training γ should be high to achieve
a good focus on only the poorly predicted training sam-
ples. During training γ needs to shift towards 0 to avoid
diminishing gradients due to down weighting of well pre-
dicted examples. We decided to model the training progress
dependent on the expected probability of the correct predic-
tion p̂correct since this has a direct influence on the expected
focal weight (equation 5).

E{logγ(w)} = E{1− pcorrect} = 1− p̂correct (5)

The expected probability of the correct prediction p̂correct
can be approximated by computing the mean over pcorrect
for a training batch. In case of a small training batch apply-
ing a low pass filter like exponential smoothing is recom-
mended. A smoothing via p̂correct = 0.95·old+0.05·new
worked best in our experiments.
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3.1. Choosing γ dependent on p̂correct

We generally see two options to define γ subject to the
training progress dependent on p̂correct. The first option is
inspired by the observation that the original focal loss has
the issue of the expected weight diminishing as the training
progresses. A formal definition to alleviate this issue is to
force the integral of weight below the expected probability
of the correct class p̂correct to be equal to a fraction k of the
total integral of the weight.

k =

∫ p̂correct
0

(1− p)γdp∫ 1

0
(1− p)γdp

(6)

This equation can be solved for γ by integrating and re-
ordering the equation, leading to a formal definition of γ
dependent on the chosen fraction of the weight that should
be assigned to samples with a probability less than the ex-
pected probability.

γ =
log(1− k)

log(1− p̂correct)
− 1 (7)

Having defined γ this leads to the question what frac-
tion k should be assigned to the examples performing worse
than the average. The focal loss can only focus on poor pre-
dictions, if γ has a positive value. Equation 7 only yields
positive and valid values when p̂correct < k < 1. Hav-
ing a k close to p̂correct is undesirable, since this will lead
to disabling the focal loss after only a few training epochs
as p̂correct increases. Whereas k = 1 means disabling the
focal loss. Therefore adapting k dependent on the training
progress seems reasonable. A simple way is to keep k at a
certain point between the lower boundary p̂correct and the
upper boundary of 1. This leads to a definition of k using an
interpolation parameter h between the lower and the upper
boundary.

k = (h · p̂correct + (1− h) · 1) (8)

Resulting in a final equation to compute γ given h and
p̂correct.

γ =
log(1− (h · p̂correct + (1− h) · 1))

log(1− p̂correct)
− 1 (9)

While this definition yields a numerically stable compu-
tation of γ and fulfills the requirements to model γ in an
appropriate way. Namely, for p̂correct → 0 it diverges to
+∞ and for p̂correct → 1 it converges to 0 as can be seen
in Figure 3. Even though this approach fulfills the require-
ment of an automatic focus, it trades the hyperparameter γ
for the static focus for a hyperparameter h. The hyperpa-
rameter gives the flexibility to adapt the loss to the needs
of the situation, however if it is not mandatory for success,
fewer hyperparameters is the preferred solution.

Figure 3. Gamma is dependent on p̂correct. The parameter h de-
fines the point between p̂correct and 1.0 that defines the quantile
of weight that is assigned to values less than p̂correct (see Equa-
tion 9). A high value like 0.9 leads to very low gamma values
across the board leading to a low focus, while low values result in
higher gamma values and a stronger focus. We found an interpo-
lation value of h = 0.7 to be a good specification.

Defining γ inspired by the information as defined by
Shannon [32] can eliminate the need for a hyperparame-
ter. For the loss computation of a neural network, the cross
entropy, which has its origin in the information theory by
Shannon, is commonly accepted. Therefore picking the in-
formation in a correct prediction of the network I(correct)
seems reasonable. The information has the property that
for an optimal network it will converge towards 0. Since
there is no surprise in the outcome, it perfectly matches
the ground truth. On the other hand for a poorly trained
network, the information increases without any upper limit.
Defining γ as the Shannon information of a correct predic-
tions of the network leads to the following equation:

γ = I(correct) = −log(p̂correct) (10)

When checking the definition for sanity the results are
as intended. For a low p̂correct representing a low train-
ing progress γ is large and therefore the focus on the wrong
samples high. As the training progresses and the p̂correct in-
creases the value of γ decreases leading to less focus on the
poorly predicted samples (see Figure 4). An ideal network
of p̂correct = 1 would lead to no focus on poorly predicted
examples since there are none.

3.2. Single Target Classification

The application of the automated focal loss to a prob-
lem requires defining the loss L that should be focused and
defining a computation policy for p̂correct. For single tar-
get classification the loss L in equation 3 should be normal
cross entropy loss LCE . Computation of γ using p̂correct
can be done via equation 9 or 10. However, the latter should
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Figure 4. Changing γ according to the progress of the network
can also be modeled as the information in a correct prediction
I(correct) = − log(p̂correct). While the curves for an inter-
polation value of h = 0.7 and the information I(correct) based
approach look similar, in our experiments using the information
outperformed using a quantile dependent on p̂correct. Furthermore
the information based approach has no hyperparameters that need
tuning.

be preferred, since it yields better results in our experiments
and needs no hyperparameter. The required p̂correct can be
computed as the average of pcorrect for the current training
batch. To improve the approximation of p̂correct we found
that applying an exponential smoothing worked best.

3.3. Multi-Target Classification

In case of multi-target classification, the loss L in equa-
tion 3 is the binary cross entropy loss Lbinary CE . Compu-
tation of γ using p̂correct can be done via equation 9 or 10.
Estimating p̂correct is a little more involved than for the case
of single target classification. The probability of a correct
class pcorrect is defined as p in case of a class being active
and as 1 − p when a class is inactive. The best way to es-
timate p̂correct depends on the problem that is to be solved
and is not as easy as simply averaging pcorrect. The av-
erage of pcorrect would be dominated by negative classes
since typically in a multi-target classification task only a
few classes are active at the same time for a single example.

When positive and negative examples are distributed
more or less equally, the solution is defining p̂correct as the
mean of the probabilities p assigned to all active classes of
the example. Thus avoiding the positive case being over-
whelmed by inactive classes. When an example has no pos-
itive classes it is called a negative example. For negative ex-
amples the probabilities not assigned to the classes 1−p are
averaged. However, in the case of a task with a lot of neg-
ative examples and only few examples with active classes
the computation of p̂correct can be easily overwhelmed by
the number of negative examples. Therefore only examples

with at least one active class should be considered for com-
puting the average to estimate p̂correct.

3.4. Regression

The original focal loss and the automated focal loss can
also be applied to regression. We propose a new method
to convert regression predictions into probabilities that can
be used for focal loss. Beyond usage in focal loss, these
probabilities will also give a representation of the training
progress that is independent of value ranges of the problem.

The core idea to apply focal loss to regression problems
is to compute the probability that a prediction is better than
the labels. The underlying assumption is that labels are not
perfectly accurate and have an error. Using the deviation
between prediction and ground truth ∆x and the deviation
between the label and the ground truth ∆xt leads to the for-
mulation of pcorrect as the following probability that ∆xt
is not between ±|∆x|.

pcorrect = 1− p(−|∆x| < ∆xt < |∆x|) (11)

We assume that the labels are distributed around the actual
correct ground truth by a Gaussian distribution with a vari-
ance of σ2. With this assumption it is possible to compute
the probability pcorrect using the cumulative distribution
function Φ of the Gaussian distribution.

pcorrect = 1− (Φ(
|∆x|
σ2

)− Φ(−|∆x|
σ2

)) (12)

However, to correctly compute the cumulative distribution
function the variance σ2 of the task needs to be estimated.
As elaborated in detail in [13] the uncertainty related to a
task which is inherent to the task and the labels can be es-
timated by adding log(σ2 + 1) to the loss and training the
variable σ2 like a weight of the network. This leads to the fi-
nal form of the focused loss for regression using pcorrect as
defined in equation 12 with a γ that can be either be constant
as in the classical focal loss or even automated as proposed
in equations 9 and 10:

Lfocused = w · L+ log(σ2 + 1) (13)

with
w = (1− pcorrect)γ (14)

This formulation leads to an implicit trade-off shift during
training. At the beginning of the training, the loss can focus
on examples with a low probability of being correct, like for
the automated focal loss on classification. With progression
in the training as the probabilities increase the focus shifts
and examples with a low probability are no longer weighted
more than examples with a medium probability as seen in
Figure 2. This leads to a reduced impact of outliers on the
performance of the network.
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3D Detection Decoders
Output Value Range layer type #Filters Filter Size stride Activation
probs [0, 1] conv #classes 1x1 1,1 softmax
cx, cy (−∞,∞) conv 2 1x1 1,1 -
d [0, dmax] conv 1 1x1 1,1 dmax · σ(·)
sin(θ), cos(θ) [−1, 1] conv 2 1x1 1,1 tanh(·)
w, h, l (−∞,∞) conv 3 1x1 1,1 -

Table 1. The 3D detector has 5 decoders with differing value ranges, number of filters and activation functions. Each decoder consists of
a convolution layer with the parameters given in the table. The bounding box is encoded as the center cx, cy in image coordinates relative
to the output position. The distance d from the camera, the orientation θ encoded as sin(θ), cos(θ) - to avoid inconsistencies at 0 and 2π -
and the dimensions of the bounding box width w, height h and length l.

The beauty of the formulation as a probability is beyond
the capability of computing a focal loss on a regression
problem. The value of p̂correct is independent of the actual
value range of the problem, due to normalizing the absolute
distance by the variance of the task σ2 - assumed σ2 is es-
timated correctly. This leads to p̂correct being a new metric
on monitoring your training progress.

4. Detection Network
For comparability with the original focal loss we chose

RetinaNet as the network for predicting detections on the
COCO dataset. Since we propose a new loss the base net-
work remains unchanged from [18].

However, beyond applying the loss on 2D detection on
COCO we applied our newly introduced loss on the very
challenging task of 3D vehicle detection. To keep the focus
on the loss and not the network architecture, we decided to
use a simple VGG16 [34] encoder with a decoder special-
ized on 3D detection as presented in [38]. The VGG16 en-
coder consists of the VGG16 network weights pre-trained
on the ImageNet dataset [3] up to the layer pool5. Then
two 1x1 convolution layers with 4096 filters similar to the
fully connected layers from the original VGG network are
appended. On the resulting feature maps a 3D decoder is
applied. The 3D decoder consists of 5 parallel streams:

1. A 1x1 convolution softmax prediction for the classifi-
cation pclass,

2. a 1x1 convolution layer with 2 filters to predict the cen-
ter of the object cx, cy ,

3. a 1x1 convolution layer with 1 filter to predict the dis-
tance of the object from the camera,

4. a 1x1 convolution layer with 2 filters and tanh acti-
vation function to predict the orientation θ encoded as
sin(θ) and cos(θ),

5. a 1x1 convolution layer with 3 filters to predict the
size of the object encoded as width, height and length
(w, h, l) of the object.

All details on the value ranges and the number of filters
can be found in Table 1.

5. Experiments

We present experimental results on the bounding box de-
tection task of the COCO benchmark [19] and the challeng-
ing KITTI 3D Object Detection dataset [6]. We will not
focus on the architecture of the network but rather compar-
ing results achieved with different losses.

On COCO we evaluated our loss by training with the
same parameters as the original ResNet50 [11] based Reti-
naNet in [18]. On our hardware the original focal loss im-
plementation achieved an AP of 30.41 slightly lower than
the 30.5 we expected from the paper however this is plau-
sible due to differences in the hardware setup and random
initialization. The proposed automated focal loss achieved
an AP of 30.38 without α-balancing. Note that the original
focal loss can only achieve 30.41 with α-balancing. The
automated focal loss with focal regression converged after
only 30 hours, whereas the original focal loss with a con-
stant γ converged after 44 hours. This means the automated
focal loss with focal regression converged at approximately
2
3 the time the original focal loss required.

We found that during large parts of the training the value
for γ computed as the information in a correct prediction
I(correct) stayed at a value of γ = 2.2 which is very close
to the value that [18] found at γ = 2. Only at the beginning
of the training γ started out at a value larger than 6 con-
verging slowly towards 0 once the AP reached a plateau at
around 30.0. This demonstrates that automated focal loss is
capable of finding the optimal γ for a given problem in only
one training run and converging towards a similar result as
the focal loss with a γ that was hand tuned with several ex-
periments.

When inspecting the AP50 we found automated focal
loss with focal regression to have a far superior AP50 of
51.18 compared to the AP50 = 46.58 reproduced with the
original focal loss. Using our loss yields an improvement of
4.6 AP50 while keeping the AP the same. An overview of
the COCO results can be found in Table 2.
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COCO benchmark
Approach AP AP50 Time to Converge
ResNet 50 - 400 [18] 30.5 47.8 N.A.
Reproduced [18] 30.41 46.58 44 h
Ours (automated + focal regression) 30.38 51.18 30 h

Table 2. The values stated in [18] are slightly higher than those we were able to reproduce. Our automated focal loss using focal regression
performs the same as a normal focal loss with α-balancing when comparing the AP. However, the AP50 is significantly improved when
using the our loss. Furthermore the time required until the network converges is significantly reduced with our loss since it is capable to
adapt to the training progress and especially at the beginning makes quicker progress than a focal loss with constant γ.

Beyond evaluating on COCO and comparing to focal
loss we tested our approach on the challenging task of 3D
detection. We used the VGG16 Encoder with a 3D decoder.
The dataset consists of 7481 images posing the challenge to
learn a difficult task on few data. We evaluated the simple
network trained with a normal loss, α-balanced loss, multi-
loss [13], our automated focal classification loss and finally
our automated focal classification and regression loss. The
input image size was a random crop of size 256 x 256 pix-
els which contained at least one detection. Each image of
the original dataset was cropped in 20 different ways and
augmented with geometric augmentation such as horizontal
flipping and micro-translations as well as texture augmenta-
tion such as intensity, contrast, saturation modification and
color jitter (as introduced in [30]).

For training the networks we used the same hyperparam-
eters for all losses. As optimizer we used Adam [14] with
default parameters. For the normal loss and the α-balanced
loss we chose the weights for all regression losses to be 1.0
and 10.0 for the cross entropy classification loss. The value
of α was computed for every batch as 1− h where h is the
relative frequency of the class. The learning rate was expo-
nentially decayed starting at 0.0001 and ending at 0.000001
after 160,000 training steps with a batch size of 16. Train-
ing was done in 24 hours on a single NVIDIA GTX 1080 Ti
with Tensorflow 1.10.

Since we have already shown on COCO that our loss is
capable of finding an optimal γ we decided to not test focal
loss on 3D detection, since the comparison would be unfair,
whereas there is no prior work on what γ is optimal. The
automated focal classification loss outperformed the normal
loss, α-balanced loss and the multiloss on AOS with 37.0
compared to the next best result at 36.1 achieved by multi-
loss [13]. Adding automated focal regression loss increased
the AOS by 0.3. The full report of all AOS scores and AP
scores can be found in Table 3.

6. Conclusion

Focal loss reduces the impact of class imbalance but still
relies on α-balancing and picking a convenient focal factor
γ for the task. Having a constant γ it is unable to adapt its
focus to the current training progress. We presented an ap-

proach to overcome this by computing γ dependent on the
training progress and introducing a new kind of loss that is
capable to shift its focus during training. Our experiments
on COCO showed that even though a good constant γ can
achieve the same AP as our loss, we outperform regarding
AP50 and time to convergence in the training process with-
out the need of any hyperparameter tuning to achieve this.
We further introduced a novel technique to compute a prob-
ability for a regression loss to achieve better performance
than the task dependent variance. This enables us to intro-
duce a focal regression loss and a new metric to monitor
the training progress of a regression task independent of the
value range. We showed that on the KITTI 3D Object De-
tection dataset our automatic focal loss outperformed other
losses.
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