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Fig. 1: Exemplary result of road user trajectories in the inD dataset. The position and speed of each road user is measured
accurately over time and shown by bounding boxes and tracks. For privacy reasons, the buildings were made unrecognizable.

Abstract—Automated vehicles rely heavily on data-driven
methods, especially for complex urban environments. Large
datasets of real world measurement data in the form of road
user trajectories are crucial for several tasks like road user
prediction models or scenario-based safety validation. So far,
though, this demand is unmet as no public dataset of urban
road user trajectories is available in an appropriate size, quality
and variety. By contrast, the highway drone dataset (highD) has
recently shown that drones are an efficient method for acquiring
naturalistic road user trajectories. Compared to driving studies
or ground-level infrastructure sensors, one major advantage of
using a drone is the possibility to record naturalistic behavior,
as road users do not notice measurements taking place. Due to
the ideal viewing angle, an entire intersection scenario can be
measured with significantly less occlusion than with sensors at
ground level. Both the class and the trajectory of each road
user can be extracted from the video recordings with high
precision using state-of-the-art deep neural networks. Therefore,
we propose the creation of a comprehensive, large-scale urban
intersection dataset with naturalistic road user behavior using
camera-equipped drones as successor of the highD dataset. The
resulting dataset contains more than 11500 road users including
vehicles, bicyclists and pedestrians at intersections in Germany
and is called inD. The dataset consists of 10 hours of measurement
data from four intersections and is available online for non-
commercial research at: http://www.inD-dataset.com
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I. INTRODUCTION

Automated driving is expected to reduce the number and
severity of accidents significantly [13]. However, intersections
are challenging for automated driving due to the large com-
plexity and variety of scenarios [15]. Scientists and companies
are researching how to technically handle those scenarios by
an automated driving function and how to proof safety of
these systems. An ever-increasing proportion of the approaches
to tackle both challenges are data-driven and therefore large
amounts of measurement data are required. For example, re-
cent road user behaviour models, which are used for prediction
or simulation, use probabilistic approaches based on large
scale datasets [2], [11]. Furthermore, current approaches for
safety validation of highly automated driving such as scenario-
based testing heavily rely on large-scale measurement data on
trajectory level [3], [5], [17].

However, the widely used ground-level or on-board
measurement methods have several disadvantages. These
include that road users can be (partly) occluded by other
road users and do not behave naturally as they notice being
part of a measurement due to conspicuous sensors [5].
We propose to use camera-equipped drones to record road
user movements at urban intersections (see Fig. 2). Drones
with high-resolution cameras allow to record traffic from a
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so-called bird’s-eye perspective with high longitudinal and
lateral accuracy. The position and orientation of the objects is
sufficient for most applications such as the prediction of road
users. Although information about the height of the objects
is lost, it can be estimated from the class of the object, if
necessary. Another advantage of the bird’s-eye perspective
is that occlusions by road users do not occur. Finally, the
recorded traffic behaviour is natural, as the drone, hovering
at a height of up to 100 meters, is typically not perceived.

In this paper, we apply methods similar to the approach
in [5] to create a naturalistic road user trajectory dataset of
German intersections called inD (intersection Drone dataset).
Exemplary road user tracks are shown in Fig. 1. Also, we
compare the inD dataset with other datasets that are commonly
used in research, such as the Stanford Drone Dataset [12].
With the publication of the dataset, we want to foster research
on safety validation for highly automated driving, traffic
simulation models, traffic analysis, driver models, road user
prediction models and further topics, which rely on naturalistic
traffic trajectory data from intersections. We use the common
term drone throughout the paper for an unmanned aerial
vehicle, which in our case is a multicopter.

II. RELATED WORK

Within the last few years several datasets have been
published which contain trajectories of road users, especially
pedestrians. Nevertheless, none of the released datasets are
suitable to solve open problems in the domain of automated
driving, which we explain in the following. Subsequently,
we give an overview of the datasets best comparable with
inD, based on the recording technique used or the scenarios
recorded.

Fig. 2: We propose to use a camera-equipped drone to record
traffic at urban intersections. The trajectory of each road par-
ticipant is accurately extracted using deep-learning algorithms.

Some of the first public datasets of road user trajectories,
which are established in research, are the BIWI Walking
Pedestrians datasets [9] and the Crowds UCY/Zara dataset
[7]. The BIWI Walking Pedestrians consists of two datasets,
which are the ETH and HOTEL dataset. The ETH dataset was
recorded from the top of the ETH Zurich main building using
a camera, while the HOTEL dataset was captured from top of
a hotel. Although these datasets were used for a lot of research
in the past, the datasets are of small size and contain no road
users other than pedestrians.

The Stanford Drone Dataset [12] was the first trajectory
dataset utilizing drones for recording road users’ movements.
The dataset contains 10 300 trajectories of pedestrians, bi-
cyclists, cars, skateboarders, carts and busses in the mea-
sured university campus area. Since pedestrians, bicyclists and
skaters are most frequently represented, they comprise 94.5 %
of the trajectories. Vehicles, however, represent only a very
small proportion of road users in the dataset.

In 2019, two further similar datasets using drones were
published, namely the CITR and DUT [18], which focused
on the interaction between pedestrians and vehicles. Like the
Stanford Drone dataset, the DUT dataset was collected on
the campus of a university. One location is a shared space
for all kinds of road users and the other location includes a
pedestrian crosswalk at an unsignalized intersection. While the
DUT dataset contains uninstructed naturalistic trajectories of
pedestrians, the CITR dataset is a controlled experiment on a
parking lot. In this study, subjects were instructed to cross the
way of a golf cart driving back and forth.

With the highD dataset [5], the first large-scale naturalistic
vehicle trajectory dataset measured on public roads utilizing
drones was published. The highD dataset contains 110 500
vehicles with a total travelled distance of 44 000 kilometers
on German highways, measured with a positioning error of
typically below 10 centimeters. The measurements took place
at six different locations. However, the dataset was measured
on highways and thus did not contain any Vulnerable Road
Users (VRU).

The Ko-PER [16] dataset was recorded at an intersection
in Germany using stationary laser scanners and cameras. The
dataset contains pedestrians, bicyclists, cars and trucks with
in total 340 trajectories extracted from less than one hour
of recordings. From the same intersection, a new dataset
called VRU Trajectory Dataset was later published [4]. The
original VRU Trajectory Dataset consists of 1068 pedestrian
and 464 cyclist trajectories, but was extended by the Extended
Cyclist Trajectory Dataset with 1746 further cyclist trajecto-
ries. In the following, we consider both datasets combined
under the title VRU Trajectory dataset.

Many of the mentioned datasets (Crowds, Ko-PER, CITR,
BIWI Hotel) contain less than 1000 trajectories of all types of
road users in total, which is not sufficient for most research on
automated driving today. The Stanford Drone dataset contains
about 10 000 trajectories making it more suitable for data-
driven applications. However, only a small proportion of the
road users in the dataset are vehicles and the dataset was cre-



(a) Bendplatz, Aachen (b) Frankenburg, Aachen

(c) Heckstrasse, Aachen (d) Neuköllner Strasse, Aachen

Fig. 3: Example images of four recording sites included in the inD dataset. Coloured bounding boxes show detected of road
users (red: cars, orange: buses/trailers, green: pedestrians, blue: cyclists).

ated on a university campus, on which the road user behavior
differs from public roads. The VRU Trajectory Dataset also
does not contain any vehicle trajectories. While this makes
these datasets appropriate for investigating the interaction
between pedestrians and bicyclists, they are not suitable for
applications in the field of automated driving on public roads.

III. REQUIREMENTS FOR A TRAJECTORY DATASET

Based on the findings in [5], we formulate the following
requirements for a trajectory dataset of road users at urban
intersections, which is appropriate for the application in data-
driven methods in the field of automated driving:

• Preserve the naturalistic behavior of road users
Road users must not be influenced by the measurement
method, e.g. by visible sensors that look like traffic
surveillance cameras.

• Have a sufficient size
The dataset must contain trajectories of several thousand
road users. A sufficient size and variety is crucial for the
applicability of the dataset for data-driven algorithms.

• Vary recording sites and times
The dataset must include measurements from multiple
recording sites at different times of the day to cover a
variety of road layouts, traffic rules, and traffic densities.
For applicability of the results in the field of automated

driving on public roads, the measurements should mainly
be carried out on public roads instead of private grounds.

• Detect and track all types of road users
The dataset must not be limited to a certain road user
category such as pedestrians or cars. All road users must
be tracked as they influence each other.

• Track road users with high accuracy
The resulting trajectories must have a positioning error of
less than 0.1 meters independent of the road user type.

• Include the infrastructure
Since the behaviour of road users is strongly dependent
on the road layout and local traffic rules, both must be
recorded precisely and provided in the dataset.

IV. METHOD

In order to create a trajectory dataset using a drone, in
addition to the recordings themselves further processing steps
are necessary. Besides pre-processing the video recordings,
this mainly includes the accurate automated detection, tracking
and classification of all road users using computer vision
algorithms. Manual annotation of the recorded road user
trajectories would not be feasible, since the annotation for the
extraction of the trajectories would have to be carried out in
each video frame. The following sections give an overview of
all relevant steps applied for creating the dataset.



A. Selection of Recording Sites and Flight Approval

After a total of four locations had been selected on the basis
of traffic volume and traffic composition (see Fig. 3), a safety
concept was developed for each location individually. This
included the selection of the landing site as well as the exact
position of the drone during the recording. Thereby, not only
the area covered during the recording had to be optimized,
but local laws and maps specifying safety distances as well as
no-fly zones also had to be taken into account.

B. Recordings and Pre-processing

Prior to each recording, the weather conditions were
checked. To maximize recording quality, all recordings were
taken in sufficient lighting conditions and with low winds.
This enhanced the sharpness and steadiness of the images,
which facilitated further processing. For each recording, the
drone hovered at a pre-defined position at an altitude of up to
100 meters in order to completely cover the relevant intersec-
tion area. The videos were recorded with a DJI Phantom 4 Pro
in 4K (4096x2160 pixel) resolution at 25 frames per second in
maximum video quality. For each flight, we typically achieved
a video recording time of approximately 20-22 minutes. Al-
though the drone uses flight stabilization control and gimbal-
based camera stabilization during recording, translational and
rotational motion could not be completely avoided. Therefore,
in addition to correcting the lens distortion, each recording
was also stabilized onto the first frame.

C. Detection and Classification

From the preprocessed video recordings, the 2D positions
of the road users in each frame had to be extracted to create
trajectories. As a manual annotation of road users in every
frame for the extraction of the trajectories from the images
was not feasible, we automated this process. For this purpose,
modern computer vision algorithms based on deep neural
networks are well suited. These were also successfully used
for the creation of the highD dataset [5].

Regardless of the chosen architecture of the neural network,
it is necessary that an annotated training dataset exists to
train the network. Therefore, we annotated road users using
polygons in 400 images from all recordings. Classical augmen-
tation methods such as flipping, rotations and deformations
were used to artificially multiply the number of annotated
images. Further, Generative Adversarial Networks were used
to synthesize additional variations of difficult samples to make
the network more robust [6].

Typically, one of two established approaches are used for
the detection of objects in images. Detection networks like
SSD [8] or Faster-RCNN [10] estimate the position and
orientation of objects in the form of (rotated) bounding boxes.
However, this approach is not suitable here because many
objects can only imprecisely described from a bird’s-eye view
by a bounding box. For objects such as a moving pedestrian
or a bending articulated bus, a more precise description is
necessary. Thus, we decided to use semantic segmentation,
as it is able to assign a class (e.g. car or background) to each

pixel. Based on the class information of the individual pixels, a
polygon can automatically be derived for each detected object.

Compared to the detection of vehicles on highways [5], the
accurate detection of every kind of road users at intersections
proved to be more challenging. On the one hand, the size
differences between pedestrians and buses are very large. On
the other hand, pedestrians and bicyclists in particular are only
described by very few pixels. Due to the flight altitude of up to
100 meters and the 4K resolution, each pixel covers a range of
about 4x4 centimeters. This results in a typical size of a non-
moving pedestrian in the image of 10x10 pixels. Therefore,
we decided to train two separate networks for small and large
objects. Both networks are based on the U-Net architecture
[14] and have been adapted to the size of the objects to be
detected.

The detections resulted from applying thresholds and mor-
phological operations to the segmented image in order to
eliminate outliers and to describe the recorded objects as
polygons. To classify the objects into the classes pedestrian,
cyclist, car, truck and bus, it was sufficient to compare the
size, speed and position of the respective object with expected
values. Ambiguous cases, which account for less than 1 %,
were manually annotated.

D. Tracking and Post-processing

As the detection algorithm is run on each frame inde-
pendently, a tracking algorithm was necessary to connect
detections in different frames to tracks. During this process,
detections between two consecutive frames were matched by
their distances. By doing so, false positive detections were
completely removed. If a road user was not detected in a
few frames, due to e.g. occlusion by a traffic sign, future
positions were predicted until a new detection matched the
road users track. After the tracking had been done for the
complete recording, additional post-processing was applied to
retrieve smooth positions, speeds, and accelerations in both x-
and y-direction. Using Bayesian Smoothing and a constant
acceleration model, the trajectories were refined based on
information given by all detections belonging to the corre-
sponding track. This allowed errors in detection to be replaced
by interpolation and improved the positioning error to a pixel
size level. As a final step, all trajectories were converted from
image coordinates to metric coordinates and shifted to the
same local coordinate system for each recording site. This
was not only necessary, because most applications require the
trajectories to be in metric coordinates, but also because the
drone did not fly at the exact same position and height at each
intersection.

E. Dataset Format and Tools

Our goal is to ensure that the dataset is as easy to use
as possible. We therefore provide meta data and scripts in
addition to the trajectories themselves. The dataset is provided
in the form of one image and three CSV files per recording.
While the image shows the intersection from the drone’s point
of view, the first two CSV files contain meta data about the



TABLE I: Comparison of existing road user trajectory datasets

Title Location # Trajectories # Locations Road User Types Data
Frequency Method

BIWI Hotel sidewalk, hotel entry 389 1 pedestrian 2.5 Hz stat. sensor
BIWI ETH university building entry 360 1 pedestrian 2.5 Hz stat. sensor
Crowds UCY/Zara campus, urban street 909 3 pedestrian 2.5 Hz stat. sensor
Ko-PER urban intersection 350 1 pedestrian, bicycle, car, truck 25 Hz stat. sensor
VRU Trajectory urban intersection 3278 1 pedestrian, bicycle 25 Hz stat. sensor
DUT campus 1862 2 pedestrian, vehicles 23.98 Hz drone
CITR designed experiment 340 1 pedestrian, golf-cart 29.97 Hz drone

Stanford Drone campus 10240 8 pedestrian, bicycle, car,
skateboard, cart, bus 25 Hz drone

inD urban intersection 11500 4 pedestrian, bicycle, car,
truck, bus 25 Hz drone

recording and the tracked road users. The meta information
includes, for example, the locations, time and duration of the
recordings as well as the type, track duration or average speed
of each road user. The third CSV file contains the trajectories
for which the position, orientation, speed and acceleration are
given for every frame of the recording.

Matlab and Python source code to import and handle
the data, create visualizations and extract maneuvers is pro-
vided and constantly updated at https://github.com/ika-rwth-
aachen/inD-dataset.

V. DATASET STATISTICS AND EVALUATION

A. inD at a Glance

The inD dataset includes trajectories of more than
11 500 road users, which are beside cars, trucks and busses
more than 5000 VRUs such as pedestrians and bicyclists. The
inD dataset contains trajectories of vehicles including cars,
trucks and busses as well as VRUs such as pedestrians and
bicyclists. The exact number of trajectories extracted will be
given on the website when the dataset is released.

The trajectories are extracted from drone video recordings
made at German intersections in Aachen from 2017 to 2019.
At four different locations, recordings were taken with an
typical duration of around 20 minutes covering intersection
areas of 80x40 meters to 140x70 meters. As shown in Fig. 3,
all four intersections are unsignalized, the speed limit is at
50 km/h and walkways exist. Apart from that, the measurement
locations differ in terms of intersection shape, the number and
types of lanes, right-of-way rules, traffic composition and kind
of interaction.

Bendplatz is a four-armed intersection with a priority road
and is located near a university. There are two left turn lanes,
but no regulated pedestrian crossings. Due to the proximity to
the university, there is an increased frequency of pedestrians,
cyclists and buses. Between these and the turning vehicles
there is the most common interaction at this location. Some
of the extracted trajectories of pedestrians and vehicles are
visualized in Fig. 4.

The intersection at the Frankenburg near the city centre has
four arms. Directly next to the crossing is a zebra crossing
and many parking lots. At the intersection the right before

left rule applies. Due to the location in a residential area and
at a park, there is a high number of cyclists and pedestrians.
While the vehicles and cyclists interact with each other mainly
at the intersection, the interaction with pedestrians takes place
primarily at the zebra crossing. In addition, traffic is affected
by vehicles moving in or out of parking spaces.

The intersection Heckstrasse is located in a suburb and is
a T-junction. The main road has the right of way and there is
a left turn lane into the side road. At the edges of the main
road there are cycle paths and in the middle exists a pedestrian
crossing. Interactions occur here due to vehicles making turns.

Located in an industrial area next to a bus depot is the T-
junction Neukoellner Strasse. The priority road is double-laned
in both directions and has a left turn area into the side road.
The proximity to a motorway access road results in a lot of
transit traffic. Because of the bus depots located in the side
street, many buses turn off. Further interaction is caused by
pedestrians going via a traffic island to one of the two bus
stops.

B. Comparison with Existing Datasets

In Table I, we compare the inD dataset with current public
datasets, which are the most similar to the inD dataset: Crowds
UCY/Zara [7], Ko-PER [16], DUT [18], CITR [18], BIWI
Hotel/ETH [9], VRU Trajectory Dataset [4] and Stanford
Drone [12]. Most of the datasets in this table provide a
small amount of trajectories, while the Stanford Drone Dataset

Fig. 4: Example trajectories of detected vehicles (blue) and
pedestrians (green) at the recording site Bendplatz



and inD contain significantly more road user trajectories.
The Stanford Drone Dataset, however, consists of a large
proportion of pedestrians and only a few vehicles, which are
mainly parked. Thus, there are not many interactions between
VRUs and vehicles as well as interactions between vehicles.
Furthermore, inD contains a more representative distribution
of road user types on the measured public urban intersections.
By that, inD is much more relevant for applications in the
field of automated driving. Finally, the inD dataset exceeds the
Stanford Drone Dataset in accuracy as the inD dataset contains
tracks based on pixel-accurate segmentation in images with 4K
resolution, while the Stanford Drone Dataset contains tracks
based on bounding boxes in images with significantly lower
resolution (595 x 326 pixel) [1].

VI. CONCLUSION

In this paper we have motivated the need for trajectory
data from road users at urban intersections which cannot yet
be met by publicly available datasets. We have shown that
the bird’s-eye view of a drone is better suited than other
recording methods to record such data. After creating a com-
plete processing pipeline, we used that pipeline to create the
inD dataset. Using deep learning algorithms, we extracted the
trajectories of road users such as vehicles and pedestrians with
pixel accuracy from 10 hours of video recordings at a total of
four recording locations. Thus, we surpass any comparable
dataset both in size and accuracy, while including a variety of
public intersections rather than a university campus. We will
release the dataset upon the conference date.
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