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Abstract— Navigating through intersections is one of the main
challenging tasks for an autonomous vehicle. However, for the
majority of intersections regulated by traffic lights, the problem
could be solved by a simple rule-based method in which the
autonomous vehicle behavior is closely related to the traffic
light states. In this work, we focus on the implementation of
a system able to navigate through intersections where only
traffic signs are provided. We propose a multi-agent system
using a continuous, model-free Deep Reinforcement Learning
algorithm used to train a neural network for predicting both
the acceleration and the steering angle at each time step. We
demonstrate that agents learn both the basic rules needed to
handle intersections by understanding the priorities of other
learners inside the environment, and to drive safely along their
paths. Moreover, a comparison between our system and a rule-
based method proves that our model achieves better results
especially with dense traffic conditions. Finally, we test our
system on real world scenarios using real recorded traffic data,
proving that our module is able to generalize both to unseen
environments and to different traffic conditions.

I. INTRODUCTION

The use of Deep Reinforcement Learning (DRL) [1] algo-
rithms is growing exponentially, from the resolution of games
like Atari [2] and Go [3] to the robotic field ([4], [5], [6]).
Indeed, these algorithms have proved to achieve impressive
results both in discrete control-space problems [7] and in
continuous ones ([8], [9]). In the last decade, DRL algorithms
have also been used in the autonomous driving field to solve
many control tasks like lane change [10], lane keeping [11],
overtaking maneuvers [12] and many others.

However, many situations are not so trivial to handle by
an autonomous vehicle; for example, navigating through an
intersection may be a difficult task in absence of traffic lights
or with heavy traffic conditions. Indeed, in most intersections
regulated by traffic lights, this problem could be solved by
a simple rule-based approach in which the autonomous car
behavior strictly depends on the traffic light state. The typical
solution used for dealing with those cases in which traffic
lights are not present are based on time-to-collision algorithm
(TTC) [13], that could be useful for simple cases but it
has several limitations: it assumes costant speed of traffic
vehicles, it does not understand the dynamic of the scenario
and the possible intentions of other agents and it could lead
to unnecessary delays.
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In this paper, we focus on intersections regulated by
traffic signs in which agents are trained in a multi-agent
fashion. Vehicles learn to handle such scenarios learning
the priority to the right rule, that is a right of way system
widely used in countries with right-hand traffic. In this way,
when two vehicles are approaching the intersection and their
trajectories may intersect, the car coming from the right has
the priority in the case both agents have the same traffic
sign or when no sign is present; otherwise, the priority is
defined by traffic signs. Together with this task, agents learn
to drive along their paths through the training of a neural
network that predicts the acceleration and the steering angle
at each time step. The whole training is done in simulation
as the majority of the DRL algorithms; we use a synthetic
representation of real intersections (Fig. 1), developing our
simulator with CAIRO graphic library [14] in order to reduce
the state complexity respect to realistic graphic simulators
like CARLA [15] or GTA-based platforms ([16], [17]). In
this way, the transfer of a policy between synthetic and real
domain could be easier to achieve as explained in [18], even
if recent works have shown encouraging results for domain
transfer between simulated and real-world images [19].

In this paper we propose a system in which agents learn
the right of way rule in a multi-agent fashion to handle
intersection scenarios. Moreover, we demonstrate that our ap-
proach reaches better performance than a rule-based method,
especially with dense traffic conditions, where a conservative
approach leads the system to undefined waits. We also show
that our model features generalization capabilities both for
the safe execution of the crossing maneuver and for a safe
end-to-end driving. Finally, the module is tested on real
scenarios with real recorded traffic data, both provided by
the inD dataset [20], showing that the system is able to
handle intersections unseen during the training phase and
facing realistic traffic conditions.

II. RELATED WORKS

Many works handle the problem of crossing inter-
section using Reinforcement Learning (RL) ([21]) algo-
rithms. Some techniques aim to mitigate traffic congestions
through reservation-based systems ([22]) or intelligent traffic
lights ([23], [24], [25]). In [26], authors propose a multi-
agent approach in which road rules emerge as optimal
solution to the traffic flow problem. Finally, in [27] and [28]
a single agent is trained to handle unsignalized intersections
using Deep Q-Networks (DQNs) [29]; in such works, the
environment is populated by traffic cars that follow the
Intelligent Driver Model (IDM) [30] to control their speeds,
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(a) Easy intersection (b) Medium intersection (c) Hard intersection

Fig. 1: Synthetic representations of three intersections representing three different difficulty levels, from the easiest (Fig. 1a)
to the hardest one (Fig. 1c). Each agent in the scenario observes an area of 50×50 meters: green squares show some examples
of these surroundings perceived by green vehicles.

while the trained vehicle chooses a discrete action in a right
time step to avoid a collision with traffic cars.

Instead, our system is based on a multi-agent approach
such that vehicles implicitly learn to negotiate among them
as the actions of an agent affect the state of other learners
and viceversa. Moreover, our agents learn to understand the
priorities of all the vehicles involved in the environment,
while in [27] and [28] it is assumed that the learner has
always the lowest priority. The system is trained using a
delayed version of Asynchronous Advantage Actor-Critic
(A3C, [31]) called Delayed-A3C (D-A3C) also used in [18]
and [32] in which has been proved that this algorithm reaches
better performances than A3C for this kind of task. In
particular, each agent begins the episode with a local copy
of the last global network version and the system gathers
the contributions of each learner during the whole episode;
at a fixed time interval the agent updates its local copy of
network parameters, but all the updates are sent to the global
network only at the end of the episode. Instead, in A3C this
exchange is performed at fixed time intervals.

In this paper, we propose a multi-agent version of D-
A3C, training all the agents in the scenario simultaneously
predicting acceleration and steering angle; indeed, we do
not use traffic cars regulated by rule-based methods as
in [27] and [28] or intelligent traffic as developed in [33].
However, we also show that such module is able to perform
the maneuver in real environments populated by real traffic
vehicles (Section V-D), proving that the proposed module
does not overfit on the training scenarios both for the end-
to-end driving and for the crossing maneuver tasks.

Another approach based on end-to-end driving using DRL
is developed by [34], where a policy for lane following was
obtained training a neural network that receives a single
monocular image as input; however, such model is suited to
solve simple tasks and does not consider the interaction with
other vehicles since it is trained in an obstacle-free environ-
ment. Other methods are based on a supervised approach as
Imitation and Conditional Imitation Learning ([35], [36]);
nevertheless, these techniques have the main limitation of

requiring a huge amount of real data in order to avoid
overfitting.

III. NOTATION

A. Reinforcement Learning

A typical Reinforcement Learning algorithm involves the
interaction between an agent and the environment. At time t
the agent performs an action at in the state st and receives a
reward signal rt that is typically a numerical value, and as a
consequence of such action it will find itself in another state
st+1. The RL problem can be defined as a Markov Decision
Process (MDP) M = (S,A, P, r, P0), where S is the set
of states, A the set of actions performed by the agent, P
the state transition probability P (st+1|st, at), r the reward
function and P0 the probability distribution of the initial state
s0 ∈ S. The goal of the RL agent is to find the best policy
π that maximizes the expected return, defined as follows:
Rt =

∑T
t rt+γrt+1+· · ·+γT−trT , where T is the terminal

state and γ ∈ [0, 1] is the discount factor.
In actor-critic methods, the model estimates two different

entities: the first one is produced by the so-called Actor and
it is a probability distribution over actions (π(a|s; θπ), where
θ are the network parameters); the second one is given by the
Critic that is typically measured by the state-value function
v(st; θ

v) = E(Rt|st). The updates of these functions can be
defined as:

θπt+1 = θπt + απ ·At
∂logπ(a|s; θπ)

∂θπ
(1)

θvt+1 = θvt + αv ·At
∂v(st; θ

v)

∂θv
(2)

where απ and αv are the learning rates and At is the
Advantage function defined as:

At = Rt + v(st+1; θ
v)− v(st; θv) (3)

In the next section we will give further details about the
environments in which agents are trained.



(a) Simulator (b) Map (c) Path (d) Obstacles (e) Traffic sign

Fig. 2: Examples of views perceived by learners. The first column (Fig. 2a) shows the global views of the simulator, while
Fig. 2b, Fig. 2c, Fig. 2d and Fig. 2e represent the information contained in the green squares: navigable space (map), path,
obstacles including the ego-vehicle (green cars in Fig. 2a) and the traffic sign of the green agents respectively. The traffic
sign could be black or white representing stop line and yield line respectively; if it is not present it means that no traffic
sign is present, as if that lane belonged to the main road. Also the obstacles could be black, in case of those cars with
higher priority than the ego-vehicle, or white representing both the ego-agent and those ones which should give the right of
way to the ego-car.

B. Environment

The scenarios used in this work are illustrated in
Fig. 1, corresponding to three different difficulty levels: easy
(Fig. 1a), medium (Fig. 1b) and hard (Fig. 1c). The first two
levels are single-lane crosses, while the hard scenario is a
double-lane intersection; however, in the hard environment
we do not allow lane changes, meaning that if the agent
goes out of its path we consider the episode ended as a
failure. Only one agent can start from each entry lane each
episode, such that the maximum number of vehicles involved
simultaneously in the environment is equal to the number of
entry lanes of the scenarios: 3 cars for the easy intersection,
4 for the medium and 8 for the hard one. A new path
and a new traffic sign are randomly assigned to the agent
at the beginning of the episode, such that different state
configurations are explored by the agents. However, since
the hard scenario is a double-lane intersection, we assume
that both lanes of the same branch have the same traffic sign
and for this reason we randomly change the traffic signs
at fixed time intervals. In this way, we restart the episodes
of all the learners in such scenario simultaneously, avoiding
changing the traffic signs configuration during the execution
of the crossing maneuver.

Each agent in the scenario perceives a surrounding view
of 50×50 meters, which is split over four different semantic
images consisting on navigable space, path, obstacles and
traffic sign (Fig. 2). These grayscale images represent one of
the input of the neural network explained in Section IV-B.
Given the narrow views perceived by agents (50×50 meters),
we cannot handle larger intersections and for this reason

future works are directed towards the implementation of a
more powerful encoder (e.g. Variational Autoencoder [37])
in order to achieve a satisfactory compression of a larger
area.

Traffic signs and obstacles may assume different values;
the traffic sign could represent a:

• Stop sign: in which case it will be drawn as a red
segment in the simulator and as a black segment in the
traffic sign view (Fig. 2e);

• Yield sign: it is drawn as yellow segments in the
scenario and white segments in the traffic sign chan-
nel (Fig. 2e);

• None: no traffic sign is provided as if such lane was the
main road; it means that the agent has the priority on
vehicles with the stop or yield sign; however, it must
always give the priority to those cars without traffic
signs coming from its right (as expected by the priority
to the right rule).

Obstacle views provide information about both the po-
sition of the cars inside the 50×50 meters surrounding
(including the ego vehicle) and the priority levels of such
agents. Indeed, these obstacles can be drawn as white, as in
case of the ego-car or those agents on which the ego vehicle
has the right of way, or black, that are those agents with
the priority over the ego-vehicle. This prior knowledge is
embedded in the obstacle channel (Fig. 2d) based on both
the traffic signs and the priority to the right rule (Fig. 2). On
board of a real self-driving car, perception systems and high-
definition maps could provide all the information embedded
in the proposed views (Fig. 2), related to the road topology



Fig. 3: Neural network architecture used to train agents to navigate and cross the intersection safely. The net is composed
by two different sub-modules that receive 4 visual input (navigable space, path, obstacles and traffic sign) and two scalar
parameters (current speed and target speed). Each visual input is composed by 4 images 84×84 pixels in order to give the
agent a history of the environment to better understand the dynamic of the current state. The neural network outputs the
means of two Gaussian distributions (µacc and µsa), along with their state-value estimations (vacc and vsa). Finally, the
acceleration and steering angle are sampled using σ that decreases linearly from 0.65 to 0.05 during the training phase.

and vehicle priorities based on both traffic signs and the right
of way rule. An example of how this kind of system can be
deployed in real self-driving vehicles is shown in [18].

Finally, we avoid cases in which all the lanes in the
scenario have the same traffic sign since there could be no
agent with the highest priority, but each car should give the
right of way to the one on its right.

IV. THE ALGORITHM

A. Training settings

The goal of the agents is to handle the intersections safely
driving along their paths through the training of a neural
network that outputs both the acceleration and the steering
angle every 100 milliseconds. The trained vehicles follow
the kinematic bicycle model [38] using values between −0.2
and 0.2 for the steering angle and −3ms2 and 3ms2 for the
acceleration. Each car begins the episode with different
speeds randomly picked inside the interval [3.0, 6.0]ms and
different target speed ([7.0, 10.0]ms ) that is the maximum
velocity the vehicle should not exceed. Since the traffic is
represented by the learners, each agent waits a random delay
[delaymin, delaymax] before starting a new episode in order
to ensure variability in the traffic density. This delay range
depends on the scenario and could assume different values:
[0, 30], [0, 50] and [0, 100] seconds for the easy (Fig. 1a),
medium (Fig. 1b) and hard (Fig. 1c) intersection respectively.

Finally, the episode could end due to four different events:
• the agent reaches the goal position crossing the inter-

section safely and driving without going out of its path;
• the vehicle crashes with another vehicle;
• the agent goes out of its path;
• the time available to finish the episode expires.

B. Neural Network Architecture

Agents are trained using a neural network composed by
two sub-modules: one to handle the acceleration (acc) and
the other one to manage the steering angle (sa). As shown
in Fig. 3, the sub-modules receive a sequence of four visual
input (Fig. 2b, 2c, 2d, and 2e), each one composed by four
images 84×84 pixels. Along with this visual input, the neural
network receives two scalar parameters representing the
agent speed and the target speed of the agent. In order to en-
sure exploration, the actions performed by the agent are sam-
pled by two Gaussian distribution centered on the output of
the two sub-modules (µacc, µsa). In this way the acceleration
and the steering angle can be defined as: acc ∼ N (µacc, σ)
and sa ∼ N (µsa, σ), where σ is a tunable parameter and
it decreases linearly from 0.65 to 0.05 during the training
phase. Together with µacc and µsa, the neural network
produces the corresponding state-value estimations (vacc
and vsa) using two different reward functions: Racc,t and
Rsa,t. These signals are related to the acceleration and
steering angle output respectively, such that the state-value
functions can be written as: vacc(st; θvacc) = E(Racc,t|st)
and vsa(st; θvsa) = E(Rsa,t|st).

In this case, the policy update described in Equation (1)
can be defined as follows:

θµacc

t+1 = θµacc

t + α ·Aacc,t
∇π(at|st; θµacc

t )

π(at|st; θµacc

t )
=

θµacc

t + α ·Aacc,t
∇N (acc|µacc(θµacc

t ))

N (acc|µacc(θµacc

t ))
=

θµacc

t + α ·Aacc,t
acc− µacc

σ2
∇µacc(θµacc

t ) (4)



and the Advantage (Aacc,t) as:

Aacc,t = Racc,t + vacc(st+1; θ
vacc)− vacc(st; θvacc) (5)

The same equations can be written for the steering angle
output, replacing µacc with µsa and acc with sa.

C. Reward Shaping

We defined two different reward functions Racc,t and Rsa,t
in order to evaluate the acceleration and the steering angle
output separately. As explained in Section III-B, we do not
allow lane changes and for this reason we assume that a crash
between two vehicles and the off-road case just depends on
the acceleration and steering angle output respectively. Racc,t
and Rsa,t could be defined as follows:

Racc,t = rspeed + rterminal (6)

Rsa,t = rlocalization + rterminal (7)

rspeed is a positive reward related to Racc,t in order to
encourage the agent to reach the target speed and it is defined
as:

rspeed = ξ · current speed
target speed

(8)

where ξ is a constant set to 0.005.
rterminal is present both in Racc,t and Rsa,t and it could

assume different values depending on the terminal state of
the episode, which can be one of the following:

• Goal reached: the agent crosses the intersection safely,
without going outside its path and without crashing with
another vehicle. The value used for rterminal is +1 both
for Racc,t and Rsa,t.

• Off-road: the episode ends when the agent goes off its
path and we assume that it is due only to an inaccurate
estimation of the steering angle output. For this reason
rterminal will be 0 for Racc,t and −1 for Rsa,t.

• Crash: the episode ends with a crash with another
vehicle and we assume that this is due only to an
inaccurate estimation of the acceleration output since
the lane change is not allowed and it would generate
the Off-road terminal state. For this reason rterminal
will be 0 for Rsa,y . In case of Racc,t, we modulate
its value based on the coding explained in Section III-
B, by which the ego car should give the right of
way to black agents, but it has the priority on white
vehicles (Fig. 2d). By encoding such information inside
the obstacle channel, we penalize the cars involved in
the accident setting the value of rterminal to −1 in the
case the ego-agent commits an accident with a black
car, otherwise it will be −0.5.

• Time over: the time available to end the episode expires
and this is closely related to a conservative acceleration
profile; for this reason, rterminal will assume the value
of 0 for Rsa,t and −1 for Racc,t.

Finally, rlocalization is a penalization related to Rsa,t given
to the agent when its position (x, y) and its heading (ha)

differs from the center lane and the heading (hp) of the path
respectively. This factor can be defined as:

rlocalization = φ · cos(ha − hp) + ψ · d (9)

where φ and ψ are constants set to 0.05 and d is the distance
between the position of the agent and the center of its path.

The reward shaping illustrated in this section is essential to
obtain a module able to navigate the vehicle safely, learning
the right of way rule in order to handle intersection scenarios.

V. EXPERIMENTS

In this section we will show how agents learn successfully
both to navigate along their paths and to cross intersections
safely. We test the system on the training scenarios with
different traffic conditions and traffic signs configurations;
as explained in Section II, it is difficult to compare our
results with those obtained in similar previous works as [27]
and [28], since they focus on training a single agent that does
not really learn the right of way rule, but it only chooses
the right time to perform discrete actions avoiding collisions
with traffic vehicles. Moreover, these works do not manage
different kind of intersections with different traffic signs
assuming that the learner has always the lowest priority in
the intersection. Instead, in our multi-agent approach agents
handle intersection scenarios learning the right of way rule
based on the traffic sign and on the priority to the right
rule; this is essential to achieve a human-like behavior and
to avoid unnecessary delays. Indeed, we also compare our
module with the time-to-collision algorithm (TTC) showing
that our system reaches better results than this rule-based
method. Finally, we show that the proposed system is able
to drive in environments unseen during the training phase,
performing the crossing maneuver facing real traffic vehicles.

A. Results

We analyze the results achieved on each intersection
(Fig. 1) based on traffic signs and the metrics used for this
test are: Reaches, Crashes, Off-roads and Time-overs corre-
sponding to the percentage of episodes ended successfully,
with a crash between two vehicles, with the agent off its
path and due to the depletion of available time respectively.
Moreovoer, we also analyze a further metric, that is the
average speed of the agents during the episodes.

For each scenario we performed several experiments an-
alyzing the agent behavior facing the three different traffic
signs. Each test is composed by 3000 episodes using different
traffic conditions. Indeed, the traffic configuration changes
based on a random delay [delaymin, delaymax] that vehicles
have to wait before starting a new episode: the lower the
delay range, the heavier the traffic condition. The values of
delaymin and delaymax are set to 0 and 10 seconds respec-
tively and we performed as many tests as delaymax reaches
the maximum delay used during the training phase increasing
its value by 10 seconds for each test. Recalling that the
values of delaymax used during the training phase are 30, 50
and 100 seconds for the three scenarios, we performed three



TABLE I: Results obtained in the training scenarios (Fig. 1) with the three different traffic signs.

Easy Intersection Medium Intersection Hard Intersection
No Sign Yield Sign Stop Sign No Sign Yield Sign Stop Sign No Sign Yield Sign Stop Sign

Reaches % 0.998 0.995 0.992 0.995 0.991 0.992 0.997 0.991 0.972
Crashes % 0.002 0.005 0.008 0.005 0.009 0.008 0.003 0.009 0.012

Off-roads % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Time-overs % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.016

Average Speed [m
s
] 8.533 8.280 8.105 8.394 7.939 7.446 8.244 7.365 5.855

experiments for the easy intersection (Fig. 1a), five tests for
the medium (Fig. 1b) and ten for the hard one (Fig. 1c).

The results illustrated in Table I represent the average
percentages of these experiments. As we can notice, crossing
the intersection with the stop sign is the hardest task since the
agent has often the lowest priority. Moreover, observing the
Average Speed values, we can notice how agents modulate
their behaviors based on the traffic sign in order to achieve
the goal safely. Finally, we can notice that the off-road case
never happens in all the experiments, proving that agents
learn to drive safely along their paths.

The following video1 shows the behavior of the agents in
the three training scenarios with different traffic signs.

B. Comparison with TTC method

In this test we compare our module with the rule-based
method of time-to-collision (TTC). We use the hard intersec-
tion and we let the agent performing the crossing maneuver
from the branch with the stop sign as illustrated in Fig. 4a.
Traffic cars start from the two adjacent branches of the ego-
vehicle and they follow the center of the path using the
Intelligent Driver Model (IDM) to control their speeds.

In the TTC test, agents start the episode decelerating in
order to reach the stop line with zero speed and following the
center of the path without predicting the steering angle. Then,
a single threshold is used to estimate when accelerate to
cross the intersection: considering an imaginary line aligned

1https://youtu.be/x28qRJXiQfo

with the longitudinal axis of the ego-agent (green vehicles
in Fig. 4a), the TTC is computed as the time a traffic car
reaches this line, assuming that it drives with constant speed.
Each time step we calculate the TTC of all the traffic cars
and if the lowest value exceeds a specific threshold, the ego-
agent accelerates (3ms2 ), otherwise it continues waiting at the
stop line. This threshold is chosen in order to obtain the best
results with the TTC method and zero percent of Crashes.

The test is performed using different traffic condition
levels in which both our module and TTC method have the
same available time to finish the episode. The traffic levels
are: low, medium and high, corresponding to a maximum
number of traffic cars involved in the environment to 4, 8 and
12 respectively. For each configuration, traffic agents wait a
random delay before starting a new episode as explained in
Section V-A in order to gradually increase the difficulty of
the crossing maneuver; for these experiments, delaymax is
increased by 20 seconds for each test. We noticed that for
low and medium levels of traffic conditions both the TTC
method and our module achieve good results (more than 99%
of episodes ended successfully); however, the TTC method
drops in the case of high traffic condition, leading the system
to undefined waits. The comparison between our model and
TTC method is illustrated in Fig. 4b and Fig. 4c, showing
that the rule-based method leads the system to unnecessary
delays. The difference between TTC and our system becomes
more and more evident increasing the traffic level of the
environment, namely reducing the delay the traffic cars have
to wait before starting a new episode: the smaller the delay,
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Fig. 4: Fig. 4a shows an example of the environment used to compare the performance of our module with the time-to-
collision (TTC) algorithm. Green agents are those vehicles that perform the crossing maneuver, while the white ones represent
traffic cars that follow the path using the Intelligent Driver Model (IDM) to control their speeds. Fig. 4b and Fig. 4c show
the comparison between the percentages of episodes ended successfully and the percentage of time-overs obtained by our
module (blue) and the time-to-collision (TTC) algorithm (red) respectively.

https://youtu.be/x28qRJXiQfo


Fig. 5: Real scenarios of the inD dataset [20] used for testing our module. Green cars represent our RL agents, while
recorded road users (cars, trucks and busses) are illustrated as white vehicles.

the greater the difficulty to cross the intersection since more
traffic agents will be involved in the scenario simultaneously.

C. Testing the Right of Way Rule

As explained in Section III-B, agents handle the intersec-
tion learning the priority to the right rule and we proved
that they learn to drive and handle the intersection scenarios
safely (Section V-A). However, the results obtained in Table I
do not prove that agents respect the right of way rule.

At this purpose, we propose a test on the training scenarios
(Fig. 1) in which agents start the episode synchronously
with a random path and traffic sign, setting the same current
and target speed for all cars, such that vehicles approach
the intersection almost simultaneously. As for the training
phase, only one agent can start from each lane such that
the maximum number of vehicles involved in each episode
is 3, 4 and 8 for the easy, medium and hard intersection
respectively. Only in this way, we can understand if an agent
crosses the intersection before a vehicle with higher priority,
thus committing an infraction. For this test we consider the
episode ended when all the agents involved in the scenario
reach a terminal state.

Each test on the three intersections (Fig. 1) is composed by
9000 episodes and Table II shows the percentages of episodes
ended successfully with and without infractions. We consider
the episode ended without infractions (No Infraction) if all
vehicles involved in the scenario respect the right of way
rule, otherwise the episode will be considered as a failure
(Infraction). We can notice that agents respect the rule in
most of the cases and only in the hard intersection there is
a slight decrease in the performances since the larger spaces
of such environment allow vehicles to hazard the maneuver
more frequently.

TABLE II: Percentages of episodes ended following the right
of way rule by all the agents involved in the episode (No
infraction) and with at least an infraction (Infraction).

Easy Medium Hard
Intersection Intersection Intersection

No infraction % 0.985 0.990 0.863
Infraction % 0.015 0.010 0.137

D. Test on Real Data

We test our module using the inD dataset ([20]), contain-
ing 33 real traffic sequences in four different intersections
(Fig. 5) for a total of 10 hours of recorded data. The dataset
is collected using a camera-equipped drone and it contains
the tracking and classification of more than 11500 static and
dynamic road users including cars, trucks, busses, bicyclists
and pedestrians; however, we consider only dynamic vehicles
data of cars, trucks and busses, since pedestrian and bicyclist
obstacles are not included in our simulator in the training
phase. During these tests, we assume that our RL agents
(green cars in Fig. 5) have always the lowest priority since
they are not sensed by traffic vehicles. The RL agent always
starts from the same lane (the least busy), choosing a random
exit each episode; for this reason, we do not include those
traffic vehicles starting from the same lane of the RL agent.
In this way, the total number of traffic vehicles populating
the four real scenarios is 7386, while the episodes performed
by our RL agents are 2702.

Using the recorded trajectories of the dynamic traffic
vehicles, we built the four environments (Fig. 5) in our
simulator with CAIRO graphic library [14]. For each episode,
we saved data related to the RL agent (position, speed and
heading) in order to project them on the real scenarios
(Fig. 5) using the code provided by [20] on their github
page2.

The following video3 shows how the RL agents drive and
perform the crossing maneuver in some recorded sequences
of such real scenarios. The percentage of episodes ended
successfully is greater than 99%, with 0% time-over and 0%
off-road cases. Moreover, some inaccurate evaluation in the
maneuver execution are emphasized as the RL agent is not
sensed by traffic vehicles. However, considering the diversity
of scenarios and traffic behavior between training and test
phase, we can state that this test represents a promising
result for future tests in real-world environments, in which
such module should always be flanked with safety systems
in order to avoid collisions. In addition, a smoother driving
style should be achieved in future works in order to test such
system on board of a real self-driving vehicle.

2https://github.com/ika-rwth-aachen/drone-dataset-tools
3https://youtu.be/SnKUk2k9YCg

https://github.com/ika-rwth-aachen/drone-dataset-tools
https://youtu.be/SnKUk2k9YCg


Finally, the results obtained in this test together with the
behavior of the RL agent illustrated in the video, prove that
our module is able to generalize both to unseen scenarios
and to different real traffic conditions.

VI. CONCLUSION

In this work we presented a system able to handle
intersection scenarios regulated by traffic signs in which
vehicles have to understand the priorities of other cars
involved in the environment following the priority to the
right rule. Agents are trained using a neural network that
outputs both acceleration and steering angle at each time
step. We proved that vehicles learn the right of way rule
encoding the only information on agents priorities in the
obstacle channel (Fig. 2d); in this way, each agent observes
two types of vehicles, learning which cars have higher
priorities and which ones should let it pass. We reached good
performances on three different intersection environments
(Fig. 1), comparing our system with the time-to-collision
(TTC) algorithm showing that increasing the traffic level,
our module reached better results than the rule-based method
that leads the system to unnecessary delays. Finally, we also
proved that the proposed system is able to generalize both
to unseen scenarios and to real traffic conditions. The results
show that our module is able to perform the maneuver in
presence of different human driving behaviors even if the
system was fully trained in a multi-agent fashion without
real traffic data.
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