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Abstract— Connected and Automated Vehicles (CAVs) have
real-time information from the surrounding environment by
using local on-board sensors, V2X (Vehicle-to-Everything) com-
munications, pre-loaded vehicle-specific lookup tables, and map
database. CAVs are capable of improving energy efficiency
by incorporating these information. In particular, Eco-Cruise
and Eco-Lane Selection on highways and/or motorways have
immense potential to save energy, because there are generally
fewer traffic controllers and the vehicles keep moving in
general. In this paper, we present a cooperative and energy-
efficient lane-selection strategy named MultiCruise, where each
CAV selects one among multiple candidate lanes that allows
the most energy-efficient travel. MultiCruise incorporates an
Eco-Cruise component to select the most energy-efficient lane.
The Eco-Cruise component calculates the driving parameters
and prospective energy consumption of the ego vehicle for
each candidate lane, and the Eco-Lane Selection component
uses these values. As a result, MultiCruise can account for
multiple data sources, such as the road curvature and the
surrounding vehicles’ velocities and accelerations. The eco-
autonomous driving strategy, MultiCruise, is tested, designed
and verified by using a co-simulation test platform that includes
autonomous driving software and realistic road networks to
study the performance under realistic driving conditions. Our
experimental evaluations show that our eco-autonomous Mul-
tiCruise saves up to 8.5% fuel consumption.

I. INTRODUCTION

Fuel efficiency is one of the most significant factors for
vehicles. In fact, according to the U.S. Energy Information
Administration (EIA) [1], nearly 143 billion gallons of
motor gasoline were consumed in 2018 in the United States.
Also, C O, emissions due to motor gasoline and diesel fuel
consumption comprise over 30% of total U.S. energy-related
C O3 emissions.

Connected and Automated Vehicles (CAVs) have immense
potential to improve fuel economy. Even though vehicle
automation alone is unlikely to have significant impacts
on fuel consumption [2], CAVs can effectively improve
fuel efficiency by using intersection connectivity [3], [4],
platooning [5], eco-driving strategies [6] and other novel
applications [7]. With using the peripheral technologies, such
as vehicular communications and/or edge computing, CAVs
are capable of improving energy efficiency by incorporating
a variety of information.

In particular, Eco-Lane Selection and Eco-Cruise on high-
ways/motorways are promising eco-driving strategies, be-
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cause there are generally fewer traffic controllers and the
vehicles keep moving in general. In fact, human drivers
change the lane when there is a slower lead vehicle and when
the neighboring lane has sufficient space, in order to shorten
their travel times and save fuel. The Eco-Cruise maneuver
adjusts vehicle speed and acceleration based on traffic, speed
limit changes, road features and navigational maneuvers [6].
Eco-Lane Selection determines the lane to drive in and the
timing to change the lane, accounting for road structures and
traffic. In these eco-autonomous driving strategies, CAVs in-
corporate static/dynamic data sources, including the on-board
sensors, V2X (Vehicle-to-Everything) communications, pre-
loaded vehicle-related data, and map database. Although
V2V (Vehicle-to-Vehicle) communications are not necessary
to save fuel, cooperation by V2V communications is at least
beneficial for road safety [8], [9].

In this paper, we present a cooperative and energy-efficient
lane-selection strategy named MultiCruise in which each
CAV selects the optimal lane and optimal target vehicle to
follow among multiple candidates by working with the Eco-
Cruise component. In MultiCruise, as shown in Figure [}
the Eco-Cruise component [6] calculates multiple sets of the
driving parameters of the ego vehicle, and then, the Eco-
Lane Selection component determines the lane to drive for
saving fuel consumption while ensuring road safety. Multi-
Cruise accounts for multiple data sources, such as the road
curvature, grade, and the surrounding vehicles’ velocities and
accelerations. MultiCruise calculates two costs to determine
the goal behavior: (i) the cost for staying in the current lane
and (ii) the cost for changing the lane and driving the target
lane. The cost function includes fuel costs and penalties.
The fuel costs are for saving fuel, while penalties are for
enabling cooperative and collaborative driving to improve
road safety during lane-changing maneuvers. By using these
penalties, MultiCruise is able to avoid selfish back-to-back
lane-changing maneuvers, which may affect the road safety
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Fig. 1. MultiCruise for Energy-Efficient Lane Selection Strategy.



for the surrounding traffic. Since CAVs are safety-critical and
life-critical applications, MultiCruise never allows a lane-
changing maneuver when road safety can be compromised.
Hence, MultiCruise improves fuel economy while satisfying
safety constraints.

The primary contributions presented in this paper are as
follows:

o We present an Eco-Lane Selection strategy named Mul-
tiCruise that selects the optimal lane and optimal target
vehicle to follow to save fuel consumption.

o We model and develop a cooperative mechanism for a
safe lane-changing maneuver that avoids selfish back-
to-back lane-changing maneuvers.

e We test and verify MultiCruise on a co-simulation
platform [10] that includes autonomous driving software
and realistic road networks.

The remainder of this paper is organized as follows. Sec-
tion II reviews previous work related to our research. Next,
Section Il describes the lane-changing maneuvers focused
in this paper. Section IV presents our eco-lane selection
strategies. Section V gives the implementation and evaluation
of our eco-driving strategies. Finally, Section VI presents our
summary and future work.

II. RELATED WORK

The advent of Connected and Automated Vehicles (CAVs)
[11] is a great opportunity to improve not only safety but also
vehicle fuel economy. In fact, ARPA-E runs NEXTCAR pro-
gram (Next-Generation Energy Technologies for Connected
and Automated On-Road Vehicles) that aims to leverage the
CAV technologies to further improve the energy efficiency
[10], [12], [13]. Vehicle automation alone is unlikely to have
significant impacts on fuel savings [2], but there are multiple
promising technologies for fuel savings, such as vehicle
platooning, intersection connectivity, traffic management and
eco-autonomous driving strategies.

In particular, eco-autonomous driving strategies can ef-
fectively improve fuel efficiency and they include four
eco-driving applications: Eco-Approach, Eco-Departure [14],
[15], Eco-Cruise [6], [16], [17] and Eco-Lane Selection
[18]. Eco-Approach is defined as the fuel-efficient vehi-
cle/powertrain operation that applies smooth deceleration to
bring a vehicle to stop in fuel-friendly fashion. The Eco-
Departure maneuver should conduct a smooth and less-
aggressive acceleration profile to reach the target cruise
speed. The target speed and the distance to reach the speed
typically depend on the traffic preview information that are
available from on-board sensors and vehicular communica-
tions. Eco-Approach and Eco-Departure are closely related
to road intersections and traffic controllers [14], especially
signalized intersections. For example, by using the SPaT
(Signal Phase and Timing) information via vehicular com-
munications, each connected vehicle can save fuel.

In addition, Eco-Cruise is the vehicle velocity control
strategy to save the fuel consumption. One of the promising

techniques for the cruise control is a Model Predictive Con-
trol (MPC), and Jing et al. [16] used a Finite State Machine
(FSM) to narrow down the search space for each MPC step
to be used for real-time applications. Also, Firoozi et al [17]
presented a Eco-Cruise component that incorporates the road
grade information and V2V communications. In [6], Eco-
Cruise is designed and developed to determine the driving
parameters of the ego vehicle by using the given lane and
given target vehicle at the moment. The Eco-Cruise com-
ponent accounts for road grade, curvature and surrounding
traffic, and we use this component for MultiCruise.

Eco-Lane Selection is also a significant application for
fuel savings. FWHA'’s Next Generation SIMulation (NGSIM)
program [19] has defined “target lane” concept and also
has introduced Freeway Lane Selection (FLS) algorithm,
for modeling a lane-changing maneuver on highways and/or
motorways. For connected vehicles, Jin et al [20], Kang et
al. [21] and Tian et al. [22] proposed optimal lane-selection
algorithms for traffic operations and management on highway
segments. Since these works relied on V2I (Vehicle-to-
Infrastructure) communications and segment-based opera-
tions, the approaches were not scalable. Also, there are
multiple on-going studies for lane-changing and merging
maneuvers [23], [24] for autonomous vehicles. Unlike our
work presented in this paper, these works just focused on
the throughput and never discussed fuel efficiency.

III. MANDATORY AND DISCRETIONARY
LANE-CHANGING MANEUVERS

In this section, we present a review of lane-changing
maneuvers on highways. Lane-changing maneuvers have
been originally studied for human-driven vehicles [20], [25],
[26]. These maneuvers can be categorized into two classes
[27]: (i) Mandatory lane-changing and (ii) Discretionary
lane-changing. First, mandatory lane-changing maneuvers
are conducted for vehicle navigation. When a vehicle has
to change its lane to drive, for lane reduction or for exiting
from highways, the lane-changing maneuver is classified into
mandatory one. For such mandatory lane-changing maneu-
vers, when the vehicle cannot complete its maneuver until
the deadline, it may have to re-calculate its route by using
the navigation system. On the other hand, discretionary lane-
changing maneuvers are for secondary purposes, such as
energy efficiency, traffic throughput and/or passenger com-
fort. A vehicle does not need to complete the discretionary
lane-changing maneuver for navigation purposes. Several
researchers have studied the lane-changing maneuvers for
autonomous driving [28], [29], but they do not focus on such
features [28], [29].

In this paper, we focus on discretionary lane-changing
maneuvers, because our primary objective is saving fuel
consumption on highways and motorways. Here, MultiCruise
for CAVs is the lane-selection component for saving energy
and it is not for vehicle navigation and route planning.
Therefore, each CAV only uses MultiCruise to change its
lane when it can follow the route provided by its navigation
system.



IV. MULTICRUISE: AN ECO-LANE SELECTION
STRATEGY

We now present MultiCruise as an energy-efficient lane-
selection strategy. MultiCruise consists of 2 steps to deter-
mine the lane to drive for saving fuel consumption: (i) Calcu-
lating cost for each potential target and (ii) Determining goal
behaviors. In this section, we first present the cost function,
and secondly propose a decision-making policy. In addition,
to show the safety and practicality of MultiCruise, we discuss
cooperative and safe mechanisms for MultiCruise.

Each CAV uses MultiCruise by incorporating various
data sources, including the on-board sensors, V2X (Vehicle-
to-Everything) communications, pre-loaded vehicle-specific
lookup tables, and map database. Since each vehicle deter-
mines its behaviors in a distributed manner, our MultiCruise
is designed to be used both around human-driven vehicles
and around CAVs seamlessly.

A. Cost and Penalty: For Multiple Targets

Each CAV uses MultiCruise to calculate three Eco-Driving
costs to determine whether it should change the driving lane
for saving fuel consumption. These three Eco-Driving costs
are captured in Eq. (I). Here, we calculate the driving costs
on the left neighboring lane Cp, current lane Ccop, and
right neighboring lane Crp, by using the cruise cost I
introduced and discussed in [6] and the penalty P for safety
purposes. The penalty P is presented in Eq. (2).

Crr = T(Ego:VEgo,VLF,drr) + P(ta,vEgo)
Cor = T(aggo,VEgo,VoF,dcF) )]
Crr = T(aggo,VEgo,VRrF,drr) + P(ta,VEg0)

VEgo
ia

2

P(ta,vEgo) = s

Here, agg, and v, are the ego vehicle’s acceleration and
speed, respectively. drr, dop and drp represent the inter-
vehicle distances to the lead vehicle on the left lane, current
lane, and right lane, respectively, as shown in Figure E} Also,
vrF, vor and vrp are the lead vehicles’ speeds on the left
lane, current lane, and right lane, respectively. The cruise
cost I' [6] is calculated in the Eco-Cruise component and it
includes (i) fuel cost, (ii) progress cost, and (iii) comfort cost.
The fuel cost is calculated by using the vehicle-specific fuel
table, to get the expected fuel consumption from the vehicle
velocity and acceleration. The progress cost is designed to
penalize when the ego vehicle is too slow and does not make
progress over time. The comfort cost accounts for vehicle
jerk, in order to provide comfortable driving to the human
passengers. A more detailed discussion on jerk is presented
in [6].

In addition, the penalty P in Eqgs. (1) and (@) is designed
for avoiding back-to-back and aggressive lane-changing ma-
neuvers. Here, tao describes the elapsed time from the last
lane-changing maneuver. s is a scaling factor. By using this
mechanism, the penalty becomes very large value right after
the lane-changing maneuver is completed, and consequently,
MultiCruise does not encourage the lane-changing maneuver
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Fig. 2.

Space Checker for Lane-Changing Maneuvers.

at this moment. The vehicle may be able to reduce fuel
consumption by conducting back-to-back lane-changing ma-
neuvers, but this behavior compromises road safety [30] and
we do not encourage this behavior in MultiCruise.

Each CAV uses these 3 Eco-Driving costs, C g, Cop and
CRrrF, to determine its behavior. We will propose and discuss
the decision-making policy next.

B. Decision-making Policy

MultiCruise compares the 3 Eco-Driving costs and selects
one lane to save fuel consumption. To guarantee road safety
under the practical CAV systems, MultiCruise has to satisfy 2
requirements: (i) MultiCruise does not overturn the decision
of the navigation system, and (ii) MultiCruise enables a safe
lane-changing maneuver. For the first requirement, we use a
threshold distance Drp, and a distance for the navigation
Dnay. Dyay represents the distance to the end of the
road segment and/or ramp-off. When Dy 4y is smaller than
Drp,., each vehicle has to consider the mandatory lane-
changing maneuver for its navigation purpose. For the second
requirement, after determining the target lane 6, each vehicle
has to confirm that the target lane has the sufficient space
to complete its lane-changing maneuver by using the sensor-
based perception. Since the lane-changing maneuvers may
lead vehicle accidents and/or collisions, each vehicle can start
the lane-changing maneuver only when safety is guaranteed.

The decision-making algorithm for MultiCruise is cap-
tured in Algorithm [I}] Here, we define and use C7p, as a
threshold value for the cost, in order to avoid unnecessary
lane-changing maneuvers, which may result only in trivial
benefits. Since the lane-changing maneuvers may disturb
the entire traffic flow, MultiCruise does not encourage the
aggressive and/or unnecessary lane-changing maneuvers.

C. Safety for Lane-changing Maneuver

Although the primary objective of MultiCruise is saving
fuel consumption, to enhance the road safety for lane-
changing maneuvers, MultiCruise includes 2 mechanisms:
(i) Passed time tA and (ii) Space checker.

First, ta represents the passed time from the last lane-
changing maneuver. When the value ¢ is small, the penalty



P becomes a large value and MultiCruise discourages the
lane-changing maneuver at this moment. Therefore, after
each vehicle changes its lane to drive, it stays in that lane
for a certain time period. Since back-to-back lane-changing
maneuvers disturb the surrounding traffic and may lead to
collisions, this cooperative mechanism enhances road safety.

Secondly, when each vehicle uses MultiCruise, it always
confirms the space on the target lane, as shown in Figure
by using its space checker. In Figure [2] the green box
represents the area confirmed by the space checker. When
there is a moving obstacle within the area, MultiCruise stops
the lane-changing maneuver, because it cannot guarantee
road safety. MultiCruise uses the space checker after the
target lane 6 is selected by the decision-making algorithm
described in Algorithm [T}

By using these mechanisms, MultiCruise improves road
safety while enhancing fuel efficiency on highways and/or
motorways.

Algorithm 1: Decision-making algorithm for Multi-
Cruise

1 if Dyay > D7y, then

2 Calculate Crp, Cor, CrE;

3 if Cop > Crp, then

4 target lane § = arg min  C,;
a€{LF,LC,LR}

5 end

¢ end
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Fig. 4. InfoRich Co-simulation Environment.
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MultiCruise Implementation on the Co-simulation Platform [10].
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Fig. 6. Synthetic Drives with a Highway Road Segment.

V. IMPLEMENTATION AND EVALUATION

In this section, we present the implementation and eval-
uation of our MultiCruise in the InfoRich co-simulation
platform introduced in [10] that includes autonomous driving
software [31] and a Simulink-based VD&PT model, as
shown in Figure [3] In the co-simulation platform, each
simulator keeps exchanging the data by using the UDP
protocol. The GUIs for InfoRich co-simulation platform is
presented in Figure ] The traffic and SPaT information are
generated in the traffic simulator as shown in Figure @}(a),
and these information is processed to determine vehicle’s
behaviors in the autonomous driving software as shown in
Figure @} (b). Such co-simulation is a promising technique to
model complex and dynamic systems in a distributed manner.
In the co-simulation system, each subsystem runs without
being aware of the entire system. We evaluate the energy-
efficient lane selection strategy in terms of fuel efficiency,
and compare against a baseline protocol. At the same time,
we show the feasibility, safety and practicality of the iREAD
co-simulation platform [10] by using it for testing and
verifying our eco-driving strategy.

First, we show the implementation on the eco-autonomous
driving system in Figure 5] In the system, the Route Planner
component calculates the route to be taken, by using the
given sensor information and map information. Based on the
output, Behavioral Planner determines the lane to drive, and
this component includes MultiCruise. In Behavioral Planner,



1600 / ///

1400 / 5E 0.15

/, /
1200 -

,
; o 01
i

1000 S

-

7 0.05
o

3
~

Total Distance (m)
P
Yaw Angle
>

e

8
-

N

N

20 40 60 80 100 120 140 0 20 a0
Time (s)

(a) Travel Distance for Simple Scenario. (b) Yaw Changes for Simple Scenario

Time (s)

140 0 20 a0 60 80 00 120 140
Time (s)

80 100 120

(c) Consumed Fuel for Simple Scenario

Fig. 7. Performance Evaluations of MultiCruise for a Simple Scenario.
s
w g ) ’
o N R
[ ] i | J“
)\ |\"| il | " W
- 3 <1 - 8 = — ) ::4 Mm:l A;l‘«” e :‘H T \i:i‘l\
0 T “:/', A 1 R I,',.;“l‘ T
2 iﬂdq/}l/ i ﬂ Ll i i :K’.;:H:r i M:‘ | :h it :}Il;j: \:}l:‘\
Bl ;J?'f /Y [ ‘} 1 i }W T R A
o ‘ [ (R v VBTN B L O
3 J}i il D
i K || R e
E | (il [ ilty AR I T A
| — Lo R :w::: i
ol [ LR L] AR R
MultiCruise
| | | | — — —Lane-following Protocol |
2o 20 40 80 100 120 140
Time (s)
Fig. 8. Fuel Rates for a Simple Scenario.

the Eco-Behavior Goals components transmit the information
of the left lane, current lane and right lane, and then Eco-
Trajectory Generation [6] calculates the speed trajectories
and cruising costs I' for these three lanes. Finally, by using
these three values, Eco-Behavior Goals determines the lane
to drive while accounting for safety requirements.

We first evaluate our eco-driving strategy with a simple
scenario in which there is only a straight road segment. In
this scenario, we show the details of the vehicle movements,
fuel rates, and total fuel consumption through each drive.
In addition, we evaluate MultiCruise with realistic synthetic
scenarios discussed in [10]. We prepare 6 different road
networks that have a variety of features, such as speed limit,
road grade, curvature, and traffic controllers. These synthetic
scenarios have a highway road segment, and they have more
than 12 (km) of total distance traveled.

A. Performance Metric

To evaluate our MultiCruise in terms of fuel efficiency,
we use Consumed Fuel as a metric. The Consumed Fuel
represents the fuel consumption used in each drive. The
primary purpose of MultiCruise is to decrease Consumed
Fuel. The Consumed Fuel is mainly determined by vehicle
dynamics and powertrain models, and the co-simulation test
platform [10] enables to evaluate the performance.

B. Synthetic Scenarios

To show the feasibility and practicality of MultiCruise,
we utilize synthetic drive cycles derived from real-world

driving data provided from the National Renewable Energy
Laboratory (NREL). In particular, we select 6 synthetic
drives, Map A to Map F, that include highways or motor-
ways, because MultiCruise focuses on the discretionary lane-
changing maneuvers on highways. We present 2 examples
of the synthetic cycles, as shown in Figure [§] Also, in
Table Il we present the basic information of the 6 synthetic
cycles, including the cycle distance, the highway distance,
the speed limit on the highway segment, and the number of
road intersections. For example, as shown in Table |I, Map
A has more than 20 (km) for overall distance and includes
approximately 12 (km) along a highway segment, in which
there are no traffic controllers and/or intersections.

C. Evaluation with a Simple Scenario

We first evaluate our MultiCruise with a simple straight-
road segment. The road segment has multiple lanes to drive

TABLE I
BASIC INFORMATION FOR SYNTHETIC CYCLES.

Overall Highway Speed Limit Number of

Distance Distance on Highway | Intersectons
Map A | 2031 (km) | 12.71 (km) 105 (km/h) 15
Map B | 17.33 (km) 9.86 (km) 105 (km/h) 10
Map C | 19.99 (km) 4.89 (km) 97 (km/h) 26
Map D | 15.06 (km) | 10.79 (km) 105 (km/h) 8
Map E | 15.59 (km) 3.72 (km) 112 (km/h) 10
Map F | 12.71 (km) 3.46 (km) 112 (km/h) 14
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and has 1,600 meters. Also, for this case study, the speed
limit is set as 112 (km/h) that is equal to 70 (miles/h). We
evaluate the fuel consumption, compared to a baseline Lane-
following Protocol. In the Lane-following Protocol, each
vehicle follows the lane to drive for its navigation purpose
and does not change its lane for fuel saving and/or traffic
throughput.

In addition, for this case study, we have a slower lead
vehicle that drives approximately at 70 (km/h). In the lane-
following protocol, each vehicle simply drives and stays in
its current lane even when there is a slower lead vehicle.

We present the traveled distance, yaw angle changes
and total fuel consumption in Figures (a), -(b) and -(c¢),
respectively. Also, we present the fuel rate in Figure 8] First,
as shown in Figure [7}(a), MultiCruise allows the ego vehicle
to reach the destination in a much shorter trip time, because
the vehicle can adaptively select the lane and start the lane-
changing maneuver when it detects the slower lead vehicle.
On the other hand, the baseline protocol spends a longer trip
time because of the slow lead vehicle. Secondly, we show
the yaw changes of the travels with MultiCruise and with the
baseline protocol. The vehicle with MultiCruise changes its
lane twice to overtake the slower lead vehicle. On the other
hand, the vehicle under the baseline protocol does not change
its driving lane, and therefore, the yaw angle is constant.

Overall, MultiCruise saves around 32% fuel in this case
study, as shown in Figure [7}(c). The vehicle with the lane-
following protocol has to slow down once it is behind the
slower lead vehicle, and consequently, it wastes energy. The
vehicle with MultiCruise not only does not need to hit
the brakes but also can avoid wasting fuel by dynamically
selecting the lane to drive at a higher speed.

Since this case study is with a simple scenario, we study
MultiCruise in more scenarios next.

D. Evaluation with Synthetic Scenarios

We evaluate MultiCruise with 6 synthetic scenarios, Map
A to Map F. Each road network contains 1 highway segment.
We compare MultiCruise to the lane-following protocol
under 2 traffic volumes: (i) Moderate traffic (100 (m/vehicle))
and (ii) Heavy traffic (50 (m/vehicle)). Since MultiCruise

focuses on lane-changing maneuvers for energy efficiency,
we do not evaluate the performance under the traffic jam
and/or congestion. Under the serious traffic jam, since vehi-
cles move very slowly, the eco-lane selection strategy does
not improve fuel efficiency.

As shown in Figure [9] we present the relative fuel con-
sumption in moderate traffic and in heavy traffic. We show
the relative performance of MultiCruise, compared to the
baseline protocol. As shown in the result, MultiCruise has
superior performance and successfully saves Consumed Fuel
across all the cases. In particular, MultiCruise saves fuel
consumption by 7.2% in Map A and by 8.5% in Map B
with moderate traffic. In Map C and Map F, MultiCruise
has a small improvement in fuel efficiency, because the
highway segment is relatively short and there are few op-
portunities to change lanes. One interesting point to note is
that MultiCruise saves more energy in moderate traffic than
in heavy traffic, other than in Map D. In moderate traffic,
there are more spaces and opportunities to conduct lane-
changing maneuvers, and MultiCruise contributes to saving
fuel consumption. As discussed and shown in this section,
MultiCruise improves fuel efficiency both in a simple sce-
nario and in practical cases.

VI. SUMMARY AND FUTURE WORK

In this paper, we presented a cooperative and energy-
efficient lane-selection strategy named MultiCruise, where
each Connected and Automated Vehicle (CAV) selects the
optimal lane and optimal target vehicle to follow from mul-
tiple candidates to save fuel consumption. We described the
Eco-Driving costs to determine whether the vehicle should
stay or change the driving lane for fuel standpoint. Also, we
presented safe and cooperative mechanisms for MultiCruise
that avoid selfish back-to-back lane-changing maneuvers and
avoid vehicle collisions and/or accidents. MultiCruise incor-
porates the Eco-Cruise component that adjusts vehicle speed
and acceleration for eco-autonomous driving. We conclude
that MultiCruise improves fuel efficiency on highways and
motorways by showing both simple case study and realistic
simulation with the co-simulation test platform and the
autonomous driving software. In future work, we will study
the energy optimization across multiple CAVs, because our
work focused on the energy consumption only for the ego
vehicle. In addition, we will develop a Hardware-in-the-
Loop (HIL) simulator by integrating with a real vehicle and
implement MultiCruise on it.
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