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Abstract— Traffic scenario categorisation is an essential com-
ponent of automated driving, for e. g., in motion planning
algorithms and their validation. Finding new relevant scenarios
without handcrafted steps reduce the required resources for
the development of autonomous driving dramatically. In this
work, a method is proposed to address this challenge by
introducing a clustering technique based on a novel data-
adaptive similarity measure, called Random Forest Activation
Pattern (RFAP) similarity. The RFAP similarity is generated
using a tree encoding scheme in a Random Forest algorithm.
The clustering method proposed in this work takes into account
that there are labelled scenarios available and the information
from the labelled scenarios can help to guide the clustering
of unlabelled scenarios. It consists of three steps. First, a self-
supervised Convolutional Neural Network (CNN) is trained on
all available traffic scenarios using a defined self-supervised
objective. Second, the CNN is fine-tuned for classification of
the labelled scenarios. Third, using the labelled and unlabelled
scenarios an iterative optimisation procedure is performed for
clustering. In the third step at each epoch of the iterative
optimisation, the CNN is used as a feature generator for an un-
supervised Random Forest. The trained forest, in turn, provides
the RFAP similarity to adapt iteratively the feature generation
process implemented by the CNN. Extensive experiments and
ablation studies have been done on the highD dataset. The
proposed method shows superior performance compared to
baseline clustering techniques.

I. INTRODUCTION

In recent years, there have been rapid developments in
the field of autonomous driving and driver assistance sys-
tems [1]. As new and improved autonomous driving func-
tions are introduced, the autonomous system must be capable
of handling various driving scenarios. Traffic scenario cate-
gorisation is a key component for downstream tasks like path
planning [2], behaviour planning and scenario-based valida-
tion methods [3], [4]. Hence, representative traffic scenarios
(e.g. overtake, cut-in, etc.) are necessary for developing
and testing the behaviour of autonomous vehicles [5]. The
representative scenarios can be defined by means of expert
knowledge, can be generated from simulations or can be
identified from real-world driving data.

The approaches using expert knowledge and simulations
have important constraints that limit the generation of a list
of representative scenarios, such as the limited knowledge of
the experts and the ability of the simulation environment to
model the complex interactions between traffic participants.
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Fig. 1: Overview of the three step clustering process. The
red portion in the figure shows frozen layers of the CNN
and the green portion represents the layers that are trained.

Thus, a promising way to obtain scenario categories is to
identify them automatically from real-driving data [3], [6],
[7]. In this work, the problem of identifying new traffic
scenario categories from real-driving data is studied. Un-
supervised scenario clustering methods have been proposed
in previous works. In [3], [8], an Unsupervised Random
Forest (URF) algorithm is proposed to cluster traffic sce-
narios. The clustering is based on custom features that are
selected based on expert knowledge. In [7], an automated
way for deriving traffic scenarios is presented. Even though
the dependence on handcrafted features are reduced, still
some features and distance measures have to be selected by
a human.

In comparison to the aforementioned methods, this work
does not rely on any handcrafted features and the proposed
method can be applied to all kinds of scenarios irrespective
of the number of vehicles present. More importantly, unlike
the works mentioned above, instead of considering this
problem as completely unsupervised, this work explores how
the knowledge from the available labelled scenarios can
help in guiding the clustering of the unlabelled scenarios.
This idea is based on the assumption that representations
learned for the labelled scenarios can also provide a good
representation for the unlabelled scenarios. So, in this work it
is assumed that both labelled and unlabelled traffic scenarios
are available.

The clustering process consists of three steps as shown in
Fig. 1. The steps are as follows:

1) Model initialisation using a self-supervised objective -
pre-training.

2) Fine tuning the model with labelled scenarios - clas-
sification.

3) Optimising the model for clustering - clustering.
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The first step is to pre-train a 3D CNN [9] using self-
supervision objective i.e., a pretext task. The pretext task
here means defining a supervised task to train the network
without the need for actual ground truth labels, i. e., the
network is trained using labels that are generated in an
automated fashion without any human input. In computer
vision, predicting the angle of rotation, colourising images
are used as pretext tasks. Hence, both the labelled and
unlabelled scenarios are used to pre-train the 3D CNN. It
is important to note that the actual ground truth labels from
the labelled scenarios are not used in this step.

As a second step, a classification head is added to the pre-
trained 3D CNN. Only the last layers of the 3D CNN and
the classification head are tuned on the labelled data. This
ensures the scenario classification along with maintaining the
general feature extraction capability from the pre-trained 3D
CNN. This is shown in Fig. 1, Step II. The red portion in
the figure represents the frozen layers and the green portion
represents the fine-tuned layers of the 3D CNN.

As a third and final step, a clustering head is added to the
fine-tuned 3D CNN. The last layers of the 3D CNN along
with the classification and clustering heads are iteratively
optimised using both the labelled and unlabelled scenarios.
The classification head is optimised using the ground truth
labels from the labelled scenarios. The clustering head is
optimised using a data-adaptive similarity generated from
an URF algorithm called Random Forest Activation Pattern
(RFAP) similarity. The implementation of the architecture is
made publicly available1.

The contributions of this work are the following:
• Introduction of a self-supervised pretext task for traffic

scenarios.
• Introduction of novel data-adaptive features called

RFAPs. The RFAPs provide a data-adaptive similarity
measure for the unlabelled data.

• Presenting a method for unsupervised clustering of
unlabelled traffic scenarios given few labelled scenarios.

• Comprehensive analysis and ablation studies on the
proposed methods using the highD [10] dataset.

The remainder of the paper is organised as follows:
Section II presents the related work. Section III discusses the
proposed method. Section IV illustrates the experiments and
analysis on the highD dataset. Section V discusses the abla-
tion studies. Finally, the paper is concluded in Section VI.

II. RELATED WORKS

A. Traffic Scenario Clustering

Unsupervised traffic scenario clustering methods have
been studied in previous works [3], [6], [7], [11]. There are
also methods [12], [13] that focuses on trajectory cluster-
ing which compares and clusters trajectories from a single
vehicle. Since this work focus on clustering scenarios with
multiple traffic participants, publications about clustering tra-
jectories are not discussed further. In [8], an URF algorithm
is proposed to identify clusters from simulated driving data.

1https://github.com/lab176344/TrafficScenarios-RFAPsClustering

The authors suggest using the path based proximity from an
URF algorithm along with Hierarchical Clustering (HC) to
solve the task. But, the method relies on features selected by
experts and the clusters are selected visually, which limits
the amount of data that can be clustered at a single time.
In [7], an automatic scenario clustering method on real-
world driving data is proposed. The automatic clustering
uses dynamic time warping to compare distances between
trajectories based on handcrafted features and the generated
distance measure is used to construct scenario clusters. In [4],
a spatial filter to determine the relevant target objects around
the ego and a custom distance metric along with HC is
proposed to cluster scenarios.

There are also approaches like [14] which cluster traffic
scenarios based on the interaction between two vehicles
using Long Short Term Memory (LSTM)+CNN. A deep
learning based method for clustering traffic scenarios is
presented in [6]. Spatio-temporal autoencoders and recurrent
neural networks are used for solving the task of traffic
scenario clustering.

In comparison to the above mentioned works except [6],
which does feature engineering, the scenarios in this work
are described as a sequence of occupancy grids. Such a
representation can be generated from most of the common
autonomous vehicle sensor suites. Also, in this work the
scenarios considered are not limited by the number of traffic
participants around the ego. As opposed to all the clustering
methods discussed above, the problem setting addressed in
the proposed method is different, this work utilises labelled
traffic scenarios in guiding the clustering of unlabelled traffic
scenarios.

B. Method Comparison

The method presented in this work is based on [15], but
extends the architecture in the following ways: (1). The
traffic scenarios used in this work are described as time series
data as opposed to images in [15], (2). A new self-supervised
objective is introduced for training a 3D CNN for traffic
scenarios, (3). A data-adaptive similarity measure based on
novel features generated from a RF algorithm [16] is intro-
duced for clustering purposes. Also, intended application of
the proposed method is different.

III. METHODOLOGY

This section details the clustering methodology. A dataset
with unlabelled traffic scenarios Du =

{
Gu

1 , . . . ,G
u
Mu

}
,

where the traffic scenarios are represented as a sequence of
occupancy grids G, is available. Also, a dataset with labelled
traffic scenarios Dl =

{
(Gl

1, y1), . . . , (Gl
Ml
, yMl

)
}

, where
yml

is the scenario label. Ml and Mu are the number of
labelled and unlabelled data respectively. The clustering is
realised in a three step process. In step I, a 3D CNN is
pre-trained on a defined pretext task using both Dl and Du

to learn robust feature representations (see Sec. III-B). In
step II, a classification head is added to the pre-trained 3D
CNN. The classification head and the last layers of the 3D
CNN are fine-tuned only using Dl (see Sec. III-C. In step
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Fig. 2: Self-supervised learning for traffic scenarios. The red box shows the original scenario in the correct temporal order,
the green box shows the self-supervised data preparation, and the blue box shows the pretext task of classifying the input
to one of the 24 classes.

III, a clustering head is added to the fine tuned 3D CNN.
An iterative optimisation procedure is performed on the last
layers of the 3D CNN, the clustering and the classification
heads. For solving the clustering task using both Dl and Du

are used (see Sec. III-D). The traffic scenario representation
used in this work is described first before explaining the
methodology in detail.

A. Traffic Scenario Representation

Traffic scenarios in this work are described as introduced
in [2], a discretised space-time representation of the envi-
ronment around the ego, from the time t−3 to t0. The t−3

refers to a time before t0, i. e., a time before the traffic
situation becomes interesting. The traffic scenario at each
time instance is represented as a 2D occupancy grid Gt ∈
RI×J . The occupancy probability of each cell Gt(i, j) is
assigned either as 1 for occupied space, 0 for free space or
0.5 for an unknown region. For a time span of t0 − t−3 =
1.5s and ∆t of 0.5s, a traffic scenario is represented as
G =

[
Gt−3

,Gt−2
,Gt−1

,Gt0

]
, where G ∈ RI×J×Nts with

I rows, J columns and a depth of Nts. The number of time
steps is Nts = 1 + t0−t−3

∆t . An exemplary representation is
shown in Fig. 2. The trigger used to determine the time t0 at
which the traffic situation becomes interesting is determined
based on Time-Headway (THW).

B. Step I: Self-Supervised Learning for Traffic Scenarios

The main aim in this step is to train a 3D CNN network
with a pretext task to provide robust low-level features for the
traffic scenarios. To do this, the most naive way is to train the
3D CNN only on the labelled data first. The trained model
can be used as a feature extractor for the unlabelled data
and clustering is done on the extracted features. But, this
does not guarantee that a model learned from the labelled
data will generate good features for the unlabelled data.
The model might be biased towards the classification of the
labelled data. Hence, this work proposes a self-supervised

pre-training similar to [15], [17] to generate robust low-level
features which later can be fine tuned for the clustering.

The self-supervised objective does not require any data
annotations, so it can be applied for both labelled and
unlabelled data. The idea behind self-supervision is that in
the course of solving the self-supervised objective the model
will learn some semantic structure in the data and learn
robust low-level features. The self-supervised objective used
in this work is a pretext task.

The pretext task is to predict the correct temporal order
given a sequence of occupancy grids. Consider a sequence of
four occupancy grids G that describe a traffic scenario. The
sequence of four occupancy grids in the correct temporal
order can be shuffled and 24 different combinations of
sequences can be produced i.e., say the correct temporal
order is (1, 2, 3, 4) after shuffling one can have 24 different
orders like {c1 = (1, 2, 3, 4), . . . , c23 = (3, 1, 4, 2), c24 =
(4, 2, 3, 1)}. This can be seen in the green box of Fig. 2. So,
each of the shuffled 24 sequence of grids can be assigned
to one of the order from {c1, . . . , c24}. The problem this
way is converted to a 24−class supervised classification
task for assigning an input grid G to one of the 24 orders
{c1, . . . , c24}. This can be seen in the blue box of Fig. 2,
where G with the order (1, 2, 3, 4) is given as input and
the network chooses c1 as the output. The labels for this
pretext task is generated without using any ground truth
labels from Dl are used here. Temporal order shuffling has
been explored as pretext task for video classification in [18].
The rationale behind temporal shuffling is to make the model
understand the temporal structure in the data by reasoning
out how the vehicles moves in the scenario snippets. The
classification here in this work is done with a 3D CNN f(G),
where the convolution happens both in spatial and temporal
dimensions. The 3D CNN is trained with categorical cross
entropy to classify a shuffled f(G) to one of the 24 classes
as shown in the blue box in Fig. 2.
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C. Step II: Fine-Tuning with Labelled Data
The goal in this step is to fine-tune f(G) which is pre-

trained in step I using the ground truth labels from Dl. The
mapping G 7→ y is realised, where y ∈ RK is the one-hot
representation of the scenario label with K labelled classes.
Before fine-tuning, the fully connected layers from f(G),
which were trained for the 24-class problem, are removed.
A new classification head αl is added to f(G) to classify the
input to one of K classes. The classification head here refers
to a fully connected layer followed by a softmax activation
layer. Only the last layers of f(G) and αl are tuned to
retain the robust low-level features from pre-training and
to learn only high level features for scenario classification.
The network f(G) : RI×J×Nts → RF takes a traffic
scenario G ∈ RI×J×Nts as input and produces the vectorised
representation h ∈ RF , where F is the dimensionality of the
vectorised representation. Given Dl, the classification head
αl(h

l) : RF → RK takes the representation hl as input and
produces the target vector ŷ ∈ RK , where K is the number
of classes in the labelled data. The last layers of the network
f(G) and the classification head αl(h

l) are trained using the
categorical cross entropy,

Lcat = − 1

M

M∑
m=1

K∑
k=1

ym,klog(ŷm,k). (1)

D. Step III: Iterative Optimisation with Labelled and Unla-
belled Data

The goal of clustering is to divide the given unlabelled
data into Q number of groups. To realise this as a final step
f(G) is iteratively optimised to learn feature representations
for the unlabelled data in Du. In this section the following
contents are discussed: the iterative optimisation procedure
to learn feature representations for the scenarios in Du, and
similarity calculation based on RFAPs.

1) Iterative Optimisation: The intent of doing iterative
optimisation task is to fine-tune the last layers and the
heads of f(G) using the losses Lcluster, Lcat and Lcons

to cluster the unlabelled scenarios. Lcluster is the clustering
loss to learn feature representations for unlabelled scenarios.
Lcat is the categorical cross entropy loss which retains the
knowledge from labelled scenarios. Lcons is used to ensure
stability when training with unlabelled scenarios.

The clustering is realised by iteratively-tuning f(G)
trained on both Du and Dl, i. e. tuning the network epoch by
epoch. In a single epoch the following procedures are per-
formed. First, the representation set Dh

u = {hu
1 ,h

u
2 , . . . ,h

u
N}

for the scenarios in Du is extracted. Followed by that, an
URF algorithm g(hu) is trained on the extracted features
Dh

u . Given a mini-batch, the trained URF algorithm can then
be used to compute the proximity/similarity matrix S. The
similarity in this work is based on RFAPs which is explained
in Section III-D.2. Using S and extracted features hu and
hl of the labelled and unlabelled scenarios, the three losses
mentioned above are constructed and used for optimisation in
a single epoch. These procedures are repeated for a selected
number of epochs. At each epoch a new URF model g(hu)
is trained using the extracted features Dh

u at that epoch. The
complete schematic procedure for a single epoch is shown
in Fig. 3. The procedures at a single epoch are discussed in
detail.

a) Clustering Loss: Given an URF g(hu) trained on
Dh

u , the similarity matrix S is computed for a mini-batch
of unlabelled traffic scenarios using the RFAPs. The compu-
tation of the similarity with RFAPs is explained in detail
in Section III-D.2. The value at Sij ∈ (0, 1], gives the
pairwise-similarity between the i-th and j-th scenario from
the mini-batch denoting how similar the scenarios are. The
optimisation objective for clustering is constructed using the
matrix S. A new clustering head αu(hu) : RF → RQ
is added to f(G) parallel to the head αl(h

l). Here, Q is
the number of clusters in the dataset Du. Following [19],
[20], [21], the parameter Q is assumed to be known but in
Section V a study is performed, where the parameter Q is
kept as unknown and Q is estimated as suggested in [22].
The clustering loss to fine-tune the f(G) for the unlabelled
dataset Du is based on binary cross entropy. It is given by

Lcluster =
1

W 2

W∑
i=1

W∑
j=1

Sij log P(i = j)+

(1− Sij) log P(i 6= j), (2)

where W is the mini batch size. P(i = j) denotes the
probability that the traffic scenario i and j are in the same
cluster. A similar loss was used in [15], [19], but S in



this work is given by the data-adaptive similarity from the
RFAPs. As shown in [19], if the number of clusters Q is
fixed and i, j are independent, P(i = j) can be modelled as
the inner product between the vectors αu(hu

i ) and αu(hu
j ).

The final clustering loss is given as

Lcluster =
1

W 2

W∑
i=1

W∑
j=1

Sij log(αu(hu
i )>αu(hu

j ))+

(1− Sij)log(1− (αu(hu
i )>αu(hu

j ))). (3)

Now as the clustering loss is defined, the last layers of
f(G) and the new clustering head can be fine-tuned for the
clustering task. An argmax on the vector αu(hu) will provide
the cluster number to which an input scenario belongs.

But, training only on the unlabelled data will destroy the
representation learned for the labelled dataset, leading to
catastrophic forgetting [23] . Hence, both heads αl and αu

are trained in parallel on categorically cross entropy using
the dataset Dl and the clustering loss using the dataset Du

respectively. Additionally, the head αl is extended to classify
the clusters identified by the clustering head αu. So, the head
αl does the mapping RF → RK+Q and it is trained on the
categorical cross entropy. This way the knowledge of the
labelled traffic scenarios is also preserved when optimising
for clustering the unlabelled traffic scenarios. The knowledge
from the labelled traffic scenarios is shown to improve
clustering accuracy from in Section V.

b) Consistency Loss: The similarity Sij between two
given traffic scenarios is updated every epoch as the rep-
resentation is optimised by the categorical cross entropy
and the clustering losses. This might lead to instability
or inconsistency in the training for the unlabelled dataset.
Following [15], [19], a consistency constrain, which is used
in semi-supervised learning setting [24], is also introduced.
The consistency loss constrains the model to produce the
same output for a given traffic scenario Gi 7→ hi and an
augmented version of the traffic scenario Ĝi 7→ ĥi (e.g.
random erasing, adding random noise). The consistency loss
is given by

Lcons =
1

Ml

Ml∑
i=1

(αl(h
l
i)− αl(ĥ

l
i))+

1

Mu

Mu∑
i=1

(αu(hu
i )− αu(ĥu

i )). (4)

c) Total Loss: The total loss used to optimise f(G) for
the clustering task while keeping the knowledge from the
labelled data is given by,

L = Lcat + Lcluster + ω(β)Lcons. (5)

Following [25], ω(β) = λexp(−5(1− β
T )2) is the ramp-up

function where β being the epoch, T is the ramp-up length
and λ ∈ R+. Using L, the last layers of the f(G) and the
heads αl and αu are tuned. This procedure is repeated a
given number of epochs .

2) Data-adaptive similarity with RFAPs: In this work, the
similarity matrix S is defined by a data-adaptive similarity
measure based on features called RFAPs. In the following,
the generation of RFAPs from a URF algorithm and calcu-
lation of S with RFAPs are explained.

a) Generation of RFAPs: The RFAPs are generated by
an URF algorithm g(hu) trained on the extracted features
hu of the scenarios from Du. The generation of RFAPs and
the calculation of similarity will be discussed in this section.

The generation of RFAPs is based on a novel encoding
scheme for indexing the nodes of the URF trees. The RFAPs
in turn will be used to calculate the data-adaptive similarity.
Let the B trees in the URF {T1, . . . , TB} be fully grown.
The b-th tree Tb divides the input space RF into many
small hypercubes. So, if two data points hi and hj end
up in the same hypercube they are similar to each other.
This is termed as proximity in [16]. Similarly, the paths
taken by the data points to reach the terminal nodes can
also provide a similarity measure by comparing the common
paths taken [8].

The paths taken by the data point hi in all the trees can
be represented by the vector ri ∈ NB . Each element of ri
is an ordinal number representing a path through a tree. By
using a special node encoding, a single number is sufficient
to identify a specific path in a tree. In the following, the
encoding of a data point’s path in one tree is presented. This
encoding is the basis for RFAPs. In a first step, all nodes of
each tree have to be indexed. Looking at one specific node in
the tree Tb the following quantities are used for indexing: the
maximum depth of the tree db, the depth of the considered
node kb ∈ {1, . . . , db}, and the number of nodes Nb in Tb.

Algorithm 1 Indexing for a tree in the RF

Input: Tb, db, Nb
Output: Indexed Tb

1: id1 ← 0
2: for n = 2 to Nb do
3: idpr = getParentNodeid(idn)
4: if n.isleft then
5: idn ← idpr + 10db−kb

6: else
7: idn ← idpr + 2 ∗ 10db−kb

8: end if
9: end for

The algorithm for indexing a tree is depicted in Alg. 1.
The index of the root node id1 at kb = 1 in a tree is set to 0.
Each level in a tree is indexed as follows: if the node is a left
child node then the index for the child node is assigned as the
sum of the index of its parent node idpr and 10db−kb , while
the right child node is indexed as the sum of its idpr and
2 ∗ 10db−kb . With this indexing of nodes, the path of data
point hi in the tree Tb is encoded in the ordinal number
assigned to the terminal node reached by hi. An example
indexed tree Tb is shown in Fig. 4 with Nb = 9 and db =
4. Assume a data point hi, which is reaching the terminal



node 211. The index 211 is encoding the path shown in red:
0 → 200 → 210 → 211. Considering all B trees in a RF,
the RFAP-representation for the data point hi is represented
as ri =

[
idi1, id

i
2, . . . , id

i
B

]T
, where idib denotes the index

of the terminal node reached by hi in the tree Tb.

Fig. 4: RF tree before indexing (left) and indexed tree (right).

b) Calculating Similarity with RFAPs: The advantage
of RFAPs is that the complete path taken by two data points
can be used to calculate similarity. The digits of the RFAP
indices encodes the complete path information, The more
similar the digits are between two RFAP indices, the deeper
the paths are shared to reach the terminal nodes. Hence,
the similarity with RFAPs is calculated using the hamming
distance. The indices of the nodes are of equal length, and if
the indices are treated as sequences of digits, the similarity
Sij can be given as,

Sij = 1− 1

B

B∑
b=1

|
{
o ∈

{
1, . . . , |rbi |

}
|rbi [o] 6= rbj [o])

}
|

|rbj |
.

(6)
.

Here, rbi refers to the RFAP index at the b-th position in
ri. The numerator checks how many digits are not equal
when comparing ri to rj . The |.| returns the digits length
of elements in the vector rbi . For e. g., in Fig. 4, with the
terminal node indices 211 and 212, the similarity in a single
tree is 1 − (1/|211|), where |211| = 3. A Sij value of 1
means the two data points i and j took the same path in all
the trees.

In summary, the clustering is done in a three step process:
As a first step, in order to get robust low-level features a
3D CNN is trained on a pretext task. As a second step, the
trained 3D CNN is fine-tuned on labelled classes. As the final
step, the fine-tuned network is iteratively optimised using the
three losses combined for clustering while preserving the
knowledge from the labelled data.

IV. EXPERIMENTS AND RESULTS

This section reports the experiments and results of the
proposed method applied on the highD dataset.

A. Dataset

The highD dataset is a naturalistic vehicle trajectory
dataset recorded using drones on German motorways. The
dataset consists of 16.5 hours of drone video records in six
different locations and contains around 110 000 vehicles. The

data analysed in this work is restricted to traffic scenarios
where the ego vehicle has a leading vehicle. Since this work
focuses on traffic scenarios to validate the clustering method,
7 common highway scenarios are extracted from the dataset:

1) Ego lane change to the right lane,
2) Ego lane change to the left lane,
3) Leader cutting into ego’s lane from the left lane,
4) Leader lane change from ego’s lane to the left lane,
5) Leader cutting into ego’s lane from the right lane,
6) Ego following the leader in a lane,
7) Leader lane change from ego’s lane to the right lane.
As described in III-A, THW< 4s is used as the criterion

for finding interesting scenarios. The environment at each
time instance is represented with Gt of span 15m × 200m
and a resolution of 0.5m × 1m. The interval tlb− t0 and ∆t
used in this work are 2s and 0.5s respectively. So, a traffic
scenario is represented with G of size 30×200×4. The grids
are generated in an ego-centric fashion fixed at t0. In total
4480 scenarios are extracted and is split as 70% for training,
10% for validation and 20% for testing.

B. Implementation Details

The f(G) is a 3D-Resnet [26], a 3D version of the normal
Resnet [27] with spatio-temporal operations. The URF is
trained with B = 500 trees. The parameters T and λ are set
to 100 and 5 respectively. The f(G) is trained using SGD
optimiser [28] with moment and decay and with a batch size
W of 32. Only the last Residual block of the 3D-ResNet is
trained in the Step II and III.

C. Evaluation Metric

The evaluation metric used for measuring the clustering
accuracy (ACC) is the unsupervised clustering accuracy [29].
The best mapping between the labels obtained from clus-
tering and the ground truth is computed by the Hungarian
algorithm. The ACC is defined as follows

ACC = max
m

∑Mu

j=1 1(yj = m(cuj ))

Mu
, (7)

where yj is the ground truth and cuj is the predicted label
for the unlabelled sample Gj . The range of the ACC is [0, 1],
with 1 referring perfect clustering.

D. Baselines

The proposed method is compared with the following
methods: (a) K-means clustering [30] directly on the dataset
Du. (b) A spatio Temporal Autoencoder + Heirrarchial
Clustering (STAE+HC) [6], a spatio-temporal autoencoder
is trained on the dataset Du and HC is performed on the
latent space of the autoencoder. (c) Autonovel [15], a spatio-
temporal extension of the proposed method in [15] is done
and the method uses rank statistics as similarity measure for
clustering. (d) Comparison with other similarity measures
like cosine, L2, rank statistics [15] and the similarity from a
K-Nearest Neighbour (KNN) algorithm for determining S.



E. Results

1) Clustering: In this experiment, the following problem
setting is used. The first 4 classes out of the available 7
scenarios are treated as labelled classes and the remaining
3 classes are treated as unknown. In the ablation study, an
analysis is also conducted with a different combination of
labelled and unlabelled classes. The aim of this experiment
is to measure the clustering accuracy on the 3 unlabelled
classes. As suggested in [19], [20], the experiment is repeated
5 times and an average of the accuracy (ACC) is reported in
the Table I. There, it can be seen that the proposed method
outperforms the baselines and provides good clustering ac-
curacy.

TABLE I: highD - Clustering accuracy.

Method ACC (↑)
K-means [30] 0.391
STAE+HC [6] 0.52
Autonovel [15] 0.794

Proposed method (RFAPs) 0.810

2) Comparison with Other Similarities: In this experi-
ment, the proposed RFAP based pairwise similarity used
in the mini-batch for clustering is compared with standard
similarity measures like cosine, L2, rank statistics [15] and
similarity from KNN. From the results shown in Table II,
it can be seen the RFAP similarity provides superior perfor-
mance when compared to other standard similarity measures.

TABLE II: Clustering accuracy with different similarities.

Similarity cosine L2 KNN rank [15] RFAPs
ACC (↑) 0.707 0.703 0.793 0.794 0.810

V. ABLATION STUDY

A. Importance of Step I

To underline the importance of self-supervised initialisa-
tion, another experiment is setup. For this, as a first step
all the layers of the 3D CNN is trained on the labelled
classes without any Self-Supervised Learning (SSL). As a
second step, the iterative optimisation as described in the
Section III. As seen in Table III, the ACC improves with
SSL initialisation.

TABLE III: ACC with and without SSL initialization.

Method ACC (↑)
with SSL 0.810

without SSL 0.537

B. Estimating Q

Until now the number of classes Q in the unlabelled traffic
scenario dataset is assumed to be given. In this study, Q in the
unlabelled traffic scenarios is estimated as suggested in [22].
In [22], the number of clusters in the unlabelled samples are
found using the Silhouette index [31]. The experiment setting

is identical to the one used for clustering with 4 labelled and
3 unlabelled data. The Q is estimated to be 4 compared to
the ground truth (GT) 3 as seen in the Table IV.

TABLE IV: Number of classes.

Method GT # of classes Predicted # of classes Error
RFAPs 3 4 1

C. Randomly Chosen Labelled Classes

This study is conducted to analyse the influence of the
chosen labelled and unlabelled classes. Until now, out of
the 7 scenarios, the first 4 were considered labelled and the
remaining 3 were considered unlabelled. Here, three possible
combinations of labelled and unlabelled classes are chosen
randomly and the clustering performance is analysed. As
shown in Table V, the results remain consistent.

TABLE V: ACC for randomly chosen unlabelled classes.

Labelled classes Unlabelled classes ACC (↑)
1,2,3,4 5,6,7 0.810
2,3,6,7 5,1,4 0.82
1,2,4,5 3,6,7 0.807

D. Importance of Step II

The aim in this study is to understand the influence of
using the labelled data in the clustering step (step III) of the
method. To perform this, step II is skipped in the proposed
method where 3D CNN is fine tuned with labelled data. In
the step III, the labelled data is not used and the categorical
cross-entropy loss is also dropped. The experiment set-up has
4 labelled classes and the remaining 3 classes are considered
as unlabelled data. The clustering accuracy with and without
the labelled data is shown in Table. VI. The results shows
experimentally that the labelled data indeed helps in guiding
the clustering process.

TABLE VI: ACC with and without labelled data.

Method ACC (↑)
with labelled data 0.810

without labelled data 0.565

E. Importance of Step III

The intent of the iterative optimisation in Section III is
to provide good feature representations for the unlabelled
samples. The experiment setup is similar to the one used in
Section IV. The feature representations for the considered 3
unlabelled classes are extracted. The feature representations
before and after the iterative optimisation are projected on to
a 2D space by UMAP [32] as shown in the Fig. 5. It can be
seen that there is a good separation of clusters. The clusters,
the leader cut-out from ego lane to the right lane (class 7)
and the ego following a leader (class 6) are close and few
datapoints are mixed up. This is because in both of these
scenarios there is a leader vehicle in front of the ego in most



of the time for a scenario. The clustering accuracy of the
3 classes before iterative optimisation is 48.65% and after
iterative optimisation is 81.0%. This shows that the iterative
optimisation procedure improves the clustering accuracy.
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Fig. 5: Feature representation study, Ego following, Cut-
in from right, Leader cut-out to right.

VI. CONCLUSION

Traffic scenario clustering is an important problem to be
solved for identifying relevant and new traffic scenarios.
The new traffic scenario categories are important for the
development of motion planning algorithms and the vali-
dation of autonomous functionalities. This work proposes
a method to cluster traffic scenarios automatically without
any handcrafted features using self-supervised learning and
a data-adaptive similarity based on novel features called
RFAPs. The problem set-up in this work uses labelled
scenarios and retains the knowledge about labelled scenarios
to aid the clustering task. The 3D CNN is trained robust
feature representation on a defined pretext task followed by
fine-tuning using labelled traffic scenarios. The clustering is
addressed by an iterative optimisation procedure using the
labelled and unlabelled traffic scenarios. Experiments on the
highD dataset have verified the advantages of the solution
proposed when compared to considered baseline methods.
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