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Abstract—Automotive scene understanding under adverse
weather conditions raises a realistic and challenging problem
attributable to poor outdoor scene visibility (e.g. foggy weather).
However, because most contemporary scene understanding ap-
proaches are applied under ideal-weather conditions, such ap-
proaches may not provide genuinely optimal performance when
compared to established a priori insights on extreme-weather
understanding. In this paper, we propose a complex but com-
petitive multi-task learning approach capable of performing in
real-time semantic scene understanding and monocular depth
estimation under foggy weather conditions by leveraging both
recent advances in adversarial training and domain adaptation.
As an end-to-end pipeline, our model provides a novel solution to
surpass degraded visibility in foggy weather conditions by trans-
ferring scenes from foggy to normal using a GAN-based model.
For optimal performance in semantic segmentation, our model
generates depth to be used as complementary source information
with RGB in the segmentation network. We provide a robust
method for foggy scene understanding by training two models
(normal and foggy) simultaneously with shared weights (each
model is trained on each weather condition independently). Our
model incorporates RGB colour, depth, and luminance images
via distinct encoders with dense connectivity and features fusing,
and leverages skip connections to produce consistent depth and
segmentation predictions. Using this architectural formulation
with light computational complexity at inference time, we are able
to achieve comparable performance to contemporary approaches
at a fraction of the overall model complexity. Evaluation over
several foggy weather condition datasets including synthetic
and real-world examples illustrates our approach competitive
performance compared to other contemporary state-of-the-art
approaches.

I. INTRODUCTION

Semantic segmentation for automotive urban environments
is a rapidly developing research topic illustrating successful
state-of-the-art scene understanding approaches [4, 5, 22, 36].
Despite its successes, limited attention has been paid to the is-
sue of automotive scene understanding under extreme weather
conditions (i.e. foggy weather conditions) [7, 30], and by
contrast we see deep learning approaches generally applicable
to ideal weather conditions only. This paper proposes a robust
solution to this challenge by taking advantage of domain
adaptation for transferring knowledge from one domain to
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Fig. 1. A high-level illustration of our pipeline for semantic segmentation
and depth estimation under foggy weather conditions.

another – in this case, the between the domains of normal
and foggy scene weather conditions.

Previous approaches for reducing adverse weather impact on
automotive has seen differing methods proposed for reducing
the illumination variance [1, 19], adapting scene understanding
methods from day to night [28] or synthetic fog [7, 30]. Fol-
lowing recent advances in deep learning, scene understanding
under such challenging conditions has also been addressed via
domain adaptation [33] where a scene taken in foggy weather
conditions is first pre-mapped onto a target domain (clear-
weather), which is considered the optimal input for secondary
scene understanding approaches.

In contrast to this pre-transformation approach, here we pro-
pose an end-to-end semantic scene understanding and monoc-
ular depth estimation framework using a novel multi-task
approach specifically targeting the challenge of foggy weather
operating conditions directly in the automotive environment.
As the main objective of our work, we tackle the issue of
semantic segmentation under foggy weather conditions in four
steps. First, by employing the domain adaptation approach via
image style transfer as proposed in [37] as a method to increase
the level of visibility that suffers in foggy weather condi-
tions. Second, by taking advantage of complementary depth
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information generated by a monocular depth estimator, which
can be subsequently provided as an additional input to RGB
colour into a semantic segmentor. These depth estimations and
semantic segmentation components are trained via sub-models
on both domains (normal and foggy) (each domain is trained
independently), with shared weights to allow the implicit
transfer of semantic and depth knowledge from one domain to
another. Finally, our model is adversarially trained on output
streams from depth estimation and semantic segmentation to
force the multi-task model to produce predictions as close to
the target outputs as possible. Figure 1 shows an illustration
of our overall approach, including the steps mentioned above.

In summary, the main contributions of this paper are as
follows:

• Competitive low-complexity architecture – enables se-
mantic segmentation and depth prediction via multi-task
learning and leveraging domain adaptation to correct im-
ages with degraded visibility in foggy weather conditions.

• Optimal foggy scene understanding – via adapting be-
tween two domains (normal and foggy) trained simul-
taneously with shared weights (each model is trained
on one weather condition independently) and employing
adversarial techniques on the output from each model.

• Competitive performance – outperforms the state-of-the-
art foggy scene understanding [7, 12] on the benchmark
datasets [7, 30], hence our model trained on less dataset.

II. RELATED WORK

We review prior work in three key areas:- semantic seg-
mentation (Section II-A), monocular depth estimation (Section
II-B), and domain adaptation (Section II-C).

A. Semantic Segmentation

Semantic segmentation is an essential task in scene un-
derstanding requiring robust per-pixels classification. Prior
work has achieved promising results via deep convolutional
networks [16, 22, 24, 26, 27, 36]. However, they differ by
using different approaches for instance: pooling indices [4],
skip connection [27], multi-path refinement [22], pyramid
pooling [36], fusing-based [16] . As the basis for a number
of semantic segmentation architectures, [24] leads the recent
contributions by adopting [31] (an architecture designed for
image classification) and subsequently decoding (mapping)
low feature representations to pixel-wise output in an end-
to-end model. Most prior work on semantic segmentation
uses RGB and/or RGB-D data as an input [3, 4, 22]. As
an incorporated technique, other studies have achieved some
successes using luminance information [1, 16].

As a key challenge, several different approaches have been
proposed to tackle the issue of scene understanding under
adverse weather conditions. For instance, the issue of illumi-
nation changes is addressed in [1, 19] by minimising scene
colour variations due to varying scene lighting conditions.
Other approaches [7, 29, 30] address segmentation under
foggy weather conditions using a semi-supervised approach

through generating synthetic fog from real-world data and aug-
menting clear images to their synthetic fog images. By adapt-
ing segmentation models from day to night, [28] addressed
the issue of poor scene visibility. Recently, domain adaptation
as a technique (within the context of semantic segmentation)
is employed to generate normal weather scenes from adverse
ones [33] (this can be considered to be a defogging process)
using [17, 37] (Section II-C). Subsequently, this generated
input is fed into a semantic segmentor to perform pixel-wise
segmentation [33].

Another method to achieve improved segmentation [32],
propose a discriminator network using GAN [11] to encourage
a segmentation model, with shared weights between two sub-
models trained on different domains (real-world and synthetic
images) independently, to produce pixel-wise class labels.

Similarly, our semantic segmentation component is trained
via two sub-models (each model on one weather condition
independently) using real-world input representing normal
weather conditions and synthetic normal inputs generated from
a synthetic foggy dataset using domain adaptation [37] (dis-
cussed in Section II-C). However, inspired by [16], we employ
the idea of incorporating luminance and depth alongside RGB
colour via distinct encoders, utilising both skip connections
and dense connectivity as well as fused features to gain better
and deeper representation learning which leads to a superior
semantic segmentation performance.

B. Monocular Depth Estimation

Although our main objective is semantic segmentation,
using monocular depth estimation alongside semantic seg-
mentation via multi-task learning may contribute to achieving
better semantic segmentation performance [3]. Monocular
depth estimation is a technique used to predict depth from
a single image. In the literature, monocular depth estimation
[2, 3, 9, 10] provides a solution for the shortcomings in depth
estimation in terms of either the significant training data re-
quirements or the final output (missing depth) of fundamental
strategies [13].

Recent methods addressed monocular depth estimation us-
ing both supervised [2, 3, 8, 23] and unsupervised [9, 10]
learning approaches. Employing a Generative Adversarial Net-
work (GAN), [2] proposes monocular depth estimation using
synthetic data transformed from real-world RGB colour. As a
multi-task approach, [3] proposed temporally consistent depth
prediction alongside semantic segmentation, which performed
better than the single-task approach. Proposing an unsuper-
vised depth estimation based on the ResNet-50 architecture,
[10] uses the left image to generate depth for right-left images,
and bilinear sampler and left-right disparity consistency loss
to achieve significant improvement.

Motivated by [3], we estimate depth using a monocular
depth estimation component that includes two sub-models with
shared weights, each model trained independently using shared
weights but with each model being trained using either the
normal or foggy datasets.



C. Domain Adaptation

In the current literature, domain adaptation has been used
to transfer an image from its real domain to different domain
(image-to-image translation) [17, 37] allowing multiple uses
of such images taken in complex environments or generated
in different forms.

The idea behind this approach is that the generated images
from the source domain can be transformed to be similar
to the ones in the target domain through capturing the style
texture information of the input by utilising the Gram matrix.
Work in [21] shows that image style transfer (from the source
domain to the target domain) is the process of minimising
the differences between source and target distribution. Recent
methods [17, 37] use GAN [11] to learn the mapping from
the source to the target images. Based on training over a
large dataset for a specific image style, [37] shows an efficient
approach to transferring image style from one image into
another.

Another variation of domain adaptation has been performed
within the same colour space of different domains (e.g. pixel-
wise class labels for real-world and synthetic domains). In
other words, the predictions derived from semantic segmen-
tation components can be adapted by minimising the gap
between them and the target ground truth [3, 32, 33].

In this work, we employ the idea of [37] to map between
normal and foggy weather conditions as a method to increase
the degraded visibility level due to foggy weather conditions.
As a result, our model semantically segments a scene (taken
in foggy weather conditions) based on a synthetic normal
input (generated from foggy scenes), which are considered
as optimal inputs to the subsequent scene understanding pro-
cess. As an additional step to achieving better segmentation
performance, we use the technique proposed in [3, 33] to
jointly constrain depth estimation and semantic segmentation
prediction close to the target domain (ground truth).

III. PROPOSED APPROACH

In simple terms, our main objective is to train an end-to-
end network that semantically labels every pixel in a scene,
and estimates the depth at each pixel from the monocular
image, with both tasks occurring under foggy weather condi-
tions. To achieve semantic segmentation under foggy weather
conditions (the primary focus of our approach), we make
use of knowledge adaptation [32] between models operating
under normal and foggy weather conditions by simultaneously
training two sub-models; each model is trained on one weather
condition independently. Since scene visibility suffers due to
foggy weather conditions, we make use of domain adaptation
(Section III-A) as a method to increase the scene visibility
level in the foggy weather datasets, for semantic segmentation
task.

As an initial step towards improved semantic segmentation,
monocular depth estimation is trained on both normal and
foggy domains to produce depth maps for both domains. This
step serves the semantic segmentation task by incorporating
depth as a complementary information source with RGB
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Fig. 2. A conceptual overview of our scene understanding approach via
domain adaptation using [37] (Inference) and the detailed outline of the
entire pipeline (Training). Our overall model consists of two main com-
ponents: domain adaptation using [37] and an encoder-decoder sub-module
for semantic segmentation and depth estimation. Foggy scenes from (domain
X) are transformed to fine scenes (domain Y ) and vice versa, resulting in
Y ′, X′ (the desired domains), and cyclically mapping them back to their
original domains, producing X′′, Y ′′; DX , DY : ground truth depths and
D′, D′′: depth predictions; SX , SY semantic labels and S′, S′′: semantic
segmentation predictions.

colour [14, 16]. In addition, we consider using a multi-task
approach as a feedback network [3], in which the output from
a previous task serves as the input for the subsequent task,
and the network recursively back propagates and updates its
weights. Ultimately, the semantic segmentation is trained via
two sub-models using normal and synthetic normal images
(generated using the domain adaptation component in Section
III-A).

In general, our approach consists of three sub-components:
(1) Domain Adaptation (Section III-A), (2) Semantic Segmen-
tation (Section III-C), and (3) Monocular Depth Estimation
(Section III-D) (each functioning as an integrated unit). Our
overall model produces three separate outputs: synthetic nor-
mal images (generated from foggy weather condition), pixel-
wise class labels, and depth. Figure 2 shows our proposed
approach. In the remainder of this section, we discuss the
details of the aforementioned three primary sub-components.

A. Domain Adaptation

Our goal of employing domain adaptation [37] (Figure 2
DA) in the context of semantic segmentation and monocular
depth estimation is to increase the level of visibility under
foggy weather conditions via learning to map D :X → Y from
source domain X (foggy weather) to the target domain Y (nor-
mal weather) for which we assume such visibility corrected
image is the optimal input to Semantic Segmentation (Section
II-A). We GAN [11] with the cycle consistency method of [37]
for mapping between foggy and normal weather conditions
(Figure 2). Two different generators GX→Y (generating Y ′),
GY→X (generating X ′) and two discriminators DX (to dis-
criminate between X and X ′) , GY (to discriminate between
Y and Y ′) are used to perform the mapping function from the
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source and target domains. The loss for each generator G with
associated discriminator D is as follows:

Ladv(X → Y ) = min
GY →X

max
DY

Ey∼Pd(y)[log(D)(y)]+

Ex∼Pd(x)[log(1−DY (GX→Y (x)))],
(1)

Ladv(Y → X) = min
GX→Y

max
DX

Ey∼Pd(x)[log(D)(x)]+

Ex∼Pd(x)[log(1−DY (GY→X(y))))],
(2)

where Pd is the data distribution, X the source domain with
samples x and Y the target domain with the samples y.

In addition to the adversarial loss Ladv , a cycle-consistency
loss Lcyc is used to map the transferred image (Y ′) back to the
source domain (X). The cycle-consistency loss is implemented
as follows:

Lcyc = ‖GY→X(GX→Y (x))− x‖1+
‖GX→Y (GY→X(y))− y‖1

(3)

Subsequently, the joint loss function for the domain adap-
tation component is as follows:

Ldomain−adapt = Ladv(X → Y ) + Ladv(Y → X) + Lcyc

(4)

B. Overall Segmentation and Depth Estimation Architecture

As a subsequent task to domain adaptation in (Section
III-A), semantic segmentation and depth estimation compo-
nents are trained on two sets of scenes:- (1) real-world images
Y for normal weather conditions (target domain) and (2)
synthetic transferred images Y ′ for foggy weather conditions
(source domain) (see Figure 2, Inference). The transferred
images represent the foggy weather conditions X which are
mapped to the target domain normal weather conditions Y via
GX→Y (X) = Y ′.

As seen in Figure 3, the overall segmentation and depth
estimation architecture is designed with an auto-encoder which
includes two distinct encoders: RGB encoder (ERGB) and
Luminance and/or Depth encoder (ELD) to extract features
from RGB, Depth, and Luminance maps (Figure 3, Features

Encoder). The two encoders are incorporated within the Fea-
tures Encoder stage (Figure 3, Feature Encoder) to boost the
performance of the multi-task model. ERGB and ELD are
linked by fusing output layers from the corresponding blocks
among ERGB and EDL. The fusion connectivity is simply
implemented by summing the two layers such that for inputs
x and y, the fused feature map is ERGB(x) + EDL(y) or
EL(y).

Following the encoders, two decoders: the semantic seg-
mentation decoder (DSeg) (Figure 3, Segmentation Decoder)
and the depth estimation decoder (DDepth) (Figure 3, Depth
Decoder) are designed to upsample the feature maps to the
original input dimension for the two tasks of our model: pixel-
wise segmentation with 19 class labels and depth images.
Below we present in detail the encoders and decoders of the
semantic segmentation and depth estimation components.

RGB encoder: Designed to deal with a three-channel RGB in-
put, the RGB encoder (ERGB) (adopted from [16]) comprises
three downsampler blocks with convolutional and max pooling
layers followed by batch normalization and ReLu() activation
function ({16, 64, 128} respectively). Five non-bottleneck
modules are implemented in the second downsampler block
including the factorized convolutions (convolution kernel n×n
factorized into n × 1 and 1 × n), each followed by batch
normalization and ReLu() with residual connections. With
dilated and factorized convolutions in the third downsampler
block, eight non-bottleneck modules with residual connections
were utilised as a last component of ERGB to increase the
RGB encoder efficiency.
Luminance and/or Depth encoder: Unlike the RGB encoder,
the luminance and depth encoder (ELD) (adopted from [16])
deals with luminance and/or depth maps (concatenated as a
two-channel input). We make use of a distinct encoder for lu-
minance and depth to exploit better learning and representation
from the depth and luminance maps that may not be possible
when stacking depth with RGB colour as a four-channel image
[14, 16]. As a parallel function to ERGB , ELD is designed
using a dense connectivity technique for information flow
enhancement from earlier to the final layers. Specifically, ELD

consists of a downsampler (as in ERGB) followed by three
dense blocks; each has {4, 3, 4} modules, respectively (ELD

has the same number of channels as ERGB). Each dense
block is followed by a transition layer designed with 1 × 1
convolution layer and followed by 2 × 2 average pool layer.
To achieve our goal in monocular depth prediction, we use
only a luminance map in an encoder (EL) which is identical
to (ELD) except than it takes the luminance channel only.
Decoder: After fusing the last extracted feature maps from
ERGB and either the ELD (for semantic segmentation) or EL

(for monocular depth estimation), the depth decoder (DDepth)
and Semantic Segmentation decoder (DSeg) perform upsam-
pling upon the feature maps to the original resolution. This
upsampling is implemented in three stages. In the first two
stages {64, 16}, convolutional transpose, batch normalisation
and ReLu() activation function, as well as two non-bottleneck



Methods Mean IoU Complexity of the Network
Models Network Architecture Training Fine-Tuning Fog Zurich Fog Driving Fog Cityscapes Multi-Task Real-Time Number of Parameters

CMDAda[7] AdSegNet [32] w/ DeepLab-v2 [5] C — 25.0 29.7 — — — 44.0M
SFSU [30] Dilated Conv. Net. (DCN) [35] C FC (498) 35.7 46.3 — — — 134M

CMAda2+ [29] RefineNet [22] C FC (498) 43.4 49.9 — — — 118M
CMAda3+ [29] RefineNet [22] C FC (498) 46.8 49.8 — — — 118M

Hanner et al. [12] RefineNet [22] C FS (24,500) 40.3 48.4 — — — 118M
Hanner et al. [12] RefineNet [22] C FS (498) 42.7 48.6 — — — 118M
Hanner et al. [12] RefineNet [22] C FC+FS (498) 41.4 50.7 — — — 118M
Hanner et al. [12] BiSeNet [34] C FC (498) 25.0 30.3 — — — 50.8M
Hanner et al. [12] BiSeNet [34] C FS (24,500) 27.8 30.9 — — — 50.8M
Hanner et al. [12] BiSeNet [34] C FS (498) 27.6 31.8 — — — 50.8M
Hanner et al. [12] RefineNet [22] C FC+FS (498) 35.2 30.9 — — — 118M

Ours w/o domain adaptation — C FC (498) 13.9 17.6 59.4 X X 4.8M
Ours w/ domain adaptation — C FC (498) 26.1 31.6 60.3 X X 16.2M

TABLE I
QUANTITATIVE COMPARISON OF SEMANTIC SEGMENTATION ON FOGGY ZURICH [7], FOGGY DRIVING [30] AND FOGGY CITYSCAPES [30] DATASETS OF

OUR APPROACH AGAINST STATE-OF-THE-ART APPROACHES. C: CITYSCAPES [6]; FC FOGGY CITYSCAPES [30]; FS: FOGGY SYNSCAPES [12].

modules, are employed. To this end, DSeg and DDepth per-
form the same process. As the last component in the DSeg, a
convolutional transpose layer maps the generated output from
the previous layer to the 19 class labels we aim to predict.
For monocular depth prediction, pyramid depth predictions
are produced via DDepth at two scales to gain consistent
representation following [10]. Specifically, a convolutional
transpose layer maps the predicted depth to match the original
input dimension followed by a sigmoid activation function.
Besides, the previous stage (64 channels) are also mapped as
in the final stage but at half the size of the original input
dimension.

C. Semantic Segmentation

Our semantic segmentation model provides semantic predic-
tions for two different scenes: (1) normal weather conditions;
and (2) foggy weather conditions. To be more specific, two
semantic segmentation sub-models with shared weights are
trained on each weather conditions independently (normal and
foggy weather conditions). We assume that sharing weights
within the sub-models will allow transferring knowledge be-
tween normal and foggy domains and may contribute to
improved segmentation in the later domain. As the scene
visibility is very poor in the foggy weather conditions, we
use the corrected images Y ′ (mapped from foggy to normal
via domain adaptation [37] (Section III-A)) as an alternative to
foggy scenes, assuming they are the optimal inputs to semantic
segmentation.

As a complementary information source, depth images
are incorporated with RGB colour contributing to improved
semantic segmentation performance [14, 16]. As an initial
step serving semantic segmentation task, our model provides
complementary depth images via monocular depth estimation
(Section III-D), which allows benefits from using depth with
RGB colour to improve the performance of semantic seg-
mentation. Serving the same goal, our semantic segmentation
model uses the luminance input image, which is a translated
grayscale image employed in [16]. As a semantic segmentation
loss function (Lseg), cross-entropy is used.

To force our semantic segmentation sub-model (foggy
weather conditions) to generate better segmentation labels
close to performance under normal weather conditions, we
use an adversarial training approach [11] that is used in the

literature [2, 3, 32, 37] to produce similar segmentation dis-
tributions in foggy to normal weather conditions. Specifically,
we feed the predicted semantic labels from the segmentation
sub-model (foggy scenes) along with the corresponding ground
truth labels into a discriminator (D) adapted from [37] (Figure
3) to adapt output predictions by distinguishing predicted
labels G(x) = ỹ from ground truth y. The adversarial loss
(Ladv) is used for our semantic segmentation and described
in Eq. 1. As an overall loss for the segmentation task, a joint
segmentation loss defined as follows:

Ljoint−seg = Lseg + Ladv. (5)

D. Monocular Depth Estimation

Although monocular depth estimation is not the main ob-
jective of this paper, it has been used alongside semantic
segmentation (our main objective) to improve the latter. Unlike
when semantic segmentation performs individually, multi-
modality allows us to gain deeper representation features in the
overall model [3] and perform inference in real-time [18]. In
a similar vein to the earlier semantic segmentation component
(Section III-C), our model performs depth prediction via
two sub-models over two scenes (normal and foggy weather
conditions), each model on each weather condition. However,
the depth estimation architecture deals only with RGB and
luminance information as inputs. The loss function has been
for depth estimation (Ldepth) is L1. We employ adversarial
training to minimize the gap between the predicted depth on
foggy weather conditions against normal weather conditions
using a discriminator (D) takes predicted depth from the
depth estimation sub-model (foggy scenes) along with the
corresponding ground truth to distinguish the predicted depth
G(x) = ỹ from ground truth y. The adversarial loss (Ladv)
which described in Eq. 1 is used for depth estimation. As an
overall loss for the depth estimation task, a joint depth loss is
defined as follows:

Ljoint−depth = Ldepth + Ladv. (6)

E. Combined Loss

Our combined loss function for the overall architecture
with three sub-modules: domain adaptation, semantic seg-
mentation, and depth estimation, is formulated in three steps.



Method
Depth Error (lower, better) Depth Accuracy(higher, better)

Abs. Rel. Sq. Rel. RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253

Ours w/o domain adaptation 0.238 0.543 1.994 0.277 0.656 0.884 0.983
Ours w/ domain adaptation 0.238 0.733 2.130 0.280 0.654 0.892 0.980

TABLE II
QUANTITATIVE RESULTS OF DEPTH PREDICTION OVER THE refined Foggy Cityscapes [30] WITH AND WITHOUT DOMAIN ADAPTATION [37].

Firstly, adversarial loss for domain adaptation Ladv and cyclic-
consistency loss (Lcyc) functions are implemented. Secondly,
we utilise the `1 loss for depth estimation with the adversarial
loss for depth (Ladv) on foggy weather conditions. Finally,
a cross-entropy loss is used as a semantic segmentation
loss (Lseg) as well as the adversarial loss for segmentation
(Ladv) on foggy scenes. The joint loss function on the overall
architecture is thus as follows:

L = λLdomain−adapt + λLjoint−seg + λLjoint−depth, (7)

with λ dynamically updated using the homoscedastic uncer-
tainty technique to weight and balance the losses [18].

F. Implementation Details

Our implementation pipeline begins with the domain adap-
tation stage, followed by monocular depth estimation, then
semantic segmentation stage. In domain adaptation, our goal
is to generate corrected images from foggy scenes (defogging
process) to be used later in semantic segmentation. Therefore,
we train two generators proposed in [37] on two domains
(normal and foggy), each generator on each domain, to gen-
erate corrected images from the foggy domain and close to
the normal. Subsequently, we trained the monocular depth
estimation component via two sub-models using RGB and
luminance inputs, each model on each weather condition
independently, to produce depth used as a complementary
information in semantic segmentation. Ultimately, we train the
semantic segmentation component via two sub-models. One
model is trained on normal scenes using RGB, luminance
and the generated depth map from the depth estimation stage.
The other model is trained on the corrected images generated
from foggy scenes using domain adaptation, luminance, and
the complementary depth information provided form depth
estimation stage.

Cityscapes [6] and the partially synthetic Foggy Cityscapes
[30] have been used as target and source domains, with 2, 975
training and 500 testing image examples (at a resolution of
1024×2048). We applied data augmentation in training using
random horizontal flip as well a down-sampled resolution of
128×256. In addition to Foggy Cityscapes, real-world datasets:
Foggy Driving [30] and Foggy Zurich [7] were used to evaluate
our approach. We implemented our approach in PyTorch [25].
For optimization, we employed ADAM [20] with an initial
learning rate of 1 × 10−3 and momentum of β1 = 0.5, β2 =
0.999. Our model is optimized based on a joint loss discussed
in Section III-E.

IV. EXPERIMENTAL RESULTS

We evaluated the performance of our proposed approach
on publicly available datasets:- Cityscapes dataset [6], Foggy
Cityscapes dataset [30], Foggy Driving [30], Foggy Zurich,
and [7] for semantic segmentation under foggy weather con-
ditions. With and without using domain adaptation [37], we
assessed our approach using qualitative and quantitative com-
parisons against the state-of-the-art approaches. For semantic
accuracy evaluation, we used the following evaluation mea-
sures: (1) class average accuracy, (2) global accuracy, and
(3) mean intersection over union (mIoU). For the benchmark
evaluation, we use the standard mIoU metric (Jaccard Index)
which measures the percentage of mean intersections over
union for predictions over all predicted classes. As an end-
to-end pipeline, our model is trained to adapt foggy to normal
weather conditions using [37] (Section III-A). Subsequently,
depth estimation and semantic segmentation networks are
trained. The detailed steps for the evaluation of our proposed
architecture are as follows:

1) We first train the domain adaptation component (Section
III-A) on the Cityscapes dataset (normal weather) [6]
and Foggy Cityscapes (adverse weather) [30] to map
from adverse scenes to normal weather conditions.

2) We train the depth estimation component (Section III-D)
on both the Cityscapes dataset (normal weather) [6] and
the Foggy Cityscapes datase (adverse weather) [30] (two
models for each with shared weights as set out in Section
II-B).

3) Mirroring step 2, we train the semantic segmentation
component (Section III-C), but using the corrected im-
ages from foggy scenes generated from step 1 and
incorporating the generated depth maps from step 2.

4) Models obtained from steps 1, 2, and 3 were fine-tuned
using refined Cityscapes [30] (a sub set that includes
498 training and 52 testing images examples with better
quality).

5) The fine-tuned models in step 4 were evaluated on both
synthetic and real-world datasets including Foggy Zurich
[7] and Foggy Driving [30].

In the rest of this section, we discuss the results of semantic
segmentation (Section IV-A) and monocular depth estimation
(Section IV-B).

A. Semantic Segmentation

We evaluated the performance of semantic segmentation on
the following benchmark foggy weather conditions datasets:



Foggy Driving [30] and Foggy Zurich [7]. This was a chal-
lenging task as our model has not seen a single image from
the aforementioned datasets. As an initial stage, we evalu-
ated our model directly using foggy scenes (with no domain
adaptation) from the aforementioned datasets. As seen in
Table I, our model failed to obtain any favourable quantitative
and qualitative results compared with no domain adaptation.
However, using domain adaptation, our model clearly provides
an improved performance of the mean intersection over union
(mIoU) scores across all classes: from 13.9% to 26.1% on
Foggy Zurich [7] and from 17.8% to 31.6% of Foggy Driving
[30] (Table I). By contrast, we evaluate our model on a test
set from (Foggy Cityscapes [30]) having also trained on this
dataset, which leads to improved segmentation: from 59.4%
to 60.3% (Table I). Figure 4 shows qualitative results on
Foggy Driving [30], Foggy Zurich [7] and Foggy Cityscapes
[30] through different scenarios using our proposed approach.
Overall, we consider that domain adaption, as a method,
influences the semantic segmentation performance under foggy
weather conditions.

As a comparison with the state-of-the-art semantic seg-
mentation under foggy weather conditions, our approach with
domain adaptation outperforms the work of [7, 12] on Foggy
Zurich. When tested on Foggy Driving [30] our approach
was able to surpass the work of [7]. In addition, our model
outperforms the work of [12] with the three fine-tuned meth-
ods on: refined Foggy Cityscapes [6] (498) images, Foggy
Synscapes [12] (24, 000) images, and the combination of
Foggy Cityscapes [6] and Foggy Synscapes [12]. However,
our proposed approach remains competitive with the proposed
approaches in [7, 12, 29, 30]. Table I presents a comparison
of our proposed approach against the-state-of-the-art foggy
semantic segmentation.

Overall, we observe that our proposed approach provides
a competitive performance against state-of-the-art techniques
despite the complexity involve of using multi-task modal-
ity. In contrast, each component of the overall model has
less computational complexity. As clearly seen in Table I,
the semantic segmentation component uses fewer parameters
(2.4M) when compare with existing approaches, enabling
the possibility of real-time performance. Another important
aspect that underlines the superiority of our model is that all
comparators use off-the-shelf complex segmentation networks
such as RefineNet [22], DeepLab [5], and Dilated Convolution
Network [35], which constrained the practical application of
their approaches in real-time performance.

B. Monocular Depth Estimation

Even though monocular depth estimation is not the primary
focus, we assess the efficacy of our model in monocular
depth estimation using Cityscapes [6] and Foggy Cityscapes
which provide a disparity dataset labelled using Semi-Global
Matching [15]. Unlike the semantic segmentation network,
the monocular depth component was not dependent on the
domain adaptation sub-model. In other words, we evaluate our
model directly using Foggy images, with and without domain

Foggy Zurich Foggy Driving 

Depth output

Segmentation  output

Ground Truth

Test Example

Foggy Cityscapes 

Fig. 4. Segmentation and depth predictions on Foggy Zurich [30], Foggy
Driving [7] and Foggy Cityscapes [30] using our approach.

adaptation sub-model working alongside the depth estimation
network (i.e. no defogging or dehazing processing was used).
Here, we assume that there is a similarity between fog and
depth in terms of objects localization in which objects close
to the camera are clearly visible. In the same vein, depth
is used within the literature [12, 30] as a key input for fog
simulation, whilst fog and noise lead to better depth estimation
[2]. We evaluate our approach on monocular depth estimation
quantitatively and qualitatively using two methods. Firstly,
we use a single model to perform the following three tasks:
(1) domain adaptation, (2) semantic segmentation, and (3)
monocular depth estimation. Secondly, we use the same model
but without the domain adaptation component. Measurement
metrics are based on [8]. As seen in Table II, our approach
provides monocular depth estimation results that are close to
each other using the two aforementioned methods.

V. CONCLUSION

We propose a novel multi-task approach for automotive se-
mantic segmentation and depth estimation under foggy weather
conditions. Our approach is designed via multi-modality to
produce optimal performance through using domain adaptation
(GAN-based) [37] to correct images with poor visibility taken
in foggy weather conditions. By using synthetic and real-world
datasets, depth estimation and semantic segmentation compo-
nents are trained with a unified framework providing promis-
ing results. With dense-connectivity, skip-connections, and
fusion-based techniques, we propose a competitive encoder-
decoder for semantic segmentation and depth estimation were
proposed. Our overall approach is characterized by a com-
plexity that allows multi-task learning. In addition, each com-
ponent was designed with a lightweight architecture allowing
real-time performance. Using extensive experimentation, we
show the performance of our approach achieves significant
results over the state-of-the-art semantic segmentation under
adverse weather condition [7, 12, 30] as well as providing
extra tasks (i.e., monocular depth estimation).
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