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Abstract— One of the main challenges in developing au-
tonomous transport systems based on connected and auto-
mated vehicles is the comprehension and understanding of
the environment around each vehicle. In many situations, the
understanding is limited to the information gathered by the
sensors mounted on the ego-vehicle, and it might be severely
affected by occlusion caused by other vehicles or fixed obstacles
along the road. Situational awareness is the ability to perceive
and comprehend a traffic situation and to predict the intent of
vehicles and road users in the surrounding of the ego-vehicle.
The main objective of this paper is to propose a framework
for how to automatically increase the situational awareness
for an automatic bus in a realistic scenario when a pedestrian
behind a parked truck might decide to walk across the road.
Depending on the ego-vehicle’s ability to fuse information
from sensors in other vehicles or in the infrastructure, shared
situational awareness is developed using a set-based estimation
technique that provides robust guarantees for the location of
the pedestrian. A two-level information fusion architecture is
adopted, where sensor measurements are fused locally, and
then the corresponding estimates are shared between vehicles
and units in the infrastructure. Thanks to the provided safety
guarantees, it is possible to appropriately adjust the ego-vehicle
speed to maintain a proper safety margin. It is also argued
that the framework is suitable for handling sensor failures and
false detections in a systematic way. Three scenarios of growing
information complexity are considered throughout the study.
Simulations show how the increased situational awareness
allows the ego-vehicle to maintain a reasonable speed without
sacrificing safety.

I. INTRODUCTION

Connected and automated vehicles (CAVs) have attracted
enormous attention in the last decade because of their
expected impact on the economy and society in general.
The benefits of such vehicles range from transforming the
travel experience, improving safety, and reducing environ-
mental impact to enabling more competitive road freight
transportation and novel public transport modalities [1], [2].
When automating the driving of CAVs, the ability of the
vehicles to assess and reason about their state and the nearby
environment is of utmost importance. A vehicle’s situational
awareness becomes crucial for handling challenging scenar-
ios, such as occlusion due to other vehicles parked on the
side of a road or moving in front of the ego-vehicle. In this
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Fig. 1: Autonomous Scania bus equipped with lidar, radar,
camera and other sensors.

paper, we consider a particular set of such scenarios that
are likely to arise for an automated public bus in an urban
setting, such as the autonomous Scania bus, equipped with
lidar, radar, camera, and other sensors, illustrated in Fig. 1
and to be used in the future to implement and evaluate the
approach developed in this paper.

There is a dramatic increase of interest in situational
awareness for CAVs. Questions often considered include how
to estimate the states of pedestrians or bicyclists present in
the surrounding of the ego-vehicle. When there are multiple
CAVs present, shared situational awareness is a relevant
concept [3]–[7]. Statistical approaches are commonly consid-
ered, e.g., the authors of [8] use a Kalman filter to estimate
the state of the actor and assumes linear models and Gaus-
sian noise. A relevant review of constrained Bayesian state
estimation for linear and nonlinear state-space systems is
given in [9]. Most existing methods for situational awareness,
consider traditional point-wise state estimators [10].

Safety guarantees are often well characterized by robust or
set-based estimators [11]. One of the most popular set-based
approaches is set-membership estimators. Such estimators
have intuitive geometric processing in that they intersect the
set of states consistent with the model and the set consistent
with the measurements to obtain the corrected state set [12].
The estimated set can be mathematically characterized as el-
lipsoid [13]–[16] or zonotopes [12], [17]. The suitable choice
is application dependent. Set-membership estimators are used
in many applications such as fault detection [18], [19],
underwater robotics [16], [20], ground vehicles [21], multi-
agent systems [13], [15], [17], [22], and localization [23].
Self-localization has been considered by many researchers,
for autonomous robots [24], drones [14], and other vehi-
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cles [25]. It has been shown that the method is particularly
advantageous in a dynamic unknown environment as [26]–
[28].

The main contribution of this paper is an approach for
shared situational awareness aimed at improving the percep-
tion and operation of an automated heavy-duty vehicle by
letting it systematically process information from multiple
dynamic sensors in the environment. A setup is considered
with an automatic bus driving along a road when a pedestrian
behind a parked truck might decide to walk across the road.
The ego-vehicle (the bus) is able to fuse information from
one or more sensors located on other vehicles or infras-
tructure units. A novel situational awareness framework is
developed using set-based estimation techniques that provide
robust guarantees for the pedestrian’s location. A two-level
information fusion is adopted, where sensor measurements
are fused locally, and then the corresponding estimates are
shared between vehicles and the infrastructure units.

Zonotopes are used to represent the sets in which the
true states are guaranteed to belong. It is shown that this
representation allows an efficient computation for sensor
fusion and state estimation and that information from one
or more units can be easily incorporated into the estimated
set. Thanks to the provided safety guarantees, it is possible
to appropriately adjust the speed of the ego-vehicle to always
maintain a proper safety margin. Three scenarios of growing
information complexity are considered, where in the first
scenario the ego-vehicle uses only its own sensors, in the
second scenario it incorporates information also from another
vehicle using V2V communication, and in the third scenario
two sensors at the road crossings are utilized. Simulations
show how the increased situational awareness allows the ego-
vehicle to maintain a reasonable speed without sacrificing
safety.

The remaining part of the paper is outlined as follows.
In Section II, the problem formulation is described together
with the three scenarios considered throughout the paper.
Section III presents the situational awareness framework
based on set-based estimation. An extensive simulation study
is performed in Section IV illustrating the approach and its
limitations. Finally, concluding remarks are given in Sec-
tion V together with a brief discussion on future directions.

II. PROBLEM FORMULATION

The problem considered in this paper is formulated around
the three scenarios in Fig. 2. These scenarios consist of a
two-lane road with a side-walk on each side of the road and
a zebra crossing. The ego-vehicle (blue bus) is traveling from
left to right and is approaching the crossing. The ego-vehicle
is equipped with a sensor having a field of view represented
by the blue-shaded circle segment. As indicated, the field of
view is occluded by a red truck parked at the side of the road.
The red shaded region represents the ego-vehicle’s occluded
sensor view.

Scenario 1 in Fig. 2 corresponds to the nominal case when
the information processed in the ego-vehicle is limited to its
own sensors. Due to the occlusion, the ego-vehicle is not able

(a) Scenario 1: The ego-vehicle with one local sensor is approaching
the zebra crossing. The field of view is obstructed by a parked truck.
A pedestrian is in the occluded region.

(b) Scenario 2: While the ego-vehicle is approaching the zebra
crossing, it connects with an approaching vehicle equipped with
another sensor. The pedestrian is visible by the approaching vehicle’s
sensor.

(c) Scenario 3: The ego-vehicle connects to two road-side units with
one sensor each. These sensors cover the zebra crossing by their field
of view.

Fig. 2: The three considered scenarios of an connected and
automated bus passing a zebra crossing.

to detect potential pedestrians on the side-walk behind the
truck. Consequently, the ego-vehicle has to lower its speed
to be cautious of an unforeseen actor in its near surrounding.
From the perspective of the ego-vehicle, this uncertainty
leads to an increased travel time and thereby lower efficiency.

Scenario 2 in Fig. 2 is improving this situation by connect-
ing to an approaching CAV equipped with another sensor.
The measurements from this sensor can be used for sensor
fusion by the ego-vehicle and thereby allows it to conclude if
there is a pedestrian in the occluded area or not. A limitation
of this approach is obviously that there might not be a
connected vehicle exactly when needed.



Scenario 3 in Fig. 2 handles this case by incorporating
connected road-side sensor units. The sensors cover both
sides of the zebra crossing and will thereby detect any
pedestrians in the scene.

With this scenarios in mind, we can formulate the problem
solved in this paper as the following questions:

1) How to obtain and fuse data from local and external
sensors to improve the situational awareness for the
ego-vehicle to take appropriate actions?

2) How to robustly share the estimates to guarantee safety
under varying uncertainties in the measurements?

3) How to quantitatively measure the improvement in the
state estimates using set-membership techniques?

III. METHODOLOGY

In this section, the architecture of the proposed framework
is discussed, and each module of the framework is explained
in detail. The proposed framework extends the conventional
control architecture of an automated vehicle [2] by using the
set-membership method instead of statistical estimation for
sensor fusion.

A. Architecture

The proposed architecture is presented in Fig. 3. It con-
sists of three parts: (i) Local and extended sensor network,
(ii) Algorithms for shared situational awareness, and (iii)
Decision-making. Measurement data from the sensors are
collected and fused to perform state estimation. Based on
these estimates, decisions are made, and actions are planned.
In this paper, the main focus is on (i) and (ii).

Fig. 3: Proposed architecture for set-based estimation for
shared situational awareness.

B. Sensor and System Models

Each sensor measurement is generated with respect to the
orientation of the sensor. The model for sensor i = 1, . . . ,4
is

yi
k = H ixk + vi

k ∈ Rp (1)

for k = 1,2, . . . ,N, where N is the horizon, H i the mea-
surement matrix and vi

k the measurement noise. We assume
that the sensor measurements are generated by an observable
discrete-time linear system:

xk+1 = Fxk +nk, (2)

where xk ∈ Rn is the state of the actor, F the state matrix,
and nk process noise.

C. Algorithm for Shared Situational Awareness

Set-membership estimation with zonotopes is used to
estimate xk. Properties of zonotopes are stated next.

Definition 1 (Zonotope [29]): A zonotope Z = 〈c,G〉
consists of a center c∈Rn and a generator matrix G ∈ Rn×e.
We compose G of e generators g(i) ∈ Rn, i = 1, ..,e, where
G = [g(1), ...,g(e)] and βi is a scaling factor. Hence,

Z =
{

c+
e

∑
i=1

βig(i)
∣∣∣−1≤ βi ≤ 1

}
. (3)

(a) c⊕ l1 (b) c⊕ l1⊕ l2 (c) c⊕ l1⊕ l2⊕ l3

Fig. 4: Construction of a zonotope.
Fig. 4 shows the construction of a zonotope. Given two

zonotopes Z1 = 〈c1,G1〉 and Z2 = 〈c2,G2〉 and a scalar L,
the following operations can be computed exactly [29]:
• Minkowski sum:

Z1⊕Z2 =
〈

c1 + c2, [G1,G2]
〉
. (4)

• Scaling:
LZ1 =

〈
Lc1,LG1

〉
. (5)

1) Sensor Fusion: Set-membership approach estimation
compute set of states instead of a single state. The prediction
set is estimated using the model expressed in (2). The process
and measurement noise are assumed to be unknown but
bounded by zonotopes: nk ∈ ZQ,k, and vi

k ∈ Z i
R,k. Then, they

intersect the predicted set with the set that aligns with the
measurement set. We have the following three sets.

Definition 2 (Predicted State Set): Given system (1) –
(2) with initial set Z0 = 〈c0,G0〉, the predicted reachable
set of states Ẑ i

k with noise zonotope ZQ,k is:

Ẑ i
k = FẐ i

k−1⊕ZQ,k. (6)
Definition 3 (Measurement State Set): Given system (1)

– (2), the measurement state set S i
k of node i is the set of

all possible solutions xk which can be reached given yi
k and

vi
k ∈ Z i

R,k = 〈0,Ri
k〉 where Ri

k = diag([r1
k , . . . ,r

ms
k ]). Note that



Fig. 5: Sensor fusion and estimator.

yi
k ∈Rp is scalar, i.e., p = 1, this measurement set is a strip:

S i
k =

{
xk

∣∣∣|H ixk− yi
k| ≤ ri

k

}
. (7)

Definition 4 (Corrected State Set): Given system (1) –
(2) with initial set Z0 = 〈c0,G0〉, the reachable corrected
state set Z̄ i

k of node i is defined as an over approximation of
the intersection between Ẑ i

k and S i
k:(

Ẑ i
k ∩S i

k
)
⊆ Z̄ i

k. (8)
Set-membership approaches intersect the set of states

consistent with the model (predicted state set), denoted
by Ẑ i

k−1, and the sets consistent with the measurements
(measurement state set), denoted by S i

k, i = 1, . . . ,ms, to
obtain the corrected state set, denoted by Z̄ i

k, also referred
as zonotopic set. Strips represent measurements from the
sensors and are fused together to get a corrected state set.
To fuse the measurements from the sensors and extended
sensors, we use of the following proposition.

Proposition 1 ( [30]): Given are zonotope Ẑ i
k−1 = 〈ĉi

k−1,

Ĝi
k−1〉, the family of ms measurement sets S i

k in (7) and the
design parameters λ

i, j
k ∈R

n×p, j = 1, . . . ,ms. The intersection
between the zonotope and measurement sets can be over-
approximated by the zonotope Z̄ i

k = 〈c̄i
k, Ḡ

i
k〉, where

c̄i
k = ĉi

k−1 +
ms

∑
j=1

λ
i, j
k (y j

k−H j ĉi
k−1), (9)

Ḡi
k =

[
(I−

ms

∑
j

λ
i, j
k H j)Ĝi

k−1,λ
i,1
k r1

k , . . . ,λ
i,ms
k rms

k

]
. (10)

The design parameter λ
i, j
k can be obtained by solving an

optimization problem to minimize the size of the resultant

Fig. 6: Sensor Failure case after reporting multiple of S3
k

that does not intersect with the predicted set Ẑ1
k and other

reported measurements (S1
k and S2

k ).

zonotope [12]. After fusing the measurements from the
sensors, we diffuse the estimates from multiple vehicles and
infrastructure units.

2) Estimator: Consider when a road-side unit or con-
nected vehicle are reporting estimates of the same pedestrian.
Then, we make use of the following proposition to fuse the
set estimates Z̄ i

k, i = 1, . . . ,me, by finding their intersections.
Proposition 2 ( [12]): The intersection between me zono-

topes Z̄ j
k =

〈
c̄ j

k, Ḡ
j
k

〉
can be over-approximated using the

zonotope Z̀ i
k =

〈
c̀i

k, G̀
i
k

〉
as follows:

c̀i
k =

1
me
∑
j

wi, j
k

me

∑
j

wi, j
k c̄ j

k, (11)

G̀i
k =

1
me
∑
j=1

wi, j
k

[wi,1
k Ḡ1

k , ...,w
i,me
k Ḡme

k ], (12)

where wi, j
k is a weight such that

me
∑
j

wi, j
k 6= 0.

Again, the design parameter wi, j
k can be obtained by

solving an optimization problem to minimize the size of the
resultant zonotope [12].

D. Robust Decision Making

The output of the estimator module acts as the input
to the decision-making module. Due to the set-membership
approach, a robust decision making can be done. Increasing
the number of sensor measurements improves the estimation
accuracy. This framework can also detect if there any sensor
failures as shown in Fig. 6. In this paper, the decision is
simply to lower the velocity depending on the uncertainty of
the situation.

IV. RESULTS

In this section, results of different case studies using the
shared situational awareness framework are presented and
compared. The ego-vehicle is equipped with four levels of
speed, which are stated as (i) Nominal speed - executes
100 % of the given speed, (ii) Cautious speed - executes 30 %
of the nominal speed, (iii) Slow speed - executes 50 % of
the nominal speed and (iv) Very slow speed - executes 80 %



TABLE I: Comparison of average speed of the ego-vehicle in different scenarios with and without situational awareness.

Scenario Shared situational Pedestrian Local Connected Road-side Road-side Average
awareness sensor vehicle unit 1 unit 2 speed

1 - X X - - - 13.0
- X - - - 15.0

2 X
X X X - - 13.1
- X X - - 20.0

3 X
X X - X X 13.2
- X - X X 20.0

of the nominal speed. The different scenarios considered are
as stated below:

1) Ego-vehicle with one local sensor with no shared
situational awareness.

2) Ego-vehicle with one local sensor and a connected ve-
hicle with one extended sensor with shared situational
awareness.

3) Ego-vehicle with one local sensor and two road-side
units with shared situational awareness.

If there is an occlusion detected in the local sensor’s field
of view, then the speed of the ego-vehicle is changed from
nominal to cautious speed. When a zebra crossing is detected,
the speed is decreased to slow speed. The same action is
taken if the occlusion is covering the side-walk. Moreover, if
a pedestrian or actor is detected in close proximity to the ego-
vehicle, it shifts the speed to a very slow level to avoid any
collision or accident. Furthermore, when the pedestrian or
actor is too close to the ego-vehicle and the decision-making
horizon too short, then the steering wheel and brakes of the
ego-vehicle are controlled through a reactive or proactive
manner by applying emergency brakes.

In Fig. 7, the blue rectangle is the ego-vehicle with local
senor field represented by the blue-shaded circle segment,
and the occlusion is represented by the pink-shaded region.
In these figures, local sensor measurements are represented
by a blue dot, and unfilled blue squares represent respective
zonotopic sets. The pedestrian is represented by a red square
in Figs. 7a1, 7b1 and 7c1. In Figs. 7a and 7b, yellow
rectangle is the connected vehicle and in Figs. 7b1 and
7b2 extended sensor is represented by the red-shaded circle
segment. In Fig. 7b1, the red dot represents extended sensor
measurement, and an unfilled red square represents its zono-
topic set. Similarly, in Fig. 7c, extended sensors on road-side
units 1 and 2 are represented by light green-shaded and light
blue-shaded regions, respectively. Their measurements are
represented by light green and light blue dots and zonotopic
sets by unfilled squares. In Figs. 7b1 and 7c1, resultant
zonotopes from the estimator are represented by unfilled
black squares.

In Scenario 1, as there is an occlusion covering the side-
walk, the ego-vehicle’s speed is changed from nominal speed
to cautious speed. In the case of having a pedestrian in the
scenario, as shown in Fig. 7a1, the pedestrian was detected
when it was too close to the ego-vehicle, so the speed was
changed to very slow to avoid a collision. In the case where

(a1) Scenario 1 with pedes-
trian.

(a2) Scenario 1 without pedes-
trian.

(a) Scenario 1 simulation results

(b1) Scenario 2 with pedes-
trian.

(b2) Scenario 2 without pedes-
trian.

(b) Scenario 2 simulation results

(c1) Scenario 3 with pedes-
trian.

(c2) Scenario 3 without pedes-
trian.

(c) Scenario 3 simulation results

Fig. 7: Simulation results for three scenarios.

there was no pedestrian in the scenario as shown in Fig. 7a2,
it is not certain whether there is a pedestrian until the ego-
vehicle moves past the zebra crossing. Therefore as soon as
the ego-vehicle detects zebra crossing, the speed is reduced to
slow speed so that the ego-vehicle is vigilant. The recorded
speed of the ego-vehicle in Scenario 1, for both the cases
of with and without pedestrian, is plotted in Figs. 8a and
8b, respectively. Furthermore, the average speed of the ego-
vehicle in different scenarios is reported in Table. I.

In Scenario 2, there is a connected vehicle moving in
the opposite direction of the ego-vehicle. Moreover, this
connected vehicle’s extended sensor can cover the region that



(a) Three scenarios with pedestrian in the occluded region. (b) Three scenarios without pedestrian in the occluded region.

Fig. 8: Comparison of simulation results of ego-vehicle’s speed for three scenarios which were stated in Section II

is occluded for the ego-vehicle. In the case of pedestrian, as
shown in Fig. 7b1, the pedestrian has detected quick ahead
of time than in Scenario 1 Fig. 7a1. Therefore, the speed is
reduced to a slow level directly instead of a cautious level.
In the case of Scenario 2 without pedestrian, as shown in
Fig. 7b2, as the extended sensor well covers the occluded
region, the ego-vehicle can accelerate with the nominal
speed with certainty as the ego-vehicle is aware that there
is no pedestrian in the occluded region. Therefore, share
situational awareness has improved the performance, i.e., the
average speed of the ego-vehicle as shown in Fig. 8a and 8b
and Table. I.

It is not realistic to have a connected vehicle with an ex-
tended sensor covering the occlusion near the zebra crossing.
For this reason, two extra road-side units have been installed,
as shown in Scenario 3. In the case of a pedestrian in the
scenario, as shown in Fig. 7c1, the pedestrian is detected a
bit earlier than Scenario 2 as shown in Fig. 7b1. These road-
side units are also advantageous when there is no pedestrian
in the scenario, which can be seen in Table. I where the
average speed is equal to the nominal speed.

On comparing scenarios with and without shared situ-
ational awareness, i.e., Scenario 1 and Scenario 2 & 3,
improvement in the ego-vehicle performance is noticed. In
a scenario with a pedestrian without the shared situational
awareness, the pedestrian is detected close to the ego-
vehicle. However, the pedestrian is detected in advance with
shared situational awareness. In case there is no pedestrian,
with shared situational awareness, the ego-vehicle’s speed
was maintained at the nominal speed level, which in turn
improved the average speed of the ego-vehicle during the
simulation. Moreover, with share situational awareness, the
framework is supportive of detecting a sensor failure or false
detection, which helps obtain accurate or reliable information
regarding the surroundings.

(a) Scenario 2 - estimated set zonotopes

(b) Scenario 3 - estimated set zonotopes

Fig. 9: Comparison of state estimation sets (zonotopes) for
Scenario 2 and Scenario 3.



In Fig. 9, closer version of state estimation set zonotopes
are presented for Scenario 2 shown in Fig. 7b1 and Sce-
nario 3 shown in Fig. 7c1. In Fig. 9a, the volume of ego-
vehicle’s zonotopic set is 50.3, the volume of connected
vehicle’s zonotopic set is 123.1, and the volume of the
resultant zonotope from the estimator is 94.0. Similarly, in
Fig. 9b, the volume of ego-vehicle’s zonotopic set is 100.5
, the volume of road-side unit 1 zonotopic set is 227.5, the
volume of road-side unit 2 zonotopic set is 227.5, and the
volume of the resultant zonotope from the estimator is 170.0.
Therefore, the resultant zonotopes are an over-approximated
zonotope, and it can also be observed that resultant zonotope
is relatively smaller than the largest zonotopic set at a
particular time step.

V. CONCLUSIONS

The proposed framework has the ability of sensor fusion
of multiple sensors with varying uncertainties and estimates
fusion from multiple vehicles or road infrastructures. It also
provides guarantees along with the provided estimates, which
are essential in safety-critical applications in general and
autonomous vehicles in particular. The guarantees are based
on set-membership estimation approaches. The potential of
the proposed framework was illustrated with the aid of use
cases along with simulation results. The framework also
supports the detection of sensor failure, which is part of
our future planned investigations. Real deployment on Scania
autonomous vehicles is also part of future work.

ACKNOWLEDGMENT

This work was partially supported by the Wallenberg
Artificial Intelligence, Autonomous Systems, and Software
Program (WASP) funded by the Knut and Alice Wallenberg
Foundation. It was also partially supported by the Swedish
Research Council.

REFERENCES
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