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Bayesian Confidence Calibration for Epistemic Uncertainty Modelling

Fabian Küppers1, Jan Kronenberger1, Jonas Schneider2 and Anselm Haselhoff1

Abstract— Modern neural networks have found to be miscal-
ibrated in terms of confidence calibration, i.e., their predicted
confidence scores do not reflect the observed accuracy or
precision. Recent work has introduced methods for post-hoc
confidence calibration for classification as well as for object
detection to address this issue. Especially in safety critical
applications, it is crucial to obtain a reliable self-assessment of
a model. But what if the calibration method itself is uncertain,
e.g., due to an insufficient knowledge base?

We introduce Bayesian confidence calibration - a framework
to obtain calibrated confidence estimates in conjunction with
an uncertainty of the calibration method. Commonly, Bayesian
neural networks (BNN) are used to indicate a network’s
uncertainty about a certain prediction. BNNs are interpreted
as neural networks that use distributions instead of weights
for inference. We transfer this idea of using distributions to
confidence calibration. For this purpose, we use stochastic vari-
ational inference to build a calibration mapping that outputs a
probability distribution rather than a single calibrated estimate.
Using this approach, we achieve state-of-the-art calibration per-
formance for object detection calibration. Finally, we show that
this additional type of uncertainty can be used as a sufficient
criterion for covariate shift detection. All code is open source
and available at https://github.com/EFS-OpenSource/calibration-
framework.

I. INTRODUCTION

Modern neural networks output a score attached to each
decision. Ideally, this score can be interpreted as the net-
work’s confidence in its prediction, indicating the probability
of correctness [1]. However, it is a well known issue that
these confidence scores neither reflect the actual observed
accuracy in classification [2], [3], [1] nor the observed
precision in object detection [4]. If a deviation between
predicted model scores and observed frequency is detected,
a model is called miscalibrated. Especially in safety-critical
applications like autonomous driving or medical diagno-
sis, well-calibrated confidence estimates are crucial. Several
research has focused on improving confidence calibration
either for classification [3], [5], [1], [4] or more recently for
object detection [6], [4]. Those calibration methods map an
uncalibrated confidence estimate to a calibrated one. In the
same way as neural networks, a calibration mapping must
also be trained using a separate data set. But what if such
a mapping needs to calibrate predictions which it is unsure
about, e.g. if a sample is out of training distribution? For
example, a driver assistance system for pedestrian recog-
nition may detect a person in an image area that has not
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1 100% → 98% +1.2%
−1.3%

2 100% → 96% +3.8%
−2.7%

3 99% → 85% +15.0%
−14.8%

Fig. 1: Using stochastic variational inference (SVI), we are
able to obtain not only a single calibrated estimate but also
an additional prediction interval quantifying the epistemic
uncertainty within the calibration mapping. We use the
position-dependent calibration framework of [4] but place
distributions over the calibration parameters to infer a sample
distribution for a single prediction.

been covered by the training set of the calibration model.
With position-dependent calibration [4], this can lead to a
misleading confidence estimate that may affect the system’s
behavior. Therefore, it is desirable for a calibration method
to indicate whether a calibrated estimate is reliable.

For this reason, we introduce Bayesian confidence cali-
bration. Similar to Bayesian neural networks, our approach
utilizes the idea of placing distributions over the weights of
a calibration mapping. Using this approach, it is possible
to quantify the intrinsic or epistemic uncertainty of the
calibration mapping itself. We treat the model parameters in
a Bayesian way using stochastic variational inference (SVI)
where we replace each weight by a normal distribution.
Thus, we do not obtain a single calibrated estimate for a
single prediction but rather a sample distribution indicating
the epistemic uncertainty about the current prediction. This
additional type of uncertainty might be used in conjunction
with the calibrated confidence estimate to reliably reflect the
observed frequency or to even reject a sample if necessary.
Our concept as well as a qualitative example are shown in
Fig. 1 and Fig. 2, respectively.

This work is structured as follows: first, we give a
review of the recent advances in confidence calibration and
Bayesian uncertainty modelling. Second, we introduce our
concept of using SVI within a calibration mapping and
provide extensive studies using several pretrained network
architectures. Finally, we conclude our contributions and
show further research directions that arise from this work.
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Fig. 2: An object detection model outputs a confidence estimate attached to each bounding box with a certain position and
shape. This information is used for position & scale dependent confidence calibration [4]. Instead of maximum likelihood
estimation, we utilize stochastic variational inference to predict a sample distribution for each detection. On the one hand,
this sample distribution reflects the observed frequency and on the other hand the epistemic uncertainty of the calibration
model for a certain confidence, position and shape. Using highest density interval estimation, it is thus possible to denote a
prediction interval for each calibrated estimate.

Novelty and significance. We introduce the concept of
Bayesian confidence calibration. This is the first work dis-
cussing epistemic uncertainty within the scope of confidence
calibration to the best of our knowledge. Furthermore, the
evaluation of uncertainty obtained by a Bayesian neural
network is commonly restricted to regression tasks [7], [8],
[9], [10], [11]. In contrast, we discuss how to evaluate
epistemic uncertainty obtained by a Bayesian model within
the scope of object detection. Therefore, this work has a
considerable significance for safety-critical applications (e.g.
autonomous driving, medical diagnosis, etc.) where a reliable
uncertainty measure is crucial.

II. RELATED WORK

Confidence calibration. Most calibration methods are
applied to predictions of neural networks after inference as
a post-processing step. We focus on scaling methods like
logistic calibration aka Platt scaling [12] and beta calibration
[5] where the logits of a network are scaled by learned
parameters before applying a sigmoid/softmax. We further
use histogram binning [13] as a baseline representative of
the binning calibration methods. Recent work has shown that
modern object detectors also tend to be miscalibrated [6],
[14], [4]. The authors in [4] showed that miscalibration in
object detection also depends on the position and scale of the
predicted objects. They provide a natural extension to logistic
calibration and to beta calibration to also include the regres-
sion branch into a calibration mapping. Our investigations
are based on this framework. Additionally, the authors in [4]
introduce the detection expected calibration error (D-ECE)
that is an extension of the well-known expected calibration
error (ECE) [3]. The D-ECE computes the miscalibration not
only by using confidence, but also by including the position
and scale of the detected objects.

Other work investigates how to directly train a calibrated
output distribution. The authors in [6] use an additional
network output that is learned in conjunction with the
remaining logits and used to rescale the output probability
(similar to temperature scaling [1]). In contrast, [15] use a
focal loss to obtain calibrated estimates for classification.
The authors in [16] add a confidence penalty term to obtain

lower confidence estimates. A more targeted approach to
address miscalibration within model training is proposed by
[17] where the authors use multiple stochastic forward passes
with dropout enabled during training. The authors show
that the uncertainty is highly correlated to miscalibration.
Seo et al. use the sample’s variance to weight a dedicated
regularization term. In contrast to these approaches, we
focus on post-hoc calibration methods for object detection.

Bayesian neural networks. The most common way
to model epistemic uncertainty in the scope of object
detection is to treat a model as a Bayesian neural network
[18], [19], [20]. In the past, [21] proposed a framework
to also model aleatoric uncertainty in conjunction with
epistemic uncertainty. However, the number of parameters
within a calibration method is highly limited, thus modelling
aleatoric uncertainty is currently not feasible for a calibration
mapping. Recently, [22] showed that epistemic uncertainty
estimates of BNNs are also miscalibrated, especially for
the task of regression. A metric for uncertainty evaluation
of a BNN has recently been introduced by [23] named
probability quality measure (PDQ) [23]. However, this
metric is rather designed for spatial uncertainty evaluation
for object detection or segmentation. Extensive studies have
focused on the calibration of uncertainty estimates obtained
by Bayesian regression models [22], [7], [8], [9], [10]. In
most papers, perfect uncertainty calibration for regression is
defined as the coverage probability of all prediction intervals
containing the ground truth value (also called prediction
interval coverage probability (PICP) [9]). We further adapt
this definition for uncertainty evaluation, too.

Improving confidence estimates. Orthogonal research
directions are proposed by [24] (IoU-Net) and [25] (GIoU),
respectively. In contrast to common confidence calibration,
IoU-Net focuses on fine-tuning the regression output to
improve the IoU between predicted and ground-truth
position. These authors introduce an additional location
confidence (regression) in conjunction with the confidence
(categorical). They even support the need for confidence
calibration because the authors show that the ’regular’



confidence is not a direct measure for misalignment. One of
the most related approaches to our work has been presented
by [26] which introduces a non-parametric Bayesian
isotonic calibration method. A prior distribution is used to
sample many isotonic regression models. In contrast to our
approach, the authors do not model epistemic uncertainty
but rather use the likelihood of each sampled model in order
to perform Bayesian model averaging.

III. CONFIDENCE CALIBRATION USING VARIATIONAL
INFERENCE

Definitions. For object detection tasks, we interpret the
input images X ∈ X , all class labels Y ∈ Y = {1, ...,K}
and the object positions R ∈ RJ = [0, 1]J attached to each
object (where J denotes the size of the box encoding) as
random variables that follow a joint ground-truth distribution
π(X,Y,R) = π(Y,R|X)π(X). Neural networks h serve
as a mapping of the input X to certain labels Ŷ with
confidence levels P̂ ∈ [0, 1] and boxes R̂ ∈ RJ so
that h : X → (Ŷ , P̂ , R̂). According to [1], we would
expect that the predicted scores P̂ represent a probability
of correctness, i.e., they should match the observed accuracy
for a certain confidence level. The term of calibration in
the scope of object detection differs in the sense that the
predicted confidence P̂ should reflect the observed precision
for a certain confidence level at a certain position and shape
[4]. An object detection model is perfectly calibrated if

Pr(M = 1|P̂ = p, Ŷ = y, R̂ = r) = p (1)

∀p ∈ [0, 1], y ∈ Y, r ∈ RJ

holds [4], where M = 1 denotes a correctly detected
prediction that matches a ground-truth object at a certain
IoU score. If we observe a deviation between predicted
confidence and observed precision, the model h is
miscalibrated. For classification, calibration methods aim
to map a confidence score of an uncalibrated classifier to
a calibrated one Q̂ ∈ [0, 1] that matches the accuracy for
a certain confidence level. Such a calibration method g is
a post-processing method that needs an own training stage
to learn a mapping g : P̂ → Q̂ with calibration parameters
θ̂ and can be seen as a probabilistic model π̂(Y |P̂ , θ̂).
Recently, the authors in [4] have shown that calibration
for object detection also depends on the regression output.
They provide an extension to existing calibration methods
to build a calibration mapping π̂(M |P̂ , Ŷ , R̂, θ̂) that also
includes the regression output by g : (P̂ , Ŷ , R̂) → Q̂. We
denote S = (P̂ , R̂) and stick to the calibration only for a
single class ”pedestrian” so that our calibration methods are
independent of Y in the following.

Bayesian confidence calibration. For all scaling methods,
the calibration parameters θ̂ are commonly obtained by
maximum likelihood (ML) estimation by minimizing the
NLL loss. Instead, we place an uninformative Gaussian prior
π(θ) with high variance over the parameters θ and infer the

posterior given by

π(θ|S,M) =
π(M |S, θ)π(θ)∫

Θ
π(M |S, θ)π(θ)dθ

(2)

with π(M |S, θ) as the likelihood. This distribution captures
the most probable calibration parameters given the network
output S and the according ground truth information M .
Given this posterior, we can map a new input s∗ with the
posterior predictive distribution defined by

f(m∗|s∗, S,M) =

∫
Θ

π(y∗|s∗, θ)π(θ|S,M)dθ (3)

to obtain a distribution as the calibrated estimate. Since the
posterior cannot be determined analytically, we use stochastic
variational inference (SVI) [27], [28], [29] as an approxima-
tion where a variational distribution (usually a Gaussian) is
used whose structure is easy to evaluate. The parameters of
the variational distribution are optimized to match the true
posterior using the evidence lower bound (ELBO) loss [27],
[29]. Afterwards, we sample T sets of weights and use them
to obtain a sample distribution consisting of T estimates for
a new single input s∗.

In contrast to Bayesian neural networks (BNNs), we
model epistemic uncertainty of the calibration mapping. The
distribution fi obtained by calibration for a sample with
index i does not reflect the model uncertainty of a single
prediction, but rather for a certain confidence level (and for
a certain position/scale for object detection). For example,
epistemic uncertainty estimates obtained by a BNN are
computed for each input image separately. A prediction
with a confidence score of 70% might have a different
uncertainty than another prediction for the same confidence
level. In contrast, our approach assigns an equal uncertainty
to both samples.

Implications for uncertainty evaluation. Commonly,
miscalibration in the scope of object detection is measured
with the detection expected calibration error (D-ECE) [3],
[4]. We interpret the mean of the sample distribution as the
new calibrated estimate q̂ = µf and use this to compute the
D-ECE. The epistemic uncertainty can be expressed by a
prediction interval around the mean estimate. In frequentist
statistics, it is quite common to choose quantile-based in-
terval boundaries for a certain confidence level τ assuming
a normal distribution. However, it is also possible that the
sample distributions obtained by SVI do not follow a normal
distribution (see Fig. 3).

Alternatively, in Bayesian terms, a prediction interval can
also be described as a credible interval for the observed
variable itself. Therefore, we use the highest density interval
(HDI) on the posterior predictive distribution to obtain the
interval boundaries by

Cτ,i = (`i, ui) : Pr(`i ≤ prec(i) ≤ ui) = 1− τ, (4)

where prec(i) denotes the observed precision of sample i for
a certain si. The advantage of using HDI is that it is possible
to obtain the narrowest interval for a desired probability mass
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Fig. 3: Exemplary confidence distributions of two predictions
after logistic calibration using SVI. We propose to use the
highest density interval (HDI) to get meaningful interval
boundaries since the output distributions are mostly skewed.

while being independent of the shape of the distribution. This
is demonstrated in Fig. 3 for two exemplary distributions
obtained by SVI with their respective prediction intervals.

For uncertainty evaluation, we adapt the definition of
quantile-calibrated regression [30], [31], [7], [10], [32].
Given a calibration model g that outputs a PDF fi for an
input with index i out of N samples, the uncertainty is
well calibrated if the observed precision of all samples falls
into a 100(1 − τ)% prediction interval (PI) approximately
100(1− τ)% of the time.

We can use the prediction intervals obtained by HDI to
calculate the prediction interval coverage probability (PICP)
[9] which is defined by

PICP =
1

N

N∑
i=1

1(prec(i) ∈ Cτ,i). (5)

The definition of PICP is commonly used for calibrated
regression where the true target value is known. However,
for classification or object detection, the true precision is
not directly accessible. Therefore, we use a binning scheme
over all available quantities S with N samples to estimate the
precision for each sample similar to the D-ECE calculation
[4]. For perfect uncertainty calibration, it is required that
PICP→ (1− τ) as N →∞ [7], [10]. Using this definition,
we can measure the difference between PICP and (1− τ) to
evaluate the uncertainty. As already mentioned by the authors
of [7], it is not sufficient for a probabilistic calibration model
to output well-calibrated mean estimates. For example, a
distribution with a wide prediction interval might be well
calibrated in terms of the D-ECE or PICP but is also un-
informative. Therefore, we also denote the mean prediction
interval width (MPIW) as a complementary measure where
the prediction interval width for certain Cτ,i is averaged over
all N samples [9]. Using D-ECE, PICP and MPIW, we are
thus able to measure the quality of the calibration mapping
itself as well as the quality of the epistemic uncertainty
quantification.

IV. EXPERIMENTS

Experimental setup. We utilize the scaling methods
logistic calibration aka Platt scaling (LC) [12] and beta

calibration (BC) [5] using the calibration framework pro-
vided by [4]. We replace the ML estimation by an SVI
optimizer provided by Pyro [38] to infer calibration param-
eter distributions. The histogram binning (HB) method is
also used as a reference model but without epistemic uncer-
tainty modelling. All code is open source and available at
https://github.com/EFS-OpenSource/calibration-framework.

We use different subsets of the output data for calibration
and for D-ECE calculation. This has the advantage of exam-
ining the performance of the calibration methods for different
features (e.g. position and/or scale) or for different kinds of
data distributions. Furthermore, for some applications (e.g.
anchor-free models [39]) only a subset of the actually used
bounding box data is available or even relevant for the
evaluation. Therefore, we either use confidence p̂ only with
M = 20 bins. Further, we add position (p̂, cx, cy) or shape
(p̂, w, h) information using MK = 8 bins in each direction.
Finally, we use all available information within calibration
using MK = 5 bins in each direction. To increase robustness
of the D-ECE calculation, bins with less than 8 samples are
neglected.

All experiments are restricted to the prediction and cali-
bration of class pedestrians only. We evaluate our methods
on the MS COCO validation dataset [33] consisting of
5,000 images with 36,781 annotated pedestrians. We use a
pretrained Faster R-CNN X101-FPN [34] (14,487 predictions
in total) and a pretrained RetinaNet R101-FPN [35] (14,181
predictions) provided by Detectron2 [40]. Furthermore, we
also utilize the Cityscapes validation dataset [36] consisting
of 500 images and 10,655 annotated pedestrians using the
bounding box predictions of a pretrained Mask R-CNN R50-
FPN [37], [40] with 3,462 predictions.

Similar to the training of a neural network, all calibration
methods require a dedicated training set. Since no labels are
available for the test data sets, our investigations are limited
to the validation sets of each database. Thus, we splitted
these sets randomly into training set (70%) for building the
calibration mapping and into test set (30%) for evaluation.
We repeated this 20 times to obtain an average result (with
fixed seeds for reproducibility).

Calibration evaluation. We compare the calibration
results obtained by SVI with the standard models built
by ML estimate. The results are given in Tab. I. We
observe that the calibration performance of both methods
is almost equal in nearly any case. Using SVI, the mean
values of the variational distributions converges to the
ML estimates. Minor differences of the D-ECE may also
result from inaccuracies of the binning scheme. Similar to
the experiments of [4], we can confirm that logistic and
beta calibration have superior performance compared to
histogram binning. This also holds for the SVI estimated
models. Therefore, we conclude that Bayesian confidence
calibration offers the same performance compared to the
standard ML estimation. However, using SVI has the
advantage of also obtaining an uncertainty quantification for
each result. Thus, we can provide an extended calibration



TABLE I: Calibration results of ML estimation with the respective differences to SVI estimation using multidimensional
histogram binning (HB), conditional dependent logistic calibration (LC) and beta calibration (BC) [4]. Each column of a
single table denotes which subset of data has been used for calibration and for measuring the D-ECE. Note that only scores
of a single column can be compared to each other since each column uses a different binning to evaluate the miscalibration.

D-ECE [%] on MS COCO validation set [33] with IoU 0.50 (left) and 0.75 (right)

(a) Faster R-CNN X101-FPN [34] with IoU 0.50

(p̂) (p̂, cx, cy) (p̂, w, h) full

baseline 5.649 5.837 6.073 6.360
HB 1.444 5.642 2.677 4.739
LC 1.952 +0.085 5.693 −0.011 2.320 +0.193 4.149 +0.125
BC 1.584 +0.766 5.691 +0.164 2.374 +0.220 4.245 +0.157

(b) Faster R-CNN X101-FPN [34] with IoU 0.75

(p̂) (p̂, cx, cy) (p̂, w, h) full

baseline 13.295 12.660 12.744 12.395
HB 1.469 6.606 3.664 5.672
LC 2.972 +0.094 7.015 +0.399 3.682 +0.076 4.986 +0.059
BC 2.345 +6.099 7.118 +0.186 3.358 +0.545 5.472 −0.082

(c) RetinaNet R101-FPN [35] with IoU 0.50

(p̂) (p̂, cx, cy) (p̂, w, h) full

baseline 13.665 12.469 15.823 13.449
HB 1.532 6.135 3.325 4.594
LC 2.002 +0.034 6.149 +0.060 3.146 +0.600 4.120 +0.288
BC 1.526 −0.047 6.332 +0.067 2.980 +0.193 4.713 −0.422

(d) RetinaNet R101-FPN [35] with IoU 0.75

(p̂) (p̂, cx, cy) (p̂, w, h) full

baseline 2.988 7.935 8.270 7.251
HB 1.689 7.152 4.061 5.412
LC 1.970 −0.045 7.497 +0.030 3.963 +0.467 5.049 −0.032
BC 1.743 +0.095 7.504 +0.133 4.002 +0.285 5.942 −0.598

D-ECE [%] on Cityscapes validation set [36] with IoU 0.50 (left) and 0.75 (right)
(e) Mask-RCNN R50-FPN [37] with IoU 0.50

(p̂) (p̂, cx, cy) (p̂, w, h) full

baseline 10.502 8.663 9.842 9.974
HB 3.022 4.501 3.158 5.366
LC 3.418 +0.152 4.317 +0.556 2.366 +1.360 4.935 +0.655
BC 3.572 +1.164 4.670 −0.073 2.694 +0.517 5.349 +0.219

(f) Mask-RCNN R50-FPN [37] with IoU 0.75

(p̂) (p̂, cx, cy) (p̂, w, h) full

baseline 30.102 24.046 29.190 27.939
HB 2.202 5.791 5.914 6.937
LC 4.399 +0.232 5.887 +0.534 3.699 +0.928 5.945 +0.165
BC 4.299 +4.962 6.021 +0.118 4.503 +0.198 6.259 +0.120

approach without any loss of calibration performance.

Uncertainty evaluation & covariate shift. The epistemic
uncertainty is evaluated by the PICP and MPIW scores.
The results are shown in Tab. II. We achieve reasonable
uncertainty estimates for the prediction interval using SVI
with PICP scores close to 95% in many cases. Further,
increasing MPIW scores are observed as the number of
dimensions used for calibration increases. We assume that
the increasing MPIW score is a result of the larger data
space while using the same amount of samples. In contrast
to aleatoric uncertainty, the epistemic uncertainty can be
minimized given more data [21]. Therefore, it would be
interesting to investigate if the uncertainty decreases when
more data is used. So far this is not feasible with any publicly
available data base for object detection.

Furthermore, we observe that epistemic uncertainty is
highly correlated with the data distribution used for cali-
bration training. This is demonstrated in Fig. 4 where we
measure the uncertainty of a calibration mapping for MS
COCO predictions by a Mask R-CNN, that has been trained
and also calibrated on Cityscapes. Since COCO images
exhibit considerably more diversity than Cityscapes, we have
several predictions that have not been covered by the sample
distribution during calibration training. Samples in sparsely
populated regions thus have a significantly higher prediction
interval width. Therefore, we can use the prediction interval
width as a sufficient criterion to detect samples that are out-
of-calibration-training distribution during inference.

In conclusion, we demonstrate that it is possible to achieve

Miscalibration/uncertainty under covariate shift
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Fig. 4: We use a Mask R-CNN trained on Cityscapes
and build a calibration mapping (top row) with a certain
data distribution (right column). Afterwards, we use the
same network but on the MS COCO dataset (bottom row)
with a different data distribution (right column) and apply
the trained calibration mapping. Each point (left column)
represents a prediction with an uncertainty interval and the
respective calibration error. The orange dotted lines divide
the data into the {25, 50, 75} percentiles. On the one hand,
we observe an increasing calibration error as the prediction
interval width increases. On the other hand, the prediction
interval width can be used as a sufficient criterion if samples
are out-of-distribution during inference.



TABLE II: Prediction interval coverage probability (PICP) for the 95% prediction interval and mean prediction interval
width (MPIW) for conditional dependent logistic calibration (LC) and beta calibration (BC) [4] using SVI estimation. The
structure of each subtable is equal to Tab. I.

PICP [%] on MS COCO validation set [33] with IoU 0.50 (left) and 0.75 (right)

(a) Faster R-CNN X101-FPN [34] with IoU 0.50

(p̂) (p̂, cx, cy) (p̂, w, h) full

PICP LC 84.719 78.326 83.471 82.217
BC 79.431 80.051 84.315 80.627

MPIW LC 5.763 14.793 13.458 21.248
BC 7.026 15.340 16.527 20.193

(b) Faster R-CNN X101-FPN [34] with IoU 0.75

(p̂) (p̂, cx, cy) (p̂, w, h) full

PICP LC 99.161 95.455 96.292 96.250
BC 85.824 97.340 97.272 95.510

MPIW LC 6.947 17.655 16.551 25.724
BC 6.979 19.120 20.172 24.721

(c) RetinaNet R101-FPN [35] with IoU 0.50

(p̂) (p̂, cx, cy) (p̂, w, h) full

PICP LC 82.237 78.886 86.076 82.712
BC 80.022 77.568 75.667 72.555

MPIW LC 6.324 15.187 15.501 22.334
BC 8.148 17.048 15.641 19.362

(d) RetinaNet R101-FPN [35] with IoU 0.75

(p̂) (p̂, cx, cy) (p̂, w, h) full

PICP LC 98.764 95.448 98.465 97.195
BC 97.404 96.206 92.324 89.598

MPIW LC 7.021 18.644 17.963 26.962
BC 8.954 20.124 19.458 24.093

PICP [%] on Cityscapes validation set [36] with IoU 0.50 (left) and 0.75 (right)
(e) Mask-RCNN R50-FPN [37] with IoU 0.50

(p̂) (p̂, cx, cy) (p̂, w, h) full

PICP LC 89.062 89.560 92.652 84.600
BC 74.678 91.162 93.628 85.545

MPIW LC 6.461 16.969 16.762 22.783
BC 7.083 16.207 18.869 22.217

(f) Mask-RCNN R50-FPN [37] with IoU 0.75

(p̂) (p̂, cx, cy) (p̂, w, h) full

PICP LC 98.848 99.135 99.217 98.576
BC 95.166 99.110 99.315 98.321

MPIW LC 7.664 20.202 19.624 28.443
BC 6.901 19.660 21.642 25.141

state-of-the-art calibration performance using Bayesian con-
fidence calibration. We further observe only minor differ-
ences between logistic and beta calibration. Most important,
we provide a framework to obtain calibrated confidence
estimates in conjunction with qualitatively good estimates
for epistemic uncertainty. This uncertainty might additionally
be used as a sufficient criterion to detect a possible covari-
ate shift. Therefore, this framework is particularly suitable
for safety-critical applications where a reliable uncertainty
quantification is of special interest.

V. CONCLUSION

In this paper we present a novel Bayesian framework
for confidence calibration to quantify epistemic uncertainty
within a calibration mapping. We extend common calibration
methods for object detection [4] by stochastic variational
inference (SVI) to infer distributions as the calibration
parameters. Therefore, it is possible to obtain a sample
distribution as the calibrated confidence estimate. This allows
for a quantification of the calibration mapping’s intrinsic
uncertainty. In our experiments we show that our framework
achieves state-of-the-art calibration performance on the de-
tection expected calibration error (D-ECE) compared to the
commonly used ML-estimated models. We further evaluate
the epistemic uncertainty and show that our framework pro-
vides meaningful prediction intervals that cover the observed
frequency in most cases on the one hand. On the other hand,
the uncertainty turned out to be a sufficient indicator of a

possible covariate shift between calibration training data and
testing set.

In addition to the confidence estimation, it is possible
to also use the epistemic uncertainty even to non-BNNs
for calibration verification. Our framework is therefore use-
ful especially for safety-critical applications such as driver
assistance systems or medical diagnosis where a reliable
confidence indication is of major significance.
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