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An Application-Driven Conceptualization of Corner Cases
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Abstract— Systems and functions that rely on machine learn-
ing (ML) are the basis of highly automated driving. An essential
task of such ML models is to reliably detect and interpret
unusual, new, and potentially dangerous situations. The de-
tection of those situations, which we refer to as corner cases,
is highly relevant for successfully developing, applying, and
validating automotive perception functions in future vehicles
where multiple sensor modalities will be used. A complication
for the development of corner case detectors is the lack of
consistent definitions, terms, and corner case descriptions,
especially when taking into account various automotive sensors.
In this work, we provide an application-driven view of corner
cases in highly automated driving. To achieve this goal, we
first consider existing definitions from the general outlier,
novelty, anomaly, and out-of-distribution detection to show
relations and differences to corner cases. Moreover, we extend
an existing camera-focused systematization of corner cases by
adding RADAR (radio detection and ranging) and LiDAR
(light detection and ranging) sensors. For this, we describe
an exemplary toolchain for data acquisition and processing,
highlighting the interfaces of the corner case detection. We
also define a novel level of corner cases, the method layer
corner cases, which appear due to uncertainty inherent in the
methodology or the data distribution.

I. INTRODUCTION

Perception is a challenging task in highly automated
driving. Especially when, as in Figure [T} low winter sun
overexposes the camera, the LIDAR provides false informa-
tion due to reflections from the partly slippery/icy road, and
the RADAR has much noise in its data due to the snow. Most
importantly, to ensure safety, the environment perception
methods need to operate reliably. This is crucial in driving
situations deviating from what is considered “normal”, and
possibly even dangerous as in Fig. [I] Such situations are
generally termed as corner cases, and their robust detection
is necessary for reliable perception methods, and hence, safe
highly automated driving. Next to the online application,
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Fig. 1.

Multiple corner cases: A winter scene with an icy, slippery,
reflective road, combined with low winter sun and people on cross-country
skis crossing the road.

detection of corner cases is also required during development
of machine learning (ML) perception methods. Here, they
provide both the appropriate training, and the crucial test
data to successfully develop and validate robust perception
methods.

While there exist many terms related to corner cases in
literature, as well as many detection approaches, a general
definition and description is missing. The lack of agreed
technical terms and definitions makes detection of corner
cases cumbersome. Previous work on corner case definitions
and detection has mostly considered the camera sensor and
visual perception. In this work, we consider corner cases
of RADAR and LiDAR sensors in addition to the camera
Sensor.

The authors of [1] formulate a systematization of corner
cases for visual perception in highly automated driving,
where corner cases are categorized in levels. These levels are
based on the type of situation they encompass and ordered
by their theoretical detection complexity. We follow this
approach and also consider corner cases on scene (Fig. [I),
object (e.g., people on cross-country skis), and domain level
(e.g., snowy winter), which we summarize into the content
layer. Additionally, for corner cases at scenario level, we
define the temporal layer, e.g., the unusual movement of a
person with cross-country skis compared to a pedestrian. We
grouped the corner cases, depending on whether they concern
single image frames and point clouds (content layer), or
multiple consecutive ones (temporal layer). As we aim to
provide a more comprehensive conceptualization of corner
cases, including multi-modal sensor inputs, we distinguish on
the lowest theoretical detection complexity between pixel-,
and point-cloud-level corner cases, terming this the sensor



layer. We will provide a detailed description of the expanded
systematization, and sensor-specific corner cases.
The main contributions of this work are:

o Conceptualization of a sensor-driven categorization of
corner cases for camera, LiDAR, and RADAR into
different layers and levels.

« Differentiation of single- and multi-source corner cases
in consideration of different fusion levels.

o Introduction of method layer corner cases generated by
the method itself and depending on parameters such as
topology, design, and deployment.

The remainder of this article is structured as follows: Sec-
tion [[I] gives an overview about recent work in the field
of corner cases and their categorization. The processing
toolchain in highly automated driving including camera,
LiDAR, and RADAR sensor is presented in Section [II}
Section handles the individual sensor types in more
detail and names specific corner cases. Section [V] particu-
larly introduces the method layer for corner cases, while
Section shows various methods to detect corner cases.
Existing datasets which can be used for corner case detection
and potential evaluation methods are provided in Section [VII}
Finally, Section concludes the key message of the paper.

II. DISTINCTION BETWEEN CORNER CASES AND OTHER
TERMS USED IN LITERATURE

In literature, various terms are used to describe unex-
pected, or anomalous situations and events. In this section,
we point out their distinctions and relations to corner cases
in highly automated driving.

Edge Cases: In the context of software and hardware
testing, both terms corner case and edge case are used.
Edge cases are situations or parameters that occur rarely
but are already taken into account during development [2].
This also applies to extreme cases or boundary cases, which
are often not explicitly mentioned but are included in the
edge case terminology. By identifying and handling edge
cases, the situations or parameters lose the edge case status
and are considered normal [2]. In contrast, a corner case
results from the combination of several normal situations or
parameters that coincide simultaneously, thus representing a
rare or never considered case or scene [2]. Transferring this
to highly automated driving, an example scene could be as
shown in Fig. [1]

In automated driving also entirely new situations can
occur and are then considered as corner cases, not just
combinations of already known ones. Similar to software
testing, they can cease to exist once an appropriate number
of examples of a particular corner case have been added to
the training and validation data of a perception method.

ML viewpoint on corner cases: In ML, we are interested
in corner case situations to be able to validate, but more
importantly, also to improve our system by re-training. The
recorded data of such a situation can be used as part of
the training data for the ML system, as the performance
of a perception model on corner case data for tasks such
as object detection, classification, and prediction is of great
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Fig. 2. The terms outlier, novelty, anomaly are often used in machine
learning literature. Corner cases are strongly related to them and have an
overlapping meaning with each of these terms.

interest. A general ML system can perform poorly on such
corner case data because the data contains novel situations,
or effects, which are not (sufficiently) present in the system’s
training data. The identification of such corner cases is
a major challenge, which also requires understanding the
performance of an ML model.

In addition to the distinction between the terminology for
corner cases in perception for highly automated driving and
in software testing, the technical terms outliers, anomalies
and novelties from ML literature are related to the meaning
of the term corner case, see Fig.

Outlier: An outlier is defined as “an observation which
deviates so much from other observations as to arouse
suspicions that it was generated by a different mechanism”
[3]. In [4], an outlier is described as a legitimate observation
of a known process that occurs in an area of low density
and, e.g., represents an extreme value. We follow a similar
understanding for corner cases, e.g., when the camera is
maximally blinded or a LiDAR beam or RADAR impulse
is maximally reflected or absorbed by the environment.

Anomalies: For anomalies, multiple definitions can be
found in literature (cf. [5], [6], [1]). While there are defi-
nitions focusing on anomalies as noisy data occurrences that
prompt artifacts which in turn hinder data analysis [6], Jiang
et al. [7], e.g., first define normal events by a high frequency
of occurrence, where consequently, anomalies are given as
the opposite. Other definitions consider anomalies as patterns
that are not consistent with learned ones, or with general
normal behavior [5], [8]. Moreover, there exists a catego-
rization in contextual, collective, and point anomalies [5].
For corner cases in automated driving, there is a deviation
from normality that is manifested in non-conform behavior
or patterns. The terms anomaly and corner case are almost
used synonymously. Anomalies describe a deviation from
normality. Hence, the term appears in the systematization
of corner cases [1] as well. For corner cases, other factors
also contribute to the terminology and definition, such as
the relevance for the driving behavior [9]. Moreover, corner
cases can be more complex scenarios that become anomalous
only in their entirety but do not consist of anomalous objects,
similar again to the application of software testing.

Novelties: Novelties appear as previously unseen instances
or objects [5]. In [4] the definition of novelties is somewhat
broader, whereby novelties are described as a spatial or
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Fig. 3.  Toolchain for data processing showing the individual sensors and processing steps with I = 3 sensors: LiDAR, camera, and RADAR. The

toolchain can be divided into the phases of data acquisition (I), data preprocessing (II), early machine learning (III), data fusion (IV), late machine learning

(V), and application (VI).

temporal agglomeration of anomalies or as a change in the
distribution of an already known process. The appearance of
new situations, objects, and movement patterns is an essential
characteristic of corner cases, which does not simplify a clear
distinction to novelties.

III. MULTI-SENSOR PROCESSING TOOLCHAIN

Before dealing with the different types of corner cases,
we detail the processing toolchain on which our consider-
ations and arguments are based. Fig. 3| shows the different
sensors of a prototypical automated vehicle in phase 1. For
the toolchain, we consider three sensors, namely LiDAR,
camera, RADAR. After the acquisition, the raw data ™% =
(x¥) for the different sensors enumerated by i € 7 =
{1,2,3} are first preprocessed in phase II. The connection
between phase I and II and between all other phases and
blocks are shown with an arrow. For clarity, if necessary,
several connections are bundled into one, where the number
above the arrow describes the number of connections. As
preprocessing depends heavily on the type of sensor, it is
done separately for camera images and point clouds from
LiDAR and RADAR. Possible preprocessing operations are
reshaping, aligning, or filtering.

Afterwards, depending on the type of data fusion, the data
aP® = (20"), i € Z, first pass through ML algorithms
separately in phase III or bypass them and are directly
fused into the combined data ™ in phase IV. The latter
is termed early data fusion. The so-called late data fusion
is performed when the sensor data 2P are first processed
separately in ML algorithms, and the outputs * = (z;F),
1 € Z, are then fused afterward in phase IV. Both processing
options are visualized in Fig. [3] by switches. In Section
we regard early and late data fusion, and consider the
possibilities of machine-learning-based fusion, where the
phase IV and V from Fig. [3] become indistinct and can
even completely merge. The processing pipeline then outputs
all environmental information x®" that are extracted in the
pipeline.

Furthermore, Fig. [3] provides an interface description for
corner case detection: Corner cases can appear at multiple
points in the toolchain. Therefore, if one aims to detect
corner cases in the perception pipeline, the detection methods

need to run in parallel to our depicted toolchain. Moreover,
we require connections for the corner case detection from
each processing phase I to V. This connection enables
detecting corner cases in each step of the toolchain, providing
all interim data from raw sensor values ™V, ¢ € Z, to fully
extracted environment information x®V. Thus, we might
detect, e.g., unknown objects after late fusion of camera and
LiDAR, which deviate from each other, pixel errors directly
in the raw data, or uncertainties from the ML module’s
output. The corner case detection has the second output of
the toolchain and provides corner case information ™.
The corner case detection output is of the same size as
the environment information x®V and provides for each
entry a probability for a corner case appearing here. Both,
corner case identification and environment information serve
in phase VI (see Fig. [3) as input to the driving function,
deciding on the appropriate driving behavior. In an offline
(laboratory) application, phase VI is excluded, and instead,
both " and xZ™ are used to reduce the data at hand
intelligently. Note that the formulation of this toolchain can
be arbitrarily extended to include more than three sensors by
adding them in parallel to the existing ones.

IV. SENSOR-DRIVEN VIEW OF CORNER CASES

The available data or the used algorithms do not only influ-
ence the occurrence of corner cases in ML. The application,
in this case highly automated driving, the sensor technology,
and the installation position have a significant impact. Before
discussing corner cases for different types of sensors, we
briefly review a hypothetical research vehicle as of today that
could be the basis for highly automated vehicles in the future.
It is equipped with a stereo camera, LIDAR sensors on the
roof, and RADAR sensors on the front and rear. The field of
view (FOV) of the different sensors overlaps mostly so that
the environment is covered in most parts in each direction
with at least two types of sensors. Based on this setup, there
are sensor-specific corner cases for each sensor type, which is
discussed in more detail below, where we extend a previous
systematization [1] of corner cases for visual perception to
the LIDAR and RADAR sensor.

The systematization [1] classifies corner cases into different
levels, ordered by their theoretical complexity of detection.
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Categorization of camera-, LIDAR-, and RADAR-based single-source corner cases. Example situations are given for the individual corner

cases on the sensor layer, content layer, and temporal layer. Method layer corner cases are not shown in this table.

The highest detection complexity is given for scenario level
corner cases. These patterns can be observed throughout
an image sequence and further subdivided into anomalous,
novel, and risky scenarios based on their potential for col-
lision and their observability during training. Scene level
corner cases are observed on single images and describe
known objects in either unseen quantities or locations. On
the object level, unknown objects are observed in single
images, while on the domain level, corner cases arise due to
the inability of the world model to explain its observations,
i.e., a domain shift. The pixel level is the lowest in [1] and
includes corner cases resulting from local and global outliers
in the camera hardware.

In this work, we now extend and modify the vision-

oriented systematization [1] by including other sensors and
introducing the additional notion of a layer, see Table [I] For
clarity, the sensor layer, content layer, and temporal layer
are introduced at the top level. The temporal layer includes
corner cases with a temporal context, thereby corresponding
to the scenario level in [1]. On the other hand, the content
layer comprises the domain, object, and scene level from [1]
and thus contains corner cases that result (a) from the data
at a specific point in time. The four levels scenario, scene,
object, and domain are existing in signals from LiDAR and
RADAR sensors as they exist in camera signals, as such
corner cases appear in point clouds and sequences of point
clouds in a similar way. However, it is important to consider
that corner cases of a certain level can only be transferred
from one sensor to another to a limited extent, if at all. A
corner case can therefore exist for one sensor but not for a
different sensor. Finally, the sensor layer describes corner-
cases that can be traced back to hardware errors or physical
properties. This results in the newly introduced hardware
level and physical level.
Corner cases resulting from a single sensor are called single-
source corner cases. We have already discussed the catego-
rization of these corner cases into layers and levels. However,
the fusion of sensor data can cause multi-source corner cases,
which we consider as a separate category. Since they can
appear more or less in any of the levels, we do not highlight
them in Table [I

A. Camera

In the context of highly automated driving, vehicles are
often equipped with many different camera systems. Mono
and fisheye cameras are often used to cover the areas to
the left, to the right, and behind the vehicle. Stereo, or
rarely trifocal cameras, are used mostly to cover the area in
front of the vehicle [10]. Regardless of the camera system,
pixel errors such as dead pixel, a dirty camera lens, or
overexposure can lead to a corner case at hardware level,
or physical level, see Table [ Unique camera properties or
functions, such as calculating the depth image of a stereo
or trifocal camera, can cause corner cases at hardware level.
This group of corner cases can be summarized with corner
cases at the sensor layer.

However, many corner cases are found in the image data
itself and are often system-independent. Image data have
a high information density. This fact is also reflected in
various methods, such as object recognition and classifica-
tion, contour estimation, recognition of the direction of gaze
of the person, gesture recognition, traffic sign recognition,
extraction of weather conditions and many more. On the
other hand, this abundance of information and variability of
image content also results in the most diverse corner cases.
These corner cases can be divided into domain level, e.g.,
different traffic signs in Germany and the U.S.A., object
level, such as animals and never-seen-before objects, and
scene level, where it can be a new situation such as a tree
lying on the road. If the depth image is also available, the
spectrum is extended by the possibility to determine the
position of an object, which results in a further type of scene
level corner case. However, all these cases belong to the
content layer.

If a camera captures a scene in a video sequence, it consists
of several individual images and the corner case can be rep-
resented by either a single frame, or by several consecutive
frames. A corner case in a particular frame may require a
temporal component as, e.g., in the case of a pedestrian’s
movement prediction, and is therefore a temporal-based
corner case categorized on the scenario level, situated at the
temporal layer.



B. LiDAR

There are different LiDAR systems in practice. Based on
the technique, LiDARs are divided into two groups: the
LiDAR system consisting of moving parts and the solid-
state LiDAR system. In any vehicle, the sensors are exposed
to vibrations, which leads to an increased risk of damage
for LiDAR sensors with moving parts. In case of such
or other hardware defects independent of the used LiDAR
technology, the resulting corner cases can be summarized as
hardware level corner cases, see Table |Il In addition to the
measuring points, which result in a point cloud, the LiDAR
also provides an intensity value for each measuring point.
The intensity of the reflected beam can cause corner cases
on the physical level. For example, the intensity value can
be very low for a dark-painted object or extremely high in
the case of a mirror or license plate, leading to a wrong
interpretation.

The simplest type of LiDAR is the line laser, which can only
measure one plane and depends heavily on the alignment. If
the LiDAR has several planes, the FOV expands vertically.
A 360° LiDAR allows to cover all directions and makes
it possible to determine the width, height, and distance to
each visible object around the vehicle. In all three LiDAR
variants, corner cases occur on the content layer. The corner
cases can be quite different and corner cases in a LiDAR
with several planes do not necessarily have to occur in a
360° LiDAR. On the domain level, corner cases can arise,
for example, because the road markings that are largely
recognizable with a LiDAR in Germany cannot be perceived
by a LiDAR in a different country because the markings are
made of a different material. Dust or smoke clouds (extreme
examples excepted) are a wonderful example for corner cases
on object level, since in comparison to camera and radar the
laser beam of the LiDAR can be reflected by the particles.
Corner cases can also arise at the scene level. For example,
objects already known to a system that are in an unusual
position, e.g., stacked scrap cars in a junkyard or a sweeper
on the sidewalk, can cause corner cases.

When a time sequence of measurements or point clouds is
processed, corner cases at the femporal layer arises. For
example, this is expressed in the form of new movement
patterns of people (e.g., movement of the extremities) or
vehicles (e.g., the inclination of a moving motorcycle). We
refer to this phenomenon as scenario level corner cases.

C. RADAR

RADAR sensors for highly automated vehicles can be
divided into short, mid, and long-range. The FOV becomes
narrower with increasing range. For this reason, short and
long-range sensors are combined often into one physical
sensor system [10]. A RADAR has no moving parts as
some LiDAR have, which can be damaged by vibration, or
a lens like a camera that can be scratched. Nevertheless,
this does not protect against a hardware defect, which can
lead to a hardware level corner case at the sensor layer, see
Table |Il Corner cases resulting from interferences, e.g., from
RADAR sensors of other vehicles, are summarized under the

term physical level corner cases. Further corner cases of the
physical level can be caused by a too small reflective surface
of the object, making detection much worse or impossible.
Object level RADAR corner cases appear in acquired
RADAR data and are not caused by poor accuracy or too
small reflection surfaces. Multiple reflections can cause,
for example, the so-called ghost detection of objects [10].
An example of this is if one side of a truck’s tailgate is
open and the other one is closed, the RADAR impulse is
reflected several times in the trailer until the RADAR sensor
receives the impulse again. A major advantage of RADAR
sensors is the excellent determination of the relative speed
of dynamic objects. On the other hand, different weather
conditions affect the data and can lead to corner cases at the
domain level. For example, corner cases could arise at scene
level because the RADAR does not sufficiently detect large
branches with leaves or trees that have fallen on the road.
All these various RADAR corner cases are summarized as
content layer corner cases.

Corner cases that result from a sequence of RADAR point
clouds are summarized under the term scenario level corner
cases and belong to the temporal layer, as previously for
camera and LiDAR. As with the other sensors, corner cases
are primarily addressed resulting from the trajectory of
objects, e.g., movement patterns.

D. Sensor Fusion

While highly automated vehicles will be equipped with
various sensors, each sensor has its advantages and limita-
tions. Henceforth, the data fusion module of the perception
processing toolchain in Fig. [3|is crucial for the environment
perception. Fig. [3] highlights two possibilities for data fusion
in phase IV: early and late fusion. In early data fusion, the
preprocessed data are directly fused in phase IV, bypassing
phase III, i.e., *P = P, Therefore, a network can learn
to extract all information present in the raw data [11].

In late data fusion, information from the preprocessed data
P are extracted separately in the ML methods in phase III,
and their output %P is combined [11].

The so-called cross fusion [12], or middle fusion [11],

fuse the data, e.g., in intermediate layers of neural networks,
hence blurring the distinct borders between the phases in
Fig. 3| resulting in higher flexibility. ML approaches to data
fusion can then also take the raw data as input and directly
output environment information [13]. However, there are
many options on how and where to fuse the data [11].
If the data from two or more sensors are merged, each sensor
provides data that may well overlap in its features. If such
an overlap leads to ambiguities that cannot be resolved, we
summarize such situations under the term multi-source corner
cases. A multi-source corner case occurs, for example, with a
dust cloud: The LiDAR detects the dust cloud on the object
level, while the camera and RADAR hardly perceive it or
even not at all.

There is the potential that multi-source corner cases in
the data fusion serve as a corner case detector themselves.
For example, during sunset, visual perception of the camera



sensor deteriorates. However, both other sensors, RADAR
and LiDAR are not influenced by this corner case for visual
perception. If a person crosses the street in front of the
ego-vehicle in this situation, ambiguities appear in the data
fusion. This leads to the critical question of trustworthiness
of the perception methods.

V. METHOD LAYER CORNER CASES

In contrast to the corner cases of the sensor, content, and
temporal layer, there exists another corner case layer inde-
pendent of the respective sensors, and the (actual) temporal
and spatial content, which is not shown in Table [I, as the
respective corner cases are not sensor-, but method-specific.
We term this corner case layer the method layer, and refer
to the respective corner cases as method level corner cases.
These corner cases are not necessarily perceptible by sensors
or a human driver, making this layer more abstract.

Corner cases of the method layer are caused by the applied
method themselves. In the processing toolchain in Figure
this corner case type appears predominantly in all phases
involving machine learning methods (i.e., phases III and
V). Depending on their topology, design, and deployment,
methods can give rise to various corner cases. These might
be corner cases due to a lack of knowledge because the ML
model has never encountered a similar situation before. In
literature, this is also referred to as epistemic uncertainty
[14], which can be approximate via Monte Carlo dropout
[15], or deep ensembles [16]. As an example for a method
level corner case, consider a ML method for visual object
detection. While we might aim to detect unknown objects
by a high epistemic uncertainty [17], also typical “normal”
objects can spark a high epistemic uncertainty [14], [18],
hence, leading to a method level corner case. Epistemic
uncertainty is not necessarily limited to ML methods and can
appear in various kinds of mathematical models in general.
Adversarial samples are another example of method level
corner cases that are not perceptible by humans (e.g. [19],
[20]). Even small changes to the model’s input (e.g., adding
a particular noise pattern) can lead to drastic changes in the
model’s output. One challenge is to distinguish corner cases
of the sensor, content, and temporal layer from corner cases
only immanent to the method layer.

Depending on the method and model, an inductive bias,
i.e. assumptions inherent to the ML method influencing
its predictive capability, is introduced to the underlying
perception task. This bias is also connected to method level
corner cases as it introduces certain assumptions about the
problem at hand, hence, also manifesting the types of corner
cases that can appear.

There is a semantic overlap between method level corner
cases and the single-source corner cases resulting from the
above explications. While method level corner cases are
caused by uncertainty in the methodology, this definition
does not exclude other corner case types. If we encounter
a bear on the street, this can be considered an object level
corner case for both RADAR and LiDAR. However, at the
same time, it is possible that the appearance of this bear also

results in high epistemic uncertainty [18]. The same holds,
e.g., if one encounters a domain level corner case through a
location change (see Table [I), depending on the method, this
can also lead to high epistemic uncertainty.

VI. CORNER CASE DETECTION TECHNIQUES

In this section, we give a brief overview of existing
methods for corner case detection. Most corner case de-
tection methods in literature regard the camera sensor and
aim to detect corner cases in images or image sequences;
see the overviews given in [1], [21], we consider methods
concerning different sensors, layers of corner cases, and their
engagement with the perception toolchain in Figure [3]

To detect corner cases on sensor layer, Protopapadakis et
al. [22] map maritime RADAR data via stacked autoencoders
to a feature space, where they employ density-based cluster-
ing to detect outliers. Chakravarthy et al. [23] apply a CNN
to raw RADAR data to extract features and classify them
using an open-set classification method to detect unknowns
in the waveform. As an open-set classifier, they choose
SV-Means [24], which is built upon other existing open-
set classifiers and formulated for the open-set problem of
waveform classification. Both approaches also extend to
content and temporal layer corner cases.

Lis et al. [25] regenerate synthetic images from segmen-

tation masks to identify content layer corner cases via the
residual error between the real and regenerated image. There
are also content layer corner case detection methods on
LiDAR data, such as Wong et al. [26], who introduce an
open-set instance segmentation network on point clouds that
identifies unknown points in an embedding space and groups
them into unknown instances. Capellier et al. [27] propose a
method to detect both known and unknown objects in LIDAR
data.
Bolte et al. [9] identify femporal layer corner cases for the
camera sensor if the residual error between the real and a
predicted image, weighted by the criticality of the location
in the image, exceeds a threshold.

For the camera sensor, methods from outlier and anomaly

detection in more general computer vision can be applied to
visual perception in automated driving. Of the three sensors
considered in this work, corner case detection methods for
RADAR data are the rarest. Adaptations of existing methods
for LiDAR point clouds to RADAR data, e.g., the adaptation
of PointNets to RADAR [28], can also lead to new corner
case detection methods in RADAR data.
Most sensor fusion approaches aim to make the perception
of automated vehicles more robust in general. Many focus
on detecting obstacles, e.g., using infrared and ultrasonic
sensors [29], or RADAR and LiDAR fusion with a Kalman-
filter-type algorithm [30]. Yang et al. [31] perform RADAR
and LiDAR fusion via a novel neural network architecture
leveraging early and late fusion for geometric and velocity
data from the RADAR sensor, making object detection more
robust.



VII. EVALUATION

In this section, we discuss existing datasets and methods
for the evaluation of corner case detectors. Here, we espe-
cially elaborate on datasets and metrics to evaluate not only
corner cases for visual perception, but those encompassing
other sensors as well.

A. Datasets

There exist a multitude of datasets for perception in highly
automated driving.

Camera: Many of them provide camera images or se-
quences (cf. [1]), such as the Cityscapes dataset [32],
the BDD100k dataset [33], the openDD dataset [34], or
the Mapillary Vistas dataset [35], to name a few.
All of those are large-scale datasets for visual perception
and provide adequate labels for the related tasks such as
semantic and instance segmentation and object detection.
Moreover, there exist a few datasets specifically for the
task of unknown object detection from images, such as
the RoadAnomaly [25], the Lost&Found [36] dataset,
and the Fishyscapes [37] dataset. Additionally, there
exist datasets with a specific underlying task such as VRU
detection (Eurocity Persons) [38].

LiDAR: Next to those purely camera-based datasets, there
exists by now also an increasing amount of multi-modal
datasets. One of the earliest of such datasets is the KITTI
[39] dataset, providing both camera and LiDAR data. The
combination of LiDAR and camera data appears in several
datasets, such as Apolloscape [40], A2D2 [41], Waymo
Open [42], PandaSet [43], and KAIST [44]. Many of
them provide 3D bounding boxes as labels [42], [41], [39],
some additionally provide point cloud semantic segmentation
labeling [41], [40]. The Canadian Adverse Driving
Conditions [45] dataset specifically provides image and
LiDAR data for wintry weather conditions.

RADAR: RADAR data is rare in large-scale datasets for per-
ception in automated driving. To our knowledge, only a few
such datasets exist. nuScenes [46], Astyx HiRes2019
[47], Oxford RobotCar [48], and RADIATE [49] provide
multi-modal data from RADAR, camera, and LiDAR, and
as far as we know, all of these datasets provide bounding
box labels for their RADAR data, except the Oxford
RobotCar where no ground truth labels are available.

B. Evaluation Methods

A critical aspect of corner case detection is how to evaluate
such methods. In contrast to related fields in automotive
perception, large-scale benchmarks are missing, and no con-
sistent evaluation rules exist. Here, we aim to provide a brief
overview of existing and applied methods to contribute to
harmonizing this field of research.

For corner case detection on camera images, often, the area
under the receiver operator characteristic (AUC) is used
to determine separability between a normal and anomalous
corner case class (e.g., [S0]). Moreover, the area under the
precision-recall curve (AUPRC) determines the separability
of one class, e.g., the corner case class [50]. One of few

existing online benchmarks related to corner case detection
on automotive camera images, the Fishyscapes online
benchmark [37], reports results in the average precision (AP)
and the false positive rate at 95% true positive rate (FPRys).
For corner case detection on LiDAR point clouds, one often
employs the task performance metrics average precision (AP)
and panoptic quality (PQ) [26]. Wong et al. [26] additionally
propose a variation of PQ, the unknown quality (UQ), which
emphasizes recall quality over recognition quality.

Next to the detection of corner cases, it is also important
not to lose performance on the original perception task
[50]. Thus, one should report, e.g., accuracy, IoU (semantic
segmentation), AP (object detection), especially when, e.g.,
including corner case detection and perception in a multi-task
learning framework, where a learned corner case detection
influences perception and vice versa.

Finally, there exist corner case metrics, which follow
specifically proposed corner case definitions. As an example,
Bolte et al. [9] propose a prediction-based corner case metric
signifying that they obtain a corner case score from the
error of an image prediction restricted to relevant objects
in relevant locations.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we introduced a categorization of corner
cases for perception in automated driving concerning the
camera, LiDAR, and RADAR sensor modalities, highlight-
ing specific definitions and respective examples for the
sensors. Additionally, we described a perception toolchain
for automated driving, where the interfaces of corner case
detection were highlighted in the pipeline. To comply with
the multitude of sensors in automated driving, we introduced
a sensor layer for corner cases, where we distinguish the
hardware and the physical level. Moreover, method layer
corner cases were defined, which differ from the other corner
case levels by being independent of the sensor modality, but
instead are method-specific.
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