
HAL Id: hal-03377931
https://hal.science/hal-03377931v2

Submitted on 6 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Seven Technical Issues That May Ruin Your Virtual
Tests for ADAS

Mohamed El Mostadi, Hélène Waeselynck, Jean Marc Gabriel

To cite this version:
Mohamed El Mostadi, Hélène Waeselynck, Jean Marc Gabriel. Seven Technical Issues That May Ruin
Your Virtual Tests for ADAS. 32nd IEEE Intelligent Vehicles Symposium, Jul 2021, Nagoya, Japan.
�10.1109/IV48863.2021.9575953�. �hal-03377931v2�

https://hal.science/hal-03377931v2
https://hal.archives-ouvertes.fr

Abstract— A number of simulation platforms allow the
validation of advanced driver assistance systems (ADAS) in
virtual road environments. However, the development of
virtual tests on top of such platforms may face technical issues.
Some are related to the management of the modular and
configurable architecture of the simulators. Others come from
the physical aspects of the simulation. Also, time and
concurrency issues may affect the control of dynamic scenarios.
This paper shares our experience with the virtual testing of
ADAS during a period of time of more than one year. The
technical issues yielded simulation crashes, ill-controlled test
executions, incorrect verdict assignments, and caused a waste
of time in the running and analysis of useless tests. We discuss
the issues and provide recommendations for the practitioners.

I. INTRODUCTION

Advanced driver assistance systems (ADAS) and self-
driving systems must be thoroughly validated in order to get
confidence that they are reliable and safe. Their validation is
done in part by test drives on public roads, but this strategy
cannot be sufficient to meet safety requirements. It would
take billions of accumulated miles to demonstrate that an
automated driving system is safer than a human driver [1].
Hence, car manufacturers must also rely on virtual,
simulation-based tests. Such tests can validate systems at
various levels of maturity, from model-in-the-loop
configurations to hardware-in-the-loop ones. Numerous
existing simulation platforms (e.g., Virtual Test Drive [2],
Simcenter Prescan [3], SCANeR [4], Carla [5], LGVSL [6])
provide facilities to create rich driving environments with
virtual roads, other vehicles and pedestrians. They make it
possible to consider a wide range of operational conditions,
in order to identify the safety-relevant corner cases. Related
work in the area has proposed test generation approaches
based on combinatorial testing [7], metaheuristic search [8,
9], machine learning [10] or a hybridization of metaheuristic
search and machine learning [11].

While the generation of tests has been much studied by
academic work, there has been little feedback on the practical
aspects of implementing the approaches in industrial settings.
A notable exception is an experience report from Bosch [12].
They shared the lessons learned and impediments they had to
overcome when applying search-based testing. Such
practitioner’s insights are important for the adoption of test
approaches in industry.

In this paper, we also adopt a practitioner’s view. The
insights we provide do not pertain to a specific test
generation approach, but rather to simulation-based testing in
general. We discuss technical issues that may arise whenever

1LAAS-CNRS, University of Toulouse, Toulouse, France. Contacts:

mohamed.el-mostadi@laas.fr, Helene.Waeselynck@laas.fr.
2Renault Software Labs, Toulouse, France. Contacts: mohamed.m.el-

mostadi@renault.com, jean-marc.gabriel@renault.com.

tests are implemented on top of simulation platforms. The
discussion is based on our experience with a commercial
simulation platform during a period of time of more than one
year. During this time, the platform was used by us and
several R&D teams at Renault for test experiments targeting
Autonomous Emergency Braking (AEB) systems. We report
on the implementation issues that were faced. They yielded
simulation crashes, ill-controlled test executions failing to
trigger the intended scenarios, and incorrect test verdict
assignments. The issues wasted time in the running and
analysis of useless tests.

We believe that our experience may be useful to other
practitioners. Indeed, simulators are very complex software
artifacts. They typically have a modular and highly
configurable architecture that the users may not perfectly
understand. Bugs may affect any module. The configuring,
interfacing, and orchestrating of all modules is difficult.
Additionally, simulation involves aspects of the physics
which may not be obvious to the users. Hence, the issues we
faced are likely to also affect other users of similar platforms.
This paper intends to raise awareness, as well as to provide
recommendations on how to identify and address the issues.

The structure of the paper is as follows. Section II
presents the simulation configurations we used. Sections III
to IX present the issues. Each section starts with a generic
description of the issue, then reports on the real-world
examples we experienced, and finally provides
recommendations.

II. SIMULATION PLATFORM
All experiments involved model-in-the-loop (MIL) tests

in an R&D context. Fig. 1 shows the architecture of the
simulator that was used. It is based on a commercial
simulation platform. We cannot disclose its identity.

The simulator is composed of several modules, including
a set of generic modules of the platform plus two modules
(Physical Car, Custom) that are specific to the system under
test. The runtime of the platform (Scheduler) manages the
execution of the modules based on their periodicity and
priority. The user may select an execution mode. All test
experiments used the synchronous mode with a fixed
simulation time step, to have a full control of the simulation.
The platform provides a scripting API to automate the
experiments. A script triggers parametrized test actions such
as SetSpeed(), ChangeLane(), etc.

In a conventional way, the simulator adopts a SUT-
centric view that distinguishes the ego vehicle from the other
ones. The target vehicles in the environment of the ego have
a simplified behavior simulated by the generic traffic module.
The simulation of the ego is paid more attention. The
physical car module reproduces the characteristics of a real
vehicle, and the custom module is in charge of the tested

Seven Technical Issues That May Ruin Your Virtual Tests for ADAS
Mohamed El Mostadi1,2, Hélène Waeselynck1, and Jean-Marc Gabriel2

AEB logic for this vehicle. The experiments involved two
configurations for Custom, shown in the right-hand side of
Fig.1. In the first one, Custom is simply the external
Simulink module that executes the AEB model. This is the
standard configuration for MIL testing. It has the
disadvantage that each time a new model is tested, there is
some effort to interface it to the rest of the platform. The
second configuration aims to reduce the interfacing effort: it
provides a middleware-mediated connection and
communication. In addition, this configuration includes a test
tool that supports the execution of graphical test scenarios in
place of scripts. Compared to the first configuration, the
second one involves more modules and induces longer
simulation times.

The issues reported in the rest of this document could
occur in either configuration, for manually created tests or
generated ones. The tests could come from us or from R&D
engineers. They correspond to classical types of scenarios for
an AEB like Cut-in, Cut-out, etc.

III. THE BIG BANG INTEGRATION ISSUE
The execution of virtual tests requires many modules to

be connected and work together. Each of them may contain
bugs, or they may not be properly interfaced. When a
simulation run fails, it may be very difficult to diagnose the
root cause of the problem.

A. Real-world Example from our Experience
Many problems were difficult to diagnose. We report here

on a bug that required the application of advanced data
analysis techniques to be understood.

The bug surfaced in the second configuration of the
simulator. We were experimenting with a test generation
method that uses an evolutionary algorithm coupled with
decision trees [11]. About 30% of the generated tests crashed
at the beginning of their execution. No error message was
produced to help us. We tried to execute a sample of 1000
tests in the first configuration and did not observe any crash.
The bug was thus specific to the second configuration with
the middleware and the test tool, but we could not see what
was going wrong.

We decided to determine whether the crashing tests
shared some common characteristics. All tests were instances
of a parametrized cut-in scenario where a target car merges

into the lane just in front of the ego vehicle. Only the input
parameters varied (the speed of the vehicles, etc.). The use of
decision trees in the generation process gave us the idea to
also use them for diagnosis purposes. We trained a decision
tree with the input parameters of 300 tests that crashed and
700 that did not. We visualized the most relevant branches of
the tree and also produced parallel coordinates plots to aid in
the analysis. We determined that a discriminating parameter
for crashes was the position of the target vehicle relative to
the ego at the beginning of the test. We used the simulator to
visualize static scenes corresponding to the identified
subranges of positions and discovered that the crashes
occurred when the target was placed outside of the field of
view of ego’s lidar. Fig.2 summarizes this line of
investigation, starting from a raw system crash report and
ending with the identified relation to the lidar’s vision.

Once we had understood the relation to lidar data, we
could identify the bug. Our tests involved simplified virtual
environments with just a flat road, the ego and a target
vehicle. Hence, the lidar had strictly nothing to see when the
target was outside its field of view. It did not deliver any
perception data. The absence of data was not properly
handled by the middleware module, which caused the
crashes. The middleware was fixed.

B. Recommendations
Preventive measures must be taken to avoid the kind of

time-consuming debugging we’ve just described. It is very
important to thoroughly validate each new module added to a
simulation platform. The unit validation should consider both
nominal and robustness cases (like the case of missing data

Figure 1. Architecture of the simulator. Left side: overview. Right side: two alternative configurations for Custom.

Figure 2. Investigation of the causes of the crash: 1) decision tree, 2) parallel

coordinates, 3) visualization of the field of view.

Ethernet Communication

Scenario
Module

Scheduler
Module

Traffic
Module

Physical Car
Module

Sensors
Module

Weather
Module

Other
Modules …

Custom
① or ②

①

②

for the middleware). The integration of the module into the
rest of the platform should then be gradual, starting from the
implementation of toy experiments in simple configurations,
and adding more complexity in several steps.

When bugs surface in complex configurations, the
opposite direction should be taken: trying to diminish the
complexity while keeping the essence of the problem. In our
case, whenever a problem occurred in the second
configuration, we tried to reproduce it in the first one that has
less modules. We also had other simplification strategies (not
illustrated by the middleware example) like simplifying the
logic of the tests or replacing the ego by a simple target
vehicle.

IV. INSUFFICIENT CONSIDERATION FOR CONFIGURATION
FILES

Simulation platforms are highly configurable. The
configuration files contain information such as the simulation
mode (synchronous, asynchronous), the time step, and the set
of modules to include as well as their properties (frequency
of execution, priority, etc.). The simulated behavior highly
depends on the configuration. Yet, users often pay less
attention to configuration data than to code.

A. Real-World Example from our Experience
Since we were working in a R&D context, the simulator

was not stable. There were frequent updates to the modules’
code (e.g., the physical car module, or the middleware). We
also received a new release of the commercial simulation
platform. Each time, regression testing was performed by re-
running a set of AEB simulation scenarios.

While re-running the scenarios after the new release of
the platform, we observed that some scenarios we had passed
turned to failures; new collisions were observed. We first
thought that this was due to the new platform code. But the
code was not the cause. The cause was an undocumented
update of the configuration files of the tests: the frequencies
of execution of the modules had been lowered. Less frequent
sensing and actuating made the task of the AEB more
challenging. By aligning the frequencies with the previous
ones, we obtained the same pass/fail verdicts as previously.

B. Recommendations
Configuration files are as important as the test scripts and

the simulator’s version. They should be managed and
documented just as code. In the above example, the
configuration files were not stored in version control. We had
to notice the change and manually roll back the configuration
to the previous version. We highly recommend that the test
team uses version control for all artifacts needed to reproduce
a test experiment.

V. INCORRECT TEST SETUP PHASE
The test setup phase initializes the simulation by

launching the modules and creating the virtual road, the
vehicles and so on. It is a tricky phase because there is a lot
of instability before everything is properly initialized. Errors
during the test setup may induce various effects, from
simulations that do not run to ones that run in an incorrect
way.

A. Real-World Examples from our Experience
Several reported problems were related to the setup

phase.

Example 1 – In the second configuration of the simulator,
the simulation could not run unless the modules were
initialized in a specific order: first Simulink, second the test
tool, and then the rest of the platform.

Example 2 – Also in the second configuration, the first
test action could be lost or only partially executed if triggered
before the simulator reaches a stable state. As there was no
means to determine the stability of the simulator, the solution
was to empirically add some warm-up time before the first
action.

Example 3 – There were intriguing collision cases where
the AEB system did not even try to brake while approaching
an obstacle. The cause was not a fault in the AEB logic. It
was an incorrect test setup that did not launch the sensors.
The AEB could not perceive the obstacle, and so did not react
to it. Such useless tests occurred in the first configuration of
the simulator but could have occurred in the second one as
well.

B. Recommendations
The test setup scripts should be carefully designed and

validated before massive experiments are launched. The
design should pay attention to the order of the initialization
commands, and include systematic checks of their success.
Any detected error should stop the initialization process and
issue a report. The aim is to avoid as much as possible the
silent errors that let the simulation run in an incorrect state,
yielding useless results. In cases where the simulation
platform does not allow for a synchronization point at a
stable initial state, some conservative amount of warm-up
time must be provisioned. The validation of the setup may
then use a validation simulation scenario to verify (i) the
error checking logic (e.g., by disabling each module in turn),
(ii) the creation of the driving scene, and (ii) the correct
execution of the first test action.

VI. INCORRECT TEARDOWN PHASE
At the end of a run, the teardown phase stops the modules

and cleans up the execution environment. Like the startup
phase, the teardown may cause problems if not properly
defined and implemented.

A. Real-World Examples from our Experience
Example 1 – The batch execution of 1,000 tests was

performed in the second configuration of the simulator. As
shown in Fig. 3, we observed an increase of the execution
time of the tests, the last tests in the suite requiring more than
twice the time of the first ones. The bug was in the
commercial platform: it provides facilities to clean up the
environment, but (as acknowledged in the documentation)
sometimes some modules were not closing properly and kept
running in the background. We added scripted instructions to
systematically kill all modules after each test, which fixed the
problem.

Example 2 – A teardown problem caused wrong verdict
assignments in a test suite executed in the first configuration.

To spare simulation time, the execution of any test was
immediately stopped whenever a collision event occurred.
Unfortunately, some of the modules were killed before they
could log their most recent data, so that the recorded test
trace did not show the collision. The oracle procedure, which
was based on the postprocessing of the logged traces,
considered the tests as passed. The problem was fixed by
changing the stopping script.

B. Recommendations
An incomplete clean-up may cause resource leaks and

side effects in a series of runs. To check for the absence of
such side effects, a possibility is to repeat a simulation run
some number of times and to check that the behavior remains
the same. The design of the teardown logic must take care
that the current simulation step is fully completed, and that all
modules are systematically closed after they are done.

VII. MISUNDERSTANDING THE SCOPE OF THE SIMULATION
Any simulator has a certain degree of fidelity in the way

it reproduces the real-world aspects. There is always a
simplification of reality. A good understanding of the scope
of the simulation (which aspects are simulated and which are
not) is necessary in order to identify what can or cannot be
tested in the virtual environments.

A. Real-World Example from our Experience
The issue occurred in our first steps with the simulator.

We explored test generation in the case of a parametrized
scenario where the ego vehicle is approaching a stationary
car. The parameters included the weather parameters offered
by the platform, to challenge the AEB system with fog and
rain. Surprisingly, we did not find any impact of the weather
conditions on the behavior under test.

Actually, the weather conditions were not in the scope of
the simulation. The weather module of the platform focuses
on camera-based vision. The vehicle under test had a lidar-
based vision. While adverse weather conditions also affect
lidars [13], the platform does not simulate the disturbance of
the perception in this case. Moreover, as other R&D
engineers explained to us, the physical car module we used
did not simulate how the braking distance is affected by
slippery roads.

As a result, the weather parameters could have no impact
on the tested behavior. By designing scenarios which

included these parameters, we unnecessarily enlarged the
input space and generated redundant tests that did not bring
any useful outcome.

B. Recommendations
The scope of the simulation may be unclear when reusing

off-the-shelf modules. Some facilities seemingly offered by
the platform may actually be useless in the specific
configuration of a simulator. New users should provision
learning time to experiment with the simulator and
understand its scope. If it is unclear how the simulator
handles an aspect of reality (like the weather conditions in the
above example), users should implement a simple
parametrized scenario that illustrates this aspect. The
parameters should allow the systematic study of gradual
situations, starting from a baseline case with no impact (e.g.,
sunny weather, dry road) to cases where a high impact is
expected (e.g., heavy rainfall). It is then possible to perform a
sensitivity analysis and observe how the parameter values
change (or do not change) the behavior under test.

VIII. SCENARIOS HAVING AN UNREALISTIC PHYSICS
The physics of the simulation are not the ones of the real

world. From an implementation perspective, this difference
means that there are simulator-dependent tricks to avoid
generating and running unrealistic scenarios.

A. Real-World Examples from our Experience
Our simulator mixes high-fidelity components (physical

car, which simulates the physics of the ego) and low fidelity
ones (traffic, which simulates the target vehicles). Each of
them introduced simulation-specific effects, which we had to
cope with.

Example 1 (Ego) – When trying to initialize ego with a
non-zero speed, the obtained behavior is the one shown in
Fig. 4. The speed spuriously decreases and increases before it
is stabilized at the desired value. For the example in Fig. 4, it
takes 500 simulation steps to reach a stable speed of 100
km/h. This is due to the dynamics model in the physical car
module: it expects an initialization to a stationary vehicle.
Hence, it is not recommended to directly start a scenario with
ego in motion in a road and traffic environment. In order to
avoid spurious behaviors, one has to proceed as follows.
First, the ego is placed on the road with a null speed. Second
test action accelerates the ego until the desired speed is
achieved (note that the maximal acceleration is constrained
by the physical model). And finally, the target vehicles are
placed relatively to the ego. In their case, it is possible to
have an initial speed. This test procedure typically results in
80% of the simulation time being spent in the initial
acceleration of the ego vehicle.

Example 2 (Targets) – The simplified physics of target
vehicles proved a serious nuisance for the implementation of
automated test generation techniques. We experimented with
evolutionary testing to search for critical collision scenarios.
The evolutionary search converged towards unrealistic
scenarios, like the target vehicle in front of the ego
decelerating from 120 km/h to 0 km/h in a very short time.
Such scenarios do not bring much insight into the AEB
performance. A solution is to better constrain the generation

Figure 3. Execution time depending on the order in the test suite.

process, in order to eliminate some of the unrealistic cases
allowed by the simplified physics.

B. Recommendations
The physics of the scenarios must be considered when

developing virtual tests. High-fidelity physics restrict the test
actions that can be applied (e.g., in our case, the state of the
ego vehicle could not be directly forced to arbitrary values),
which may complicate the implementation of the tests.
Conversely, low fidelity vehicle dynamics allows significant
freedom for test actions, but at the risk of producing
unrealistic scenarios. The test generation algorithms can be
constrained for better realism. But this has limitations: it
would ultimately require developing complex physical
models.

In practice, whenever randomized generation techniques
are used, the testers should expect numerous unrealistic
scenarios. They should provision effort to determine whether
the test results do point to real problems, and should have
direct access to experts in the system under test to aid them in
the analysis.

IX. IMPROPER MANAGEMENT OF TIME AND CONCURRENCY
For MIL and SIL testing, it is recommended to run the

simulation in a synchronous mode. It allows precise control
of the test actions performed during a run, e.g., actions to run
in parallel or sequentially, triggered at some specific
simulation step and for a given duration. However, issues in
the management of time and concurrency may severely
impair the controllability of the tests. It yields significant
differences between the scenarios specified in the test script
and the scenarios executed in simulation.

A. Real-World Examples from our Experience
All test experiments faced controllability problems. We

could only explain them by potential issues in the runtime of
the commercial platform. We managed to reproduce many
time-related and concurrency-related problems by means of
toy experiments simpler than the original tests. In this way,
we could confirm the following undesirable behavior:

• Imperfect control of the time-driven triggers.
Suppose that the test script requires test action 2 to
occur 4s after test action 1. The simulation step is
10ms. During the execution of the test, the action

actually occurs at 4.07s, i.e., 7 steps later than
prescribed.

• Imperfect control of the duration of test actions.
Some test actions, like a lane change, have a
parametrized duration. The observed duration is
longer than the prescribed one, lasting a few extra
simulation steps.

• Lost actions. When a test action lasts several
simulation steps, concurrent test actions planned at
those steps may be unexpectedly discarded.

• Imprecise positions and speeds. Suppose that at some
step, we put a target vehicle 200m ahead of another
vehicle. We would expect the position data log at this
step to indicate 200m, but instead it indicates a
slightly smaller or higher distance. The speed values
are also imprecise. Actually, this is due to the
sequencing of updates inside a simulation step. For
example, the new vehicle is first put at 200m but then
the position of the other vehicle is updated according
to its speed, which slightly decreases the distance
between the two. In the platform we used, the order
of updates seemed deterministic but was hard to
predict. We could empirically observe that it
depended on multiple factors such as: (i) the order in
which test actions appear edin the script (T1 || T2 did
not yield the same result as T2 || T1), (ii) the
priorities of the modules, (iii) the order in which the
vehicles were declared.

To illustrate the major impact of these problems on test
campaigns, consider an example set of 124 virtual tests that
we analyzed. They correspond to various instances of a Cut-
out scenario (see Fig. 5). In this scenario, the car in front of
the ego (target 1) changes lane to avoid a stopped vehicle
ahead (target 2), leaving the AEB a short time to respond to
the situation. The cut-out instances involve concurrent test
actions to control the relative positions of the vehicles at the
beginning of the lane change, their speed, and the abruptness
of the change. The tests were run on the first configuration of
the platform. From the analysis of the logs, we could
determine that none of runs matched the intended tests. For
55 tests (44% of the 124 ones), there was no cut-out at all
since the ChangeLane() test action was either lost or
incomplete (see Fig. 6.b). For the remaining 69 tests (56%), a
lane change occurred. But the relative positions, speeds, start
time and duration of the change were not the specified ones
(see an example in Fig. 6.a). It is not unfair to say that the
accumulation of problems made the cut-out tests
uncontrollable.

B. Recommendations
For MIL and SIL testing, the controllability of the tests

should be a major criterion when selecting and assessing a
simulation platform. The user should make sure to
understand the offered execution modes (e.g., synchronous or
asynchronous, with fixed or varying simulation steps). We
strongly recommend that example test scenarios be run in a
mode that is supposed to provide full control, in order to
check whether the test actions occur at the right time, have
the right duration, and provide the expected effect. Some of

Figure 4. Spurious physical behavior of ego when forced to an initial speed.

the scenarios should include concurrent test actions in order
to verify their proper management by the platform’s runtime.

In the daily usage of the platform as well, it may be wise
to develop automated facilities to analyze test logs. The test
developers should be able to check that the executed tests
correspond to the specified ones, and to assess the deviation.
Some imprecision in the control of speed and position values
may be unavoidable, but the test should closely reproduce the
intended scenarios.

X. CONCLUSION
This paper has discussed examples of technical issues that

arise in the development of virtual tests. Some are due to the
difficulty of managing the modular and configurable
architecture of the simulator: the Big bang integration issue,
the Insufficient consideration for configuration files, and the
Incorrect test setup and teardown phases. Others come from
having to cope with the physical aspects of the simulation:
Misunderstanding the scope of the simulation, and Scenarios
having an unrealistic physics. Finally, the Improper
management of time and concurrency impairs the ability to
control the behavior of dynamic test agents (e.g., adversarial
target vehicles) in the environment of the ego.

This list is not exhaustive and practitioners may well
experience other issues. For example, our previous work on
the virtual testing of an autonomous robot [14] faced a
dependency issue: the simulator used open-source
technologies and heavily relied on external libraries, the
update of which could suddenly break the simulator and the
tests. We did not experience such a dependency hell [15]
with the commercial platform. But interestingly, two spurious
fail cases mentioned in previous work [14] are related to
some of the issues we identified for the ADAS tests: one is a
teardown bug and the other is a scenario having an unrealistic
physics. We believe that the seven issues discussed in this
paper are not uncommon and should match the experience of
many developers of virtual tests.

The examples in this paper show how those issues can
undermine the test activities. We provide recommendations

on several aspects like the selection of the simulation
platform, the learning phase to get comfortable with a
simulator, the validation of the logic of the tests and the
management of the configurations. More generally, we would
like to insist on the need for establishing engineering
practices dedicated to the implementation of the tests. Virtual
testing is expected to play an increasing role in the validation
of autonomous systems and functions. While a great deal of
effort is put in the design of the test approaches, the
implementation effort should not be underestimated. By
sharing our experience, we hope to contribute to a reflection
on the processes, techniques and tools to assist test
developers in their tasks.

REFERENCES
[1] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of

driving would it take to demonstrate autonomous vehicle reliability?, ”
Transportation Research Part A: Policy and Practice, vol. 94,
pp. 182–193, 2016.

[2] Virtual Test Drive [online]
http://www.mscsoftware.com/product/virtual-test-drive, accessed:
2021-01-20.

[3] Simcenter Prescan [online]
https://www.plm.automation.siemens.com/global/en/products/simulati
on-test/active-safety-system-simulation.html, accessed: 2021-01-20.

[4] SCANeR Studio [online]
https://www.avsimulation.com/scanerstudio/, accessed: 2021-01-20.

[5] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An Open Urban Driving Simulator,” in Proc. 1st Annual
Conference on Robot Learning, pp. 1-16, 2017.

[6] LGVL [online] https://www.lgsvlsimulator.com/, accessed: 2021-01-
20.

[7] Y. Li, J. Tao, and F. Wotawa, “Ontology-based test generation for
automated and autonomous driving functions,” Information &
Software Technology, Vol. 117, Jan 2020.

[8] F. Hauer, A. Pretschner, and B. Holzmüller, “Fitness functions for
testing automated and autonomous driving systems,” in Proc.
International Conference on Computer Safety, Reliability, and
Security (Safecomp 2019), Springer, 2019, pp. 69–84.

[9] G. Li et al., "AV-FUZZER: Finding Safety Violations in Autonomous
Driving Systems,” 2020 IEEE 31st International Symposium on
Software Reliability Engineering (ISSRE), 2020, pp. 25-36.

[10] M. Koren, S. Alsaif, R. Lee and M. J. Kochenderfer, “Adaptive Stress
Testing for Autonomous Vehicles,” 2018 IEEE Intelligent Vehicles
Symposium (IV), 2018, pp.1-7.

[11] R. B. Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
vision-based control systems using learnable evolutionary
algorithms,” 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE). IEEE, 2018, pp. 1016–1026.

[12] C. Gladisch, T. Heinz, C. Heinzemann, J. Oehlerking, A. von
Vietinghoff and T. Pfitzer, "Experience Paper: Search-Based Testing
in Automated Driving Control Applications," 2019 IEEE/ACM 34th
International Conference on Automated Software Engineering (ASE),
2019, pp. 26-37.

[13] Y. Li, P. Duthon, M. Colomb, and J. Ibanez-Guzman, “What happens
to a ToF LiDAR in fog?,” to appear in IEEE Trans. on Intelligent
Transportation Systems, DOI: 10.1109/TITS.2020.2998077.

[14] C. Robert, T. Sotiropoulos, H. Waeselynck, J. Guiochet and S.
Verhnes, "The virtual lands of oz: testing an agribot in simulation,"
Empirical Software Engineering (EMSE), vol. 25, no. 3, pp. 2025-
2054, May 2020.

[15] Wikipedia page on dependency hell [online],
https://en.wikipedia.org/wiki/Dependency_hell, accessed: 2021-05-19.

Figure 5. A Cut-out scenario.

(a) A complete lane change

occurring too late
(b) Discarded or partially executed

lane changes (55 trajectories)
Figure 6. Lane change trajectories of Target 1 in the Cut-out tests.

