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Abstract— A number of simulation platforms allow the 
validation of advanced driver assistance systems (ADAS) in 
virtual road environments. However, the development of 
virtual tests on top of such platforms may face technical issues. 
Some are related to the management of the modular and 
configurable architecture of the simulators. Others come from 
the physical aspects of the simulation. Also, time and 
concurrency issues may affect the control of dynamic scenarios. 
This paper shares our experience with the virtual testing of 
ADAS during a period of time of more than one year. The 
technical issues yielded simulation crashes, ill-controlled test 
executions, incorrect verdict assignments, and caused a waste 
of time in the running and analysis of useless tests. We discuss 
the issues and provide recommendations for the practitioners. 

I. INTRODUCTION 

Advanced driver assistance systems (ADAS) and self-
driving systems must be thoroughly validated in order to get 
confidence that they are reliable and safe. Their validation is  
done in part by test drives on public roads, but this strategy 
cannot be sufficient to meet safety requirements. It would 
take billions of accumulated miles to demonstrate that an 
automated driving system is safer than a human driver [1]. 
Hence, car manufacturers must also rely on virtual, 
simulation-based tests. Such tests can validate systems at 
various levels of maturity, from model-in-the-loop 
configurations to hardware-in-the-loop ones. Numerous 
existing simulation platforms (e.g., Virtual Test Drive [2], 
Simcenter Prescan [3], SCANeR [4], Carla [5], LGVSL [6]) 
provide facilities to create rich driving environments with 
virtual roads, other vehicles and pedestrians. They make it 
possible to consider a wide range of operational conditions, 
in order to identify the safety-relevant corner cases. Related 
work in the area has proposed test generation approaches 
based on combinatorial testing [7], metaheuristic search [8, 
9], machine learning [10] or a hybridization of metaheuristic 
search and machine learning [11]. 

While the generation of tests has been much studied by 
academic work, there has been little feedback on the practical 
aspects of implementing the approaches in industrial settings. 
A notable exception is an experience report from Bosch [12]. 
They shared the lessons learned and impediments they had to 
overcome when applying search-based testing. Such 
practitioner’s insights are important for the adoption of test 
approaches in industry. 

In this paper, we also adopt a practitioner’s view. The 
insights we provide do not pertain to a specific test 
generation approach, but rather to simulation-based testing in 
general. We discuss technical issues that may arise whenever 
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tests are implemented on top of simulation platforms. The 
discussion is based on our experience with a commercial 
simulation platform during a period of time of more than one 
year. During this time, the platform was used by us and 
several R&D teams at Renault for test experiments targeting 
Autonomous Emergency Braking (AEB) systems. We report 
on the implementation issues that were faced. They yielded 
simulation crashes, ill-controlled test executions failing to 
trigger the intended scenarios, and incorrect test verdict 
assignments. The issues wasted time in the running and 
analysis of useless tests. 

We believe that our experience may be useful to other 
practitioners. Indeed, simulators are very complex software 
artifacts. They typically have a modular and highly 
configurable architecture that the users may not perfectly 
understand. Bugs may affect any module. The configuring, 
interfacing, and orchestrating of all modules is difficult. 
Additionally, simulation involves aspects of the physics 
which may not be obvious to the users. Hence, the issues we 
faced are likely to also affect other users of similar platforms. 
This paper intends to raise awareness, as well as to provide 
recommendations on how to identify and address the issues.  

The structure of the paper is as follows. Section II 
presents the simulation configurations we used. Sections III 
to IX present the issues. Each section starts with a generic 
description of the issue, then reports on the real-world 
examples we experienced, and finally provides 
recommendations.  

II. SIMULATION PLATFORM 
All experiments involved model-in-the-loop (MIL) tests 

in an R&D context. Fig. 1 shows the architecture of the 
simulator that was used. It is based on a commercial 
simulation platform. We cannot disclose its identity.  

The simulator is composed of several modules, including 
a set of generic modules of the platform plus two modules 
(Physical Car, Custom) that are specific to the system under 
test. The runtime of the platform (Scheduler) manages the 
execution of the modules based on their periodicity and 
priority. The user may select an execution mode. All test 
experiments used the synchronous mode with a fixed 
simulation time step, to have a full control of the simulation. 
The platform provides a scripting API to automate the 
experiments. A script triggers parametrized test actions such 
as SetSpeed(), ChangeLane(), etc.  

In a conventional way, the simulator adopts a SUT-
centric view that distinguishes the ego vehicle from the other 
ones. The target vehicles in the environment of the ego have 
a simplified behavior simulated by the generic traffic module. 
The simulation of the ego is paid more attention. The 
physical car module reproduces the characteristics of a real 
vehicle, and the custom module is in charge of the tested 
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AEB logic for this vehicle. The experiments involved two 
configurations for Custom, shown in the right-hand side of 
Fig.1. In the first one, Custom is simply the external 
Simulink module that executes the AEB model. This is the 
standard configuration for MIL testing. It has the 
disadvantage that each time a new model is tested, there is 
some effort to interface it to the rest of the platform. The 
second configuration aims to reduce the interfacing effort: it 
provides a middleware-mediated connection and 
communication. In addition, this configuration includes a test 
tool that supports the execution of graphical test scenarios in 
place of scripts. Compared to the first configuration, the 
second one involves more modules and induces longer 
simulation times. 

The issues reported in the rest of this document could 
occur in either configuration, for manually created tests or 
generated ones. The tests could come from us or from R&D 
engineers. They correspond to classical types of scenarios for 
an AEB like Cut-in, Cut-out, etc. 

III. THE BIG BANG INTEGRATION ISSUE 
The execution of virtual tests requires many modules to 

be connected and work together. Each of them may contain 
bugs, or they may not be properly interfaced. When a 
simulation run fails, it may be very difficult to diagnose the 
root cause of the problem. 

A. Real-world Example from our Experience  
Many problems were difficult to diagnose. We report here 

on a bug that required the application of advanced data 
analysis techniques to be understood. 

The bug surfaced in the second configuration of the 
simulator. We were experimenting with a test generation 
method that uses an evolutionary algorithm coupled with 
decision trees [11]. About 30% of the generated tests crashed 
at the beginning of their execution. No error message was 
produced to help us. We tried to execute a sample of 1000 
tests in the first configuration and did not observe any crash. 
The bug was thus specific to the second configuration with 
the middleware and the test tool, but we could not see what 
was going wrong. 

We decided to determine whether the crashing tests 
shared some common characteristics. All tests were instances 
of a parametrized cut-in scenario where a target car merges 

into the lane just in front of the ego vehicle. Only the input 
parameters varied (the speed of the vehicles, etc.). The use of 
decision trees in the generation process gave us the idea to 
also use them for diagnosis purposes. We trained a decision 
tree with the input parameters of 300 tests that crashed and 
700 that did not. We visualized the most relevant branches of 
the tree and also produced parallel coordinates plots to aid in 
the analysis. We determined that a discriminating parameter 
for crashes was the position of the target vehicle relative to 
the ego at the beginning of the test. We used the simulator to 
visualize static scenes corresponding to the identified 
subranges of positions and discovered that the crashes 
occurred when the target was placed outside of the field of 
view of ego’s lidar. Fig.2 summarizes this line of 
investigation, starting from a raw system crash report and 
ending with the identified relation to the lidar’s vision.  

Once we had understood the relation to lidar data, we 
could identify the bug. Our tests involved simplified virtual 
environments with just a flat road, the ego and a target 
vehicle. Hence, the lidar had strictly nothing to see when the 
target was outside its field of view. It did not deliver any 
perception data. The absence of data was not properly 
handled by the middleware module, which caused the 
crashes. The middleware was fixed. 

B. Recommendations 
Preventive measures must be taken to avoid the kind of 

time-consuming debugging we’ve just described. It is very 
important to thoroughly validate each new module added to a 
simulation platform. The unit validation should consider both 
nominal and robustness cases (like the case of missing data 

 
Figure 1. Architecture of the simulator.  Left side: overview. Right side: two alternative configurations for Custom. 

 
Figure 2. Investigation of the causes of the crash: 1) decision tree, 2) parallel 

coordinates, 3) visualization of the field of view. 
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for the middleware). The integration of the module into the 
rest of the platform should then be gradual, starting from the 
implementation of toy experiments in simple configurations, 
and adding more complexity in several steps. 

When bugs surface in complex configurations, the 
opposite direction should be taken: trying to diminish the 
complexity while keeping the essence of the problem. In our 
case, whenever a problem occurred in the second 
configuration, we tried to reproduce it in the first one that has 
less modules. We also had other simplification strategies (not 
illustrated by the middleware example) like simplifying the 
logic of the tests or replacing the ego by a simple target 
vehicle. 

IV. INSUFFICIENT CONSIDERATION FOR CONFIGURATION 
FILES 

Simulation platforms are highly configurable. The 
configuration files contain information such as the simulation 
mode (synchronous, asynchronous), the time step, and the set 
of modules to include as well as their properties (frequency 
of execution, priority, etc.). The simulated behavior highly 
depends on the configuration. Yet, users often pay less 
attention to configuration data than to code. 

A. Real-World Example from our Experience  
Since we were working in a R&D context, the simulator 

was not stable. There were frequent updates to the modules’ 
code (e.g., the physical car module, or the middleware). We 
also received a new release of the commercial simulation 
platform. Each time, regression testing was performed by re-
running a set of AEB simulation scenarios. 

While re-running the scenarios after the new release of 
the platform, we observed that some scenarios we had passed 
turned to failures; new collisions were observed. We first 
thought that this was due to the new platform code. But the 
code was not the cause. The cause was an undocumented 
update of the configuration files of the tests: the frequencies 
of execution of the modules had been lowered. Less frequent 
sensing and actuating made the task of the AEB more 
challenging. By aligning the frequencies with the previous 
ones, we obtained the same pass/fail verdicts as previously. 

B. Recommendations 
Configuration files are as important as the test scripts and 

the simulator’s version. They should be managed and 
documented just as code. In the above example, the 
configuration files were not stored in version control. We had 
to notice the change and manually roll back the configuration 
to the previous version. We highly recommend that the test 
team uses version control for all artifacts needed to reproduce 
a test experiment. 

V. INCORRECT TEST SETUP PHASE 
The test setup phase initializes the simulation by 

launching the modules and creating the virtual road, the 
vehicles and so on. It is a tricky phase because there is a lot 
of instability before everything is properly initialized. Errors 
during the test setup may induce various effects, from 
simulations that do not run to ones that run in an incorrect 
way. 

A. Real-World Examples from our Experience  
Several reported problems were related to the setup 

phase.  

Example 1 – In the second configuration of the simulator, 
the simulation could not run unless the modules were 
initialized in a specific order: first Simulink, second the test 
tool, and then the rest of the platform. 

Example 2 – Also in the second configuration, the first 
test action could be lost or only partially executed if triggered 
before the simulator reaches a stable state. As there was no 
means to determine the stability of the simulator, the solution 
was to empirically add some warm-up time before the first 
action. 

Example 3 – There were intriguing collision cases where 
the AEB system did not even try to brake while approaching 
an obstacle. The cause was not a fault in the AEB logic. It 
was an incorrect test setup that did not launch the sensors. 
The AEB could not perceive the obstacle, and so did not react 
to it. Such useless tests occurred in the first configuration of 
the simulator but could have occurred in the second one as 
well. 

B. Recommendations 
The test setup scripts should be carefully designed and 

validated before massive experiments are launched. The 
design should pay attention to the order of the initialization 
commands, and include systematic checks of their success. 
Any detected error should stop the initialization process and 
issue a report. The aim is to avoid as much as possible the 
silent errors that let the simulation run in an incorrect state, 
yielding useless results. In cases where the simulation 
platform does not allow for a synchronization point at a 
stable initial state, some conservative amount of warm-up 
time must be provisioned. The validation of the setup may 
then use a validation simulation scenario to verify (i) the 
error checking logic (e.g., by disabling each module in turn), 
(ii) the creation of the driving scene, and (ii) the correct 
execution of the first test action. 

VI. INCORRECT TEARDOWN PHASE 
At the end of a run, the teardown phase stops the modules 

and cleans up the execution environment. Like the startup 
phase, the teardown may cause problems if not properly 
defined and implemented. 

A. Real-World Examples from our Experience  
Example 1 – The batch execution of 1,000 tests was 

performed in the second configuration of the simulator. As 
shown in Fig. 3, we observed an increase of the execution 
time of the tests, the last tests in the suite requiring more than 
twice the time of the first ones. The bug was in the 
commercial platform: it provides facilities to clean up the 
environment, but (as acknowledged in the documentation) 
sometimes some modules were not closing properly and kept 
running in the background. We added scripted instructions to 
systematically kill all modules after each test, which fixed the 
problem.  

Example 2 – A teardown problem caused wrong verdict 
assignments in a test suite executed in the first configuration. 



 

 

 

 

To spare simulation time, the execution of any test was 
immediately stopped whenever a collision event occurred. 
Unfortunately, some of the modules were killed before they 
could log their most recent data, so that the recorded test 
trace did not show the collision. The oracle procedure, which 
was based on the postprocessing of the logged traces, 
considered the tests as passed. The problem was fixed by 
changing the stopping script. 

B. Recommendations  
An incomplete clean-up may cause resource leaks and 

side effects in a series of runs. To check for the absence of 
such side effects, a possibility is to repeat a simulation run 
some number of times and to check that the behavior remains 
the same. The design of the teardown logic must take care 
that the current simulation step is fully completed, and that all 
modules are systematically closed after they are done. 

VII. MISUNDERSTANDING THE SCOPE OF THE SIMULATION 
Any simulator has a certain degree of fidelity in the way 

it reproduces the real-world aspects. There is always a 
simplification of reality. A good understanding of the scope 
of the simulation (which aspects are simulated and which are 
not) is necessary in order to identify what can or cannot be 
tested in the virtual environments. 

A. Real-World Example from our Experience  
The issue occurred in our first steps with the simulator. 

We explored test generation in the case of a parametrized 
scenario where the ego vehicle is approaching a stationary 
car. The parameters included the weather parameters offered 
by the platform, to challenge the AEB system with fog and 
rain. Surprisingly, we did not find any impact of the weather 
conditions on the behavior under test.  

Actually, the weather conditions were not in the scope of 
the simulation. The weather module of the platform focuses 
on camera-based vision. The vehicle under test had a lidar-
based vision. While adverse weather conditions also affect 
lidars [13], the platform does not simulate the disturbance of 
the perception in this case. Moreover, as other R&D 
engineers explained to us, the physical car module we used 
did not simulate how the braking distance is affected by 
slippery roads.  

As a result, the weather parameters could have no impact 
on the tested behavior. By designing scenarios which 

included these parameters, we unnecessarily enlarged the 
input space and generated redundant tests that did not bring 
any useful outcome. 

B. Recommendations 
The scope of the simulation may be unclear when reusing 

off-the-shelf modules. Some facilities seemingly offered by 
the platform may actually be useless in the specific 
configuration of a simulator. New users should provision 
learning time to experiment with the simulator and 
understand its scope. If it is unclear how the simulator 
handles an aspect of reality (like the weather conditions in the 
above example), users should implement a simple 
parametrized scenario that illustrates this aspect. The 
parameters should allow the systematic study of gradual 
situations, starting from a baseline case with no impact (e.g., 
sunny weather, dry road) to cases where a high impact is 
expected (e.g., heavy rainfall). It is then possible to perform a 
sensitivity analysis and observe how the parameter values 
change (or do not change) the behavior under test. 

VIII. SCENARIOS HAVING AN UNREALISTIC PHYSICS 
The physics of the simulation are not the ones of the real 

world. From an implementation perspective, this difference 
means that there are simulator-dependent tricks to avoid 
generating and running unrealistic scenarios.  

A. Real-World Examples from our Experience  
Our simulator mixes high-fidelity components (physical 

car, which simulates the physics of the ego) and low fidelity 
ones (traffic, which simulates the target vehicles). Each of 
them introduced simulation-specific effects, which we had to 
cope with. 

Example 1 (Ego) – When trying to initialize ego with a 
non-zero speed, the obtained behavior is the one shown in 
Fig. 4. The speed spuriously decreases and increases before it 
is stabilized at the desired value. For the example in Fig. 4, it 
takes 500 simulation steps to reach a stable speed of 100 
km/h. This is due to the dynamics model in the physical car 
module: it expects an initialization to a stationary vehicle. 
Hence, it is not recommended to directly start a scenario with 
ego in motion in a road and traffic environment. In order to 
avoid spurious behaviors, one has to proceed as follows. 
First, the ego is placed on the road with a null speed. Second 
test action accelerates the ego until the desired speed is 
achieved (note that the maximal acceleration is constrained 
by the physical model). And finally, the target vehicles are 
placed relatively to the ego. In their case, it is possible to 
have an initial speed. This test procedure typically results in 
80% of the simulation time being spent in the initial 
acceleration of the ego vehicle. 

Example 2 (Targets) – The simplified physics of target 
vehicles proved a serious nuisance for the implementation of 
automated test generation techniques. We experimented with 
evolutionary testing to search for critical collision scenarios. 
The evolutionary search converged towards unrealistic 
scenarios, like the target vehicle in front of the ego 
decelerating from 120 km/h to 0 km/h in a very short time. 
Such scenarios do not bring much insight into the AEB 
performance. A solution is to better constrain the generation 

     
Figure 3.  Execution time depending on the order in the test suite. 



 

 

 

 

process, in order to eliminate some of the unrealistic cases 
allowed by the simplified physics.  

B. Recommendations  
The physics of the scenarios must be considered when 

developing virtual tests. High-fidelity physics restrict the test 
actions that can be applied (e.g., in our case, the state of the 
ego vehicle could not be directly forced to arbitrary values), 
which may complicate the implementation of the tests. 
Conversely, low fidelity vehicle dynamics allows significant 
freedom for test actions, but at the risk of producing 
unrealistic scenarios. The test generation algorithms can be 
constrained for better realism. But this has limitations: it 
would ultimately require developing complex physical 
models. 

In practice, whenever randomized generation techniques 
are used, the testers should expect numerous unrealistic 
scenarios. They should provision effort to determine whether 
the test results do point to real problems, and should have 
direct access to experts in the system under test to aid them in 
the analysis. 

IX. IMPROPER MANAGEMENT OF TIME AND CONCURRENCY 
For MIL and SIL testing, it is recommended to run the 

simulation in a synchronous mode. It allows precise control 
of the test actions performed during a run, e.g., actions to run 
in parallel or sequentially, triggered at some specific 
simulation step and for a given duration. However, issues in 
the management of time and concurrency may severely 
impair the controllability of the tests. It yields significant 
differences between the scenarios specified in the test script 
and the scenarios executed in simulation.  

A. Real-World Examples from our Experience  
All test experiments faced controllability problems. We 

could only explain them by potential issues in the runtime of 
the commercial platform. We managed to reproduce many 
time-related and concurrency-related problems by means of 
toy experiments simpler than the original tests. In this way, 
we could confirm the following undesirable behavior: 

• Imperfect control of the time-driven triggers. 
Suppose that the test script requires test action 2 to 
occur 4s after test action 1. The simulation step is 
10ms. During the execution of the test, the action 

actually occurs at 4.07s, i.e., 7 steps later than 
prescribed. 

• Imperfect control of the duration of test actions. 
Some test actions, like a lane change, have a 
parametrized duration. The observed duration is 
longer than the prescribed one, lasting a few extra 
simulation steps. 

• Lost actions. When a test action lasts several 
simulation steps, concurrent test actions planned at 
those steps may be unexpectedly discarded. 

• Imprecise positions and speeds. Suppose that at some 
step, we put a target vehicle 200m ahead of another 
vehicle. We would expect the position data log at this 
step to indicate 200m, but instead it indicates a 
slightly smaller or higher distance. The speed values 
are also imprecise. Actually, this is due to the 
sequencing of updates inside a simulation step. For 
example, the new vehicle is first put at 200m but then 
the position of the other vehicle is updated according 
to its speed, which slightly decreases the distance 
between the two. In the platform we used, the order 
of updates seemed deterministic but was hard to 
predict. We could empirically observe that it 
depended on multiple factors such as: (i) the order in 
which test actions appear edin the script (T1 || T2 did 
not yield the same result as T2 || T1), (ii) the 
priorities of the modules, (iii) the order in which the 
vehicles were declared. 

To illustrate the major impact of these problems on test 
campaigns, consider an example set of 124 virtual tests that 
we analyzed. They correspond to various instances of a Cut-
out scenario (see Fig. 5). In this scenario, the car in front of 
the ego (target 1) changes lane to avoid a stopped vehicle 
ahead (target 2), leaving the AEB a short time to respond to 
the situation. The cut-out instances involve concurrent test 
actions to control the relative positions of the vehicles at the 
beginning of the lane change, their speed, and the abruptness 
of the change. The tests were run on the first configuration of 
the platform. From the analysis of the logs, we could 
determine that none of runs matched the intended tests. For 
55 tests (44% of the 124 ones), there was no cut-out at all 
since the ChangeLane() test action was either lost or 
incomplete (see Fig. 6.b). For the remaining 69 tests (56%), a 
lane change occurred. But the relative positions, speeds, start 
time and duration of the change were not the specified ones 
(see an example in Fig. 6.a). It is not unfair to say that the 
accumulation of problems made the cut-out tests 
uncontrollable. 

B. Recommendations  
For MIL and SIL testing, the controllability of the tests 

should be a major criterion when selecting and assessing a 
simulation platform. The user should make sure to 
understand the offered execution modes (e.g., synchronous or 
asynchronous, with fixed or varying simulation steps). We 
strongly recommend that example test scenarios be run in a 
mode that is supposed to provide full control, in order to 
check whether the test actions occur at the right time, have 
the right duration, and provide the expected effect. Some of 

 
Figure 4.  Spurious physical behavior of ego when forced to an initial speed. 



 

 

 

 

the scenarios should include concurrent test actions in order 
to verify their proper management by the platform’s runtime.  

In the daily usage of the platform as well, it may be wise 
to develop automated facilities to analyze test logs. The test 
developers should be able to check that the executed tests 
correspond to the specified ones, and to assess the deviation. 
Some imprecision in the control of speed and position values 
may be unavoidable, but the test should closely reproduce the 
intended scenarios.  

X. CONCLUSION 
This paper has discussed examples of technical issues that 

arise in the development of virtual tests. Some are due to the 
difficulty of managing the modular and configurable 
architecture of the simulator: the Big bang integration issue, 
the Insufficient consideration for configuration files, and the 
Incorrect test setup and teardown phases. Others come from 
having to cope with the physical aspects of the simulation: 
Misunderstanding the scope of the simulation, and Scenarios 
having an unrealistic physics. Finally, the Improper 
management of time and concurrency impairs the ability to 
control the behavior of dynamic test agents (e.g., adversarial 
target vehicles) in the environment of the ego.  

This list is not exhaustive and practitioners may well 
experience other issues. For example, our previous work on 
the virtual testing of an autonomous robot [14] faced a 
dependency issue: the simulator used open-source 
technologies and heavily relied on external libraries, the 
update of which could suddenly break the simulator and the 
tests. We did not experience such a dependency hell [15] 
with the commercial platform. But interestingly, two spurious 
fail cases mentioned in previous work [14] are related to 
some of the issues we identified for the ADAS tests: one is a 
teardown bug and the other is a scenario having an unrealistic 
physics. We believe that the seven issues discussed in this 
paper are not uncommon and should match the experience of 
many developers of virtual tests. 

The examples in this paper show how those issues can 
undermine the test activities. We provide recommendations 

on several aspects like the selection of the simulation 
platform, the learning phase to get comfortable with a 
simulator, the validation of the logic of the tests and the 
management of the configurations. More generally, we would 
like to insist on the need for establishing engineering 
practices dedicated to the implementation of the tests. Virtual 
testing is expected to play an increasing role in the validation 
of autonomous systems and functions. While a great deal of 
effort is put in the design of the test approaches, the 
implementation effort should not be underestimated. By 
sharing our experience, we hope to contribute to a reflection 
on the processes, techniques and tools to assist test 
developers in their tasks.  
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Figure 5.  A Cut-out scenario.  
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Figure 6.  Lane change trajectories of Target 1 in the Cut-out tests. 


