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Abstract— Pedestrian trajectory prediction in urban scenar-
ios is essential for automated driving. This task is challenging
because the behavior of pedestrians is influenced by both their
own history paths and the interactions with others. Previous
research modeled these interactions with pooling mechanisms
or aggregating with hand-crafted attention weights. In this
paper, we present the Social Interaction-Weighted Spatio-
Temporal Convolutional Neural Network (Social-IWSTCNN),
which includes both the spatial and the temporal features.
We propose a novel design, namely the Social Interaction
Extractor, to learn the spatial and social interaction features
of pedestrians. Most previous works used ETH and UCY
datasets which include five scenes but do not cover urban traffic
scenarios extensively for training and evaluation. In this paper,
we use the recently released large-scale Waymo Open Dataset
in urban traffic scenarios, which includes 374 urban training
scenes and 76 urban testing scenes to analyze the performance
of our proposed algorithm in comparison to the state-of-the-art
(SOTA) models. The results show that our algorithm outper-
forms SOTA algorithms such as Social-LSTM, Social-GAN, and
Social-STGCNN on both Average Displacement Error (ADE)
and Final Displacement Error (FDE). Furthermore, our Social-
IWSTCNN is 54.8 times faster in data pre-processing speed, and
4.7 times faster in total test speed than the current best SOTA
algorithm Social-STGCNN.

I. INTRODUCTION

Pedestrians are essential participants in urban traffic sce-
narios because they are vulnerable and need protection.
Accurately predicting pedestrian trajectories is crucial for
automated driving to reduce the risk of potentially hazardous
situations. Recently, all major vehicle manufacturers strive to
include more features towards increased levels of automated
driving into cars. While many advanced driver-assistance
systems (ADAS) on the Society of Automotive Engineers
(SAE) Levels 1 and 2 are already commercially available,
higher SAE levels, especially Level 4, require a more ac-
curate prediction of the pedestrians than what is available
today.

The prediction of pedestrians’ intentions is a great chal-
lenge because of the uncertainty and randomness of their
motion pattern. Besides, as reported by Moussaid et al. [1],
the moving behavior of pedestrians is not only dependent
on their own paths from the past, but also driven by social
interactions with others nearby.

1 Department of Computer Science and Engineering, Univer-
sity of Gothenburg, Gothenburg, Sweden. chi.zhang@gu.se,
christian.berger@gu.se

2 Department of Maritime Sciences and Mechanics, Chalmers University
of Technology, Gothenburg, Sweden. marco.dozza@chalmers.se

Current state-of-the-art (SOTA) approaches aim at improv-
ing the accuracy of pedestrian trajectory prediction by using
deep learning networks. Most related works learn the social
interaction information by using a pooling module or a fea-
ture learning architecture over the hidden states learned from
recurrent networks. However, Nikhil and Morris [2] point out
that trajectories are continuous in nature and do not have
a complicated “state”. Extracting social interactions from
hidden states in previous models is indirect and the physical
meaning of such hidden states is difficult to interpret. Instead
of extracting features from hidden states, Social-STGCNN
as reported by Mohamed et al. [3], uses graph convolutional
networks (GCNs) with a hand-crafted kernel to aggregate
the features of other pedestrians directly from their position
information to improve the prediction results.

While substantial improvements for predicting pedestrian
trajectories were introduced by Social-STGCNN, its depen-
dency on hand-crafted kernels with non-linear computations
are time-consuming. Furthermore, the fixed kernel for social
interaction aggregation could fail in modeling interactions
between pedestrians correctly. Our research goal is to address
these two challenges by presenting a novel structure to
better capture the interactions between the pedestrians at a
lower computational cost. We are looking in particular at the
following two research questions:

RQ-1 To what extent can the proposed Social Interaction
Extractor architecture learn the interaction weights in
contrast to hand-crafted GCN kernels, to preserve and
improve on the SOTA accuracy of predicting pedestrian
trajectories while lowering the computational cost?

RQ-2 How does our proposed network perform compared
to the relevant SOTA approaches on the Waymo Open
Dataset [4], which provides 76 test scenes in densely
populated urban traffic scenarios?

In order to reach our research goal, we propose the
Social Interaction-Weighted Spatio-Temporal Convolutional
Neural Network (Social-IWSTCNN) to predict pedestrian
trajectories in urban traffic scenarios.

The main contributions of this paper are as follows:

• We propose a novel structure, the Social Interaction
Extractor, to better and faster capture the interac-
tions between pedestrians. Unlike the SOTA algorithm
Social-STGCNN [3], we avoid using the fixed attention
weights with time-consuming non-linear computations
in our approach, but learn the interaction attention

ar
X

iv
:2

10
5.

12
43

6v
1 

 [
cs

.C
V

] 
 2

6 
M

ay
 2

02
1



weights with a data-driven approach. Compared with
Social-STGCNN, our proposed network is 4.7 times
faster in total test speed, and 54.8 times faster in
data pre-processing speed, while producing competitive
results.

• As we aim to solve the real-world task of predicting
the pedestrian trajectories in urban traffic scenarios, we
use the recently released real-world large-scale Waymo
Open Dataset for a systematic and experimental eval-
uation of our approach as this dataset contains more
urban traffic scenarios that are nearly twice as densely
populated by pedestrians than the datasets ETH [5]
and UCY [6], which were mainly used for perfor-
mance comparisons so far. We compare our algorithm
with three SOTA methods including Social-LSTM [7],
Social-GAN [8], and Social-STGCNN [3], as well as
other baseline methods like Linear Regression (LR) and
long-short term memory (LSTM) models.

The remainder of the paper is structured as follows: Sec. II
presents and discusses related work. Sec. III describes the
proposed Social-IWSTCNN model. Sec. IV presents the
details of the experiments, and the results and findings
thereof are provided in Sec. V. Conclusions and future works
are described in Sec. VI.

II. RELATED WORK

In recent years, the interest in intelligent vehicles and
automated driving has attracted increasing attention to pedes-
trian trajectory prediction. Researchers in this field aim to
deal with the interactions between pedestrians, as well as
the predictions under uncertainty. Predicting pedestrians’
intentions by hand-crafted features is difficult because their
interactions are usually complicated and implicit. Recent
research on deep learning has demonstrated the potential
of learning the movement patterns of pedestrians in a data-
driven manner. In this section, we provide a brief summary
and discussion of related work.

A. RNN-based Pedestrian Trajectory Prediction

LSTM, an improved version of recurrent neural networks
(RNNs), is preferred by many researchers because of its
strong ability to handle the trajectory sequence information.
Social-LSTM as proposed by Alahi et al. [7] uses LSTMs
to extract the movement feature state from each pedestrian,
and applies a “social pooling” layer over LSTMs to model
social interactions. The Social-LSTM model assumes that
the pedestrian trajectories follow bi-variate Gaussian distri-
butions and predicts probabilistic trajectories. In this paper,
we follow the bi-variate Gaussian distribution assumption
and use negative log likelihood as the loss function.

Later works have extended Social-LSTM methods by im-
proving the interaction aggregation module or by including
environment and neighbor features extracted from images.
Fernando et al. [9] apply a “soft” and “hard-wired” combined
attention model over LSTMs to improve the prediction
precision. State-Refinement LSTM [10] improves the pool-
ing mechanism to better capture the interactions between

pedestrians by refining the states of pedestrians. Xue et
al. [11] further include scene information to the LSTM-based
framework. Their proposed Social-Scene-LSTM uses two ad-
ditional LSTMs to tackle neighboring pedestrians and scene
layout information and predicts deterministic trajectories by
minimizing the least square error. Chandra et al. [12] use
convolutional neural networks (CNNs) to extract the features
from images separately from neighbor and horizon views,
and concatenate them together with ego-state to be fed into
the LSTM framework. These approaches have gained good
performance on pedestrian trajectory prediction.

Some researchers argue that multiple trajectories are plau-
sible and socially-acceptable given a trajectory from the past,
and assume that the pedestrian trajectories follow a multi-
modal distribution. For instance, Gupta et al. [8] propose
Social-GAN using generative adversarial networks (GANs)
with an LSTM based generator, and other researchers fol-
low this direction. Social-ways as reported by Amirian et
al. [13] improves the attention pooling structure instead
of max pooling and uses an info-GAN without L2 loss.
SoPhie as proposed by Sadeghian et al. [14] improves the
attention mechanism and includes the environment scene
feature extracted from images by CNNs within the LSTM-
based GAN framework. CGNS [15] is similar to SoPhie
but uses gate recurrent units (GRUs) instead of LSTMs for
prediction to improve the accuracy. The approach Social-
BiGAT as described by Kosaraju et al. [16] is also based on
GANs but improves the social attention learning module with
a graph attention network over the hidden states of LSTMs
to model social interactions.

B. CNN-based Pedestrian Trajectory Prediction

In addition to extracting features from images, CNNs
have also been used for trajectory prediction. Unlike RNN
methods whose later time-step prediction depends on previ-
ously predicted time-steps, CNN-based methods can predict
all time-steps at once. Nikhil and Morris [2] use CNNs to
predict the trajectories and achieve competitive results while
reaching computational efficiency. Bai et al. [17] argue that
the parameters of RNNs are inefficient and expensive in
training, and hence, the usage of Temporal Convolutional
Networks (TCNs) should be considered for sequence model-
ing tasks. Mohamed et al. report Social-STGCNN [3], which
has made a great breakthrough on reducing the final error by
using TCNs and CNNs yet with a faster speed. Therefore, in
this paper we use TCNs and CNNs for long-term trajectory
predictions.

C. Social Interaction Extracting

How to learn the social interactions is one of the most
concerned topics in pedestrian trajectory prediction. Pioneer-
ing work from Helbing and Molnar [18] presents the Social
Force model to handle interactions with attractive and repul-
sive forces, but the hand-crafted rules are hard to generalize.
Alahi et al. [7] propose a “social pooling” layer, which uses a
rectangular shape occupancy grid map of the neighborhood
to represent the relationship of neighbors. Gupta et al. [8]



point out that local information is not always sufficient, and
hence, they use a multi-layer perceptron (MLP) followed by a
max pooling structure to capture the global social interaction
information. Sadeghian et al. [14] assume that people pay
more attention to closer objects so they sort the attention
by distance. GCNs are defined as the convolution operation
over graphs [19], which are weighted aggregations of target
nodes with the features of their neighbor nodes. As the
above mentioned hand-crafted modules may fail in learning
the interactions correctly, Social-BiGAT [16] uses GCNs as
graph attention networks to extract the social interactions
between pedestrians.

Most of the previous models have applied the social
interaction layer on hidden states extracted from recurrent
networks, expecting such hidden states to capture the pedes-
trians’ motion properties. However, trajectories are continu-
ous in nature and do not have complicated “states” [2]. The
physical meaning of hidden states is difficult to interpret,
and using these “states” to represent the motion properties
is indirect and non-intuitive. Mohamed et al. [3] propose
the Social-STGCNN that learns the embedding feature of
pedestrians directly from their locations, and apply GCNs
with a hand-crafted kernel as the weights to aggregate the
feature from other pedestrians.

However, the hand-crafted kernel of Social-STGCNN in-
cludes two square computations and one square root compu-
tation for each pair of pedestrians, and these non-linear com-
putations are very time-consuming. Furthermore, although
the fixed kernel has some physical meaning and can be ex-
plained, it does not learn the interaction information from the
data, and may represent the social interaction relationships
incorrectly. Therefore, in this paper we do not spend long
time on building graph. Instead, we propose a novel design
to learn the social interaction weights between pedestrians,
which avoids the time-consuming non-linear computations
but learns such social interaction attention weights from their
relative positions in a data-driven manner.

D. Datasets

High-quality and large-scale datasets are crucial for data-
driven machine learning algorithms. Two publicly available
datasets ETH [5] and UCY [6] contain bird’s-eye-view
videos and image annotations of pedestrians collected in
real-world scenarios. Most of previous pedestrian trajectory
prediction algorithms are trained and evaluated on these
datasets [7], [10], [11], [8], [14], [15], [16], [3]. There are in
total five scenes in these datasets, containing 6,441 frames at
2.5 Hz. The maximum number of pedestrians in each frame
is 75 and the average number of pedestrians is 14.6.

However, both ETH and UCY datasets do not include
sufficiently enough urban traffic scenarios for a detailed anal-
ysis of relevant, densely populated urban traffic situations.
Recently, Waymo released a real-world large-scale dataset
[4], which is the largest and most diverse autonomous vehicle
dataset ever published, including urban and suburban scenar-
ios in high quality. This dataset consists of 1,150 scenes in
total, 450 scenes of which are urban scenarios. Each of the

scene has a duration of 20 seconds, containing LiDAR and
camera data with multiple objects labeled by 2-dimensional
(2D) and 3-dimensional (3D) bounding boxes and unique
track identifiers. The urban scenarios in the dataset consist of
374 training scenes and 76 test scenes. The dataset contains
in total 20,697 frames at 2.5 Hz. The maximum number of
pedestrians in each frame is 195 and the average number
of pedestrians is 27.4. Since the Waymo Open Dataset is
3.21 times larger and 1.85 more densely populated than the
ETH and UCY datasets, it is more appropriate to evaluate
the models on Waymo Open Dataset. In this paper, we train
and evaluate our algorithm comparing to the SOTA models
using Waymo Open Dataset.

III. METHODOLOGY

A. Problem Definition

A person’s position in a scene is represented by real-world
x-y-coordinate X = (x, y). Given a set of n pedestrians with
their observed positions Xi

t = (xit, y
i
t) where i ∈ {1, . . . , n},

over time-steps 1 ≤ t ≤ Tobs, we aim to predict the
likely trajectories of pedestrians Ŷ i

t = (x̂it, ŷ
i
t) in the future

time-steps Tobs + 1 ≤ t ≤ Tpred. The ground truth of
the future trajectories is denoted as Y i

t = (xit, y
i
t), where

i ∈ {1, ..., n}, Tobs + 1 ≤ t ≤ Tpred.
The predicted positions of pedestrians Ŷ i

t = (x̂it, ŷ
i
t),

i ∈ {1, ..., n}, Tobs + 1 ≤ t ≤ Tpred are random variables.
We assume that the ith pedestrian’s position at time t
follows bi-variate Gaussian distribution Ŷ i

t ∼ N (µi
t, σ

i
t, ρ

i
t).

At time-step t, the mean value of the position is µi
t =

(µx, µy)it. The standard deviation is σi
t = (σx, σy)it, and the

correlation coefficient is ρit. To get the trajectory prediction,
our network predicts the Gaussian distribution parameters
(µx, µy, σx, σy, ρ)it.

The pedestrian positions of observation time-steps 1 ≤ t ≤
Tobs are used for predicting the distribution of the pedestrian
trajectory positions during prediction time-steps Tobs + 1 ≤
t ≤ Tpred. We use the negative log likelihood loss function
to learn the parameters of the model, as below:

L(W ) = −
Tpred∑

t=Tobs+1

n∑
i=1

log (f(xit, y
i
t|µx, µy, σx, σy, ρ))

(1)
where W represents the learned network parameters. We
minimize the loss value to get optimal weights for our
network.

B. Overall Model

In this part, we present the Social-IWSTCNN algorithm
that learns the social interaction weights between pedestrians.
We designed this approach for dense traffic scenarios in
the city and used the Waymo Open Dataset for training
and evaluation. Our proposed network takes pedestrians’
sequences with x-y-coordinate center positions from bird’s-
eye-view as inputs, and generates the predicted trajectories
of pedestrians.

The overall Social-IWSTCNN model mainly includes
three parts: a) the Social Interaction Extractor to learn the



interaction weights and spatial features, b) the Temporal
Convolutional Networks for temporal feature extracting, and
c) the Time-Extrapolator Convolutional Network for predic-
tion. The overall network structure is shown in Fig. 1.

Both the spatial and the temporal features are included
in the network. The spatial features are extracted by the
Social Interaction Extractor, including the input position
embedding feature as well as the social interaction feature.
The temporal features are learned by TCNs, which use
convolution operations over the sequential spatial features
to capture the temporal patterns of the sequence. Finally,
after extracting the spatial and temporal features of each
pedestrian, a CNN is used for extrapolating the long-term
trajectories. The details are shown in the following sections.

C. Feature Embedding and Social Interaction Extractor

This module is used to extract the spatial features and
to capture the social interactions between pedestrians. The
process is shown in Fig. 2.

Because of the limitation of using hidden states of LSTMs
to represent the human motion property, we propose a
structure to learn the feature of pedestrians from their po-
sitions directly. As outlined earlier, we found that the graph
representation in the Social-STGCNN model consumes a
considerable amount of time to build the graphs. This is
mainly caused by the edges’ attribute calculation: aijt =
((xit − x

j
t )

2 + (yit − y
j
t )2)−

1
2 , which includes two square

computations and one square root computation for each pair
of pedestrians i, j in a single time-step t, and these non-
linear computations are very time-consuming. Furthermore,
building the spatial graph Gt = (Vt, Et) needs to copy the
already existing observed relative locations to vertices Vt,
which is not necessary and resource-consuming.

Therefore, in our model, we do not build a graph repre-
sentation of pedestrian trajectories. Instead, we directly use
the observed locations relative to last frame at each time-
step as input for feature capturing. The spatial features of
pedestrian i at time-step t are captured by embedding the
input x-y-coordinate positions as shown in:

eit = Xi
tWe (2)

where the embedded features are denoted as eit. The embed-
ding weights are We, and Xi

t are input trajectories.
As pedestrians adjust their paths implicitly depending on

their neighbors, we introduce the Social Interaction Extractor
to learn the social interaction relationship between pedestri-
ans after getting their embedded spatial features. The input
of the Social Interaction Extractor is the relative distances
between pedestrians. We use linear embedding followed by
an MLP to learn the interactions, and the outputs are the
interaction attention weights between pedestrians, as denoted
in:

rijt = MLP (dijt Wr;Ws), i 6= j (3)

where rijt stands for the attention weights between pedestri-
ans i and j at time-step t. It is the indicator of how much
the ith pedestrian will be affected by the jth pedestrian. The

MLP (·) represents the MLP operation using PreLU [20] as
the non-linear activation function. dijt are the relative posi-
tions between ith and jth pedestrian, dijt = (∆xij ,∆yij) =
(xj − xi, yj − yi). Wr are linear embedding weights, and
Ws are the learned parameters of the MLP.

Then we use the learned social interaction attention
weights rijt to multiply the spatial features eit and aggregate
the spatial social feature f it as shown below:

f it =
∑
j∈n

ejt · r
ij
t , i 6= j (4)

Finally, an MLP and a pooling layer are applied to extract
the spatial and social interaction features, and to get the state
features into a tensor, and then pass to the TCN. The function
is shown in

sit = Pooling{MLP (f it ;Wc)} (5)

where sit is the final embedded spatial social interaction
feature of pedestrian i at time t, f it is the spatial social
feature, and Wc are the learned parameters of the MLP.

D. The TCN and CNN for Time Series Prediction

Inspired by Social-STGCNN [3], we use the TCN and
CNN-based approach to process the pedestrian trajectories.
By applying the convolutional operations on the temporal
space, we can efficiently capture the temporal relationship in
time-scales for sequential predictions and alleviate the error
accumulating problem caused by RNNs. After extracting the
temporal features, the CNN extrapolator is used to directly
predict all time-steps of the prediction horizon at once.

IV. EXPERIMENTS

A. Dataset Introduction and Pre-processing

In this section, we train and evaluate our algorithm on
Waymo Open Dataset [4], because it contains more sufficient
urban traffic scenarios than the previously used ETH [5] and
UCY [6] datasets as we discussed before in Sec. II-D.

The original record sequences of the Waymo Open
Dataset [4] have a frequency of 10 Hz. The algorithms we
compare with are previously evaluated on ETH and UCY
datasets and sampled at 2.5 Hz. To compare the results
with the SOTA models, we keep the same frequency in this
paper and sample the sequences of Waymo Open Dataset to
2.5 Hz. The pedestrians are labeled by 3D bounding boxes
on LiDAR data with their real-world center position (x, y, z)
and size (length, width, height). The scan range of the
LiDAR sensor is 75 m, and we use all labeled pedestrians
in scan range. Our algorithm takes 2D pedestrian position
(x, y) sequences as input. Therefore, we use a 2D bird’s-eye-
view image map representation with x-y-coordinate center
positions, and stored them as sequences with unique track
identifiers. The objects are taken as points without size
information in this paper. We store the data in four columns:
frame id, pedestrian track id, x position, and y position.

The Waymo Open Dataset uses local coordinates with ego-
vehicle center as the origin. However, this will introduce the
movement of ego-vehicle into the pedestrians’ movement.



Fig. 1. Overall framework of Social-IWSTCNN. Given observed frame sequences, we use the positions in each frame as input to learn the social interaction
weights, and extract spatial and social interaction features using Social Interaction Extractor. Following this, we apply TCNs to create spatio-temporal
features for each pedestrian. Then we apply Time-Exgrapolator CNNs to predict future trajectory distributions. Finally we sample to get the predicted
trajectories.

Fig. 2. Pedestrian Social Interaction Extractor. The input are the relative
positions to last frame and pedestrian positions of each time-step. We use
MLP to learn the social interaction weights, and use an aggregate function
to extract the spatial and social interaction features.

To solve this problem, we processed the coordinates and
transformed them to global coordinates. The origin of each
record sequence is set to the ego-vehicle’s position of the
first time-step of the record. In the data loading module of
the training and testing part, we cut the sequence into pieces
with a fixed sequence length. We set the sequence length as
the sum of the observation length and prediction length. We
set the sequence length at 20 time-steps with 8 observation
time-steps (ie., 3.2 seconds) and 12 prediction time-steps (ie.,
4.8 seconds), and get 195,192 training sequences, 36,946 val-
idation sequences, and 52,484 evaluation sequences, which
is large and sufficient for training and evaluating.

To evaluate the algorithms in different crowd densities,
we divided the test set into three groups by the average
pedestrian number per frame. The information of the three
groups are listed in Table I. We looked into the scenarios of
each group. In Group 1, the scenarios are mainly curve-roads
and irregularly shaped roads containing very few people. In
contrast, in Groups 2 and 3, the scenes are mainly crossroads
and intersections with pedestrians, and Group 3 is more
densely populated with crowds compared with Group 2.

TABLE I
TEST DATASET DESCRIPTION

Dataset
group Description

Avg. pedestrian
number

per frame, n

Number
of scenes

Number of
sequences

Group 1 Least crowded n < 15 30 2,005

Group 2 Moderate
crowded 18 < n < 62 33 24,489

Group 3 Most crowded n > 71 13 25,990

In total The whole
dataset 0 < n < 160 76 52,484

B. Evaluation Metrics and Baselines
We use two metrics to report the prediction error:
• The Average Displacement Error (ADE): the average

distance between ground truth and prediction trajecto-
ries over all predicted time-steps, as defined below:

ADE =

∑
i∈n

∑Tpred

t=Tobs+1 ‖Y i
t − Ŷ i

t ‖2
n× (Tpred − Tobs)

(6)

• The Final Displacement Error (FDE): the average dis-
tance between ground truth and prediction trajectories
for the final predicted time-step, as defined below:

FDE =

∑
i∈n ‖Y i

t − Ŷ i
t ‖2

n
, t = Tpred (7)

In our algorithm, we only use the trajectory information,
and hence, all models we selected for comparison do not use
other information such as scene images, camera, or LiDAR
information. We compare the performance of our proposed
models against the following baseline methods:
(a) Linear Regression (LR): A linear regression model of

pedestrian motion over each dimension.
(b) LSTM: Naı̈ve LSTM without the influence of other

individuals.
(c) Social-LSTM: as proposed by Alahi et al. [7] in 2016.
(d) Social-GAN: as proposed by Gupta et al. [8] in 2018.
(e) Social-STGCNN: as proposed by Mohamed et al. [3] in

2020.
(f) Social-IWSTCNN (ours): our proposed method as de-

scribed in Sec. III.



C. Implementation Details

We trained Social-IWSTCNN model with the Stochastic
Gradient Decent (SGD) with an initial learning rate 0.01.
The training batch size is set to 64 for 250 epochs. We
used Nvidia GeForce RTX 2080 Ti GPU for our training and
evaluating. The hyper-parameters are determined empirically.
Since the Social-IWSTCNN model predicts the bi-variate
Gaussian distribution, we follow the evaluation method used
in Social-STGCNN, which generates 20 samples and uses the
closest sample to the ground truth for metrics computation.
For Social-GAN model, we generate 20 samples and use the
closest for evaluation. For both LR and LSTM models, we
get single prediction and it is used for evaluation.

To better evaluate the previous methods, all comparing
models are re-trained on the Waymo Open Dataset. We use
the first 8 time-steps covering 3.2 seconds for observation to
predict the last 12 time-steps covering 4.8 seconds.

V. RESULTS AND ANALYSIS

A. Quantitative Evaluation

The results of all methods mentioned in Sec. IV-B are
compared on the Waymo Open Dataset [4], and the ADE
and FDE are shown in Table II. The results are for 12 time-
steps (ie., 4.8 seconds) prediction. The ADE and FDE are
in meters, the lower the better. Overall, Social-IWSTCNN
outperforms all previous methods on the two metrics.

The Social-IWSTCNN gets competitive results compared
with the previous SOTA model Social-STGCNN on the
whole test set. We notice that on Group 2 and Group 3
which are more densely populated, the results of Social-
IWSTCNN are only slightly better than Social-STGCNN,
while on Group 1 which is less densely populated, ADE
is substantially reduced by 17.3% and FDE is reduced by
16.8%, resulting in a significant improvement using our
Social-IWSTCNN. This shows that, in a less dense scenario,
the proposed Social Interaction Extractor can better capture
the social interactions between pedestrians than the hand-
crafted interaction aggregation weights in Social-STGCNN.

Both the Social-IWSTCNN and Social-STGCNN get more
accurate results than the LSTM-based methods [7], [8]. The
reasons are as we outlined before: Firstly, the hidden states
of LSTMs could not represent the movement property as
good as embedding the feature directly from the spatial
and temporal information; secondly, the recurrent prediction
will accumulate the error and therefore, the FDE of LSTM-
based methods become larger than the CNN-based methods.
Furthermore, we notice that for the Social-LSTM and Social-
GAN methods, ADE and FDE of Group 3 are worse than the
LSTM results. This is an evidence that the pooling structure
on the hidden states of LSTMs cannot extract the interaction
feature properly in dense urban traffic scenarios.

To our surprise, for all deep learning-based algorithms, the
ADE and FDE on Group 1 perform worse than on Group
2 and 3. This shows that the less crowded scenarios do
not mean that they are easier to predict. When there are
only a few pedestrians, they may tend to interact with the

environment scene and the vehicles. Without adding other
information, the scenarios with less pedestrians are difficult
to predict. By contrast, the results of LR method are less
sensitive to crowd density.

Inference speed: We compared the inference speed be-
tween the two competitive methods: Social-IWSTCNN and
Social-STGCNN. The time consumption and speed up are
listed in Table III. Social-STGCNN has an inference time of
3.20 ms per sequence, but the pre-processing including the
graph building time takes 12.61 ms per sequence. The total
inference time is 15.81 ms. By contrast, our proposed method
takes 3.15 ms inference time per sequence, and 0.23 ms
data pre-processing time per sequence, which is 54.8 times
faster than Social-STGCNN, and the total inference time is
3.38 ms, which is 4.7 times faster.

In our algorithm, we remove the non-linear calculation for
attention weights computing, and avoid constructing adjacent
matrix of the graph. To evaluate the influence of the two
changes, we test the inference time of the Social-IWSTCNN
method with graph construction to see how much our method
can speed up by only removing the non-linear calculation.
The results show that by removing the non-linear calculation,
the pre-processing time pre sequence is 2.90 ms, which is 4.3
times faster than Social-STGCNN, and total inference time
is 5.83 ms, which is 2.7 times faster. This result shows that
both removing of non-linear calculation and avoiding graph
constructing improves the inference speed. Our algorithm
is computationally more efficient and has a much better
performance on speed while reaching competitive results.

Long-term prediction: We predicted long-term trajecto-
ries and the results are shown in Table IV. Both Social-
STGCNN and Social-IWSTCNN outperform Social-GAN
when the prediction time expands to 8.0 seconds (ie.,
20 time-steps). As we previously discussed, the LSTM-
based methods will accumulate the error because the later
steps base on the previous output results. The results show
that the CNN-based methods (Social-STGCNN and Social-
IWSTCNN) are more suitable for long-term predictions.

B. Qualitative Evaluation

Next, we qualitatively analyze the performance of Social-
IWSTCNN and compare it with other methods. In Fig. 3,
we show the results in different scenarios. Fig. 3(a) shows
the scenario that two individuals are walking in parallel,
and Fig. 3(b) is similar to Fig. 3(a) but the two individuals
are merging. In these two scenarios, the Social-IWSTCNN
and Social-STGCNN perform better than the other LSTM-
based methods. The two parallel pedestrians tend to interact
with each other and our proposed method managed to
better capture their interactions. Fig. 3(c) shows a collision
avoidance scenario: The pedestrians from the top right corner
tend to avoid the pedestrians in bottom left corner. The
Social-IWSTCNN predicted this trend, while the LSTM-
based methods failed to avoid the collision. This shows that
Social-IWSTCNN performs better on capturing the social
interaction feature between pedestrians. Fig. 3(d) shows
how pedestrians react when individuals meeting a group:



TABLE II
THE ADE/FDE METRICS FOR SEVERAL METHODS COMPARED TO SOCIAL-IWSTCNN IN DIFFERENT TEST GROUPS.

Metric Dataset LR LSTM Social-LSTM Social-GAN Social-STGCNN Social-IWSTCNN
(Year) Group (2016) (2018) (2020) (Ours)

Group 1 0.500 0.495 0.474 0.422 0.509 0.421
ADE Group 2 0.400 0.397 0.403 0.393 0.338 0.335

Group 3 0.417 0.370 0.395 0.375 0.318 0.314
Average The whole dataset 0.412 0.384 0.402 0.386 0.334 0.329

Group 1 1.091 1.095 1.030 0.908 0.907 0.755
FDE Group 2 0.879 0.852 0.844 0.838 0.561 0.559

Group 3 0.888 0.793 0.818 0.806 0.511 0.499
Average The whole dataset 0.892 0.829 0.840 0.826 0.550 0.540

TABLE III
INFERENCE TIME COMPARISON (SPEED UP).

Time Pre-processing Inference Total
Social-STGCNN 12.61 3.20 15.81

Social-IWSTCNN (with
graph construction) 2.90 (x4.3) 2.93 5.83 (x2.7)

Social-IWSTCNN 0.23 (x54.8) 3.15 3.38 (x4.7)

TABLE IV
LONG-TERM PREDICTION, ADE/FDE.

Model 4.8 seconds (12 steps) 8.0 seconds (20 steps)
Social-GAN 0.386 / 0.826 0.773 / 1.684

Social-STGCNN 0.334 / 0.550 0.650 / 1.212
Social-IWSTCNN 0.329 / 0.540 0.654 / 1.213

In the prediction, Social-IWSTCNN successfully avoids the
collision and the group of pedestrians keeps walking together.

In Fig. 4, we compare the results in the scenarios that
are difficult to predict. The ability of dealing with dense
groups is shown in Fig. 4(a). We find that in real-world
urban scenarios, it is difficult to precisely predict the pedes-
trians in a dense crowd. Still, in this dense scenario, our
algorithm manages to capture the interaction information
between pedestrians and outperforms other methods with
the learned social interaction weights. However, there are
still some challenges for the Social-IWSTCNN. Fig. 4(b)
shows that for an individual walking scenario, when the
pedestrian changes his/her direction suddenly, our algorithm
cannot predict the future trajectory well. This is because
there is not much social interaction information for such
situations. Fig. 4(c) shows the case that the pedestrian on the
left suddenly changes his/her speed, and we fail to predict it.
Fig. 4(d) shows that all algorithms fail when an individual
needs to turn or stop to avoid a collision. In this case, if
we want to predict the future trajectory more precisely, we
need to include other information such as the interactions
with vehicles and the scene. Images from the sensors such
as cameras and LiDARs could also aid the prediction.

VI. CONCLUSIONS

In this paper, we presented the Social-IWSTCNN algo-
rithm for pedestrian trajectories prediction, which outper-
forms major SOTA approaches while significantly reduc-
ing the computational cost of the best approach (Social-

STGCNN). We proposed a novel structure, the Social Inter-
action Extractor, to extract the spatial and social interaction
features effectively and efficiently. We compared the SOTA
algorithms on Waymo Open Dataset to validate whether our
algorithm is effective for urban traffic scenarios. While our
approach has already shown decent performance in typical
scenarios in the Waymo Open Dataset, it is still challenging
to accurately predict the future trajectories for sparsely
crowded scenarios. Therefore, further work on such scenarios
is still needed. More information such as the interaction with
the vehicles and the environment could also be included in
the future to support the development of vehicle automation.
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