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Abstract— Modelling pedestrian behavior is crucial in the
development and testing of autonomous vehicles. In this work,
we present a hierarchical pedestrian behavior model that
generates high-level decisions through the use of behavior
trees, in order to produce maneuvers executed by a low-level
motion planner using an adapted Social Force model. A full
implementation of our work is integrated into GeoScenario
Server, a scenario definition and execution engine, extending
its vehicle simulation capabilities with pedestrian simulation.
The extended environment allows simulating test scenarios
involving both vehicles and pedestrians to assist in the scenario-
based testing process of autonomous vehicles. The presented
hierarchical model is evaluated on two real-world data sets
collected at separate locations with different road structures.
Our model is shown to replicate the real-world pedestrians’
trajectories with a high degree of fidelity and a decision-
making accuracy of 98% or better, given only high-level routing
information for each pedestrian.

I. INTRODUCTION

Modelling pedestrian behavior in traffic environments is a
crucial step in the development and testing of autonomous
vehicles (AV) and automated driving systems (ADS). As the
environment’s most vulnerable road users, misinterpretation
of their behavior by an AV can lead to catastrophic conse-
quences. Through rigorous testing of a wide range of traffic
scenarios, safe interactions between AVs and pedestrians can
be ascertained. A realistic and highly controllable pedestrian
simulation model that supports the scenario-based testing
process is a valuable tool in testing AV capabilities and
responses to critical situations.

In this work, we present a hierarchical pedestrian be-
havior model that incorporates behavior trees to handle
high-level decision-making processes and an adapted Social
Force Model to drive low-level motion. Our model caters to
scenario-based testing [1] as it provides an explicit repre-
sentation of decision processes, allowing engineers to inject
desired pedestrian behaviors into existing scenarios. Through
this process, rare and critical situations, which may be scarce
or absent in existing data, can be generated and tested on AV
systems to evaluate their responses safely in a simulation
environment.

For example, consider the situation of a pedestrian running
into the roadway directly in front of a vehicle, causing a
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(a) Pedestrian (p1) speed is
0 m/s as vehicle’s collision with
crosswalk is not yet detected.

(b) p1 dynamically adjusts speed
to ensure collision with v1 at
crosswalk.

Fig. 1: Simulation of scenario in which a collision is guar-
anteed between a pedestrian and a vehicle at a crosswalk

collision. If the goal of this test scenario is to cause a
collision independent of the agents’ starting positions and
velocities, recreation of this scenario is difficult with a simple
trajectory-based pedestrian that only follows a set speed pro-
file. However, with our model, we can dynamically adjust the
pedestrian’s speed to ensure a collision occurs, independent
of the vehicle’s approaching distance and speed. Pedestrians
with pre-defined trajectories would require constant manual
adjustments in their positioning and speed profiles whenever
changes are made to the vehicle’s approaching parameters.
Figure 1 visualizes our model recreating this situation in a
test simulation scenario.

Within the context of traffic simulation, existing micro-
scopic models have a heavy focus on specific interaction
scenarios [2] [3] [4] leaving little room for extensibility or
they employ a “black-box” or non-deterministic approach
[5] [6] [7] where the pedestrian’s actions and overall tra-
jectory can not be derived given the scenario set up and
inputs. There are existing models, including numerous So-
cial Force and cellular automata models [8] [9] [10], that
demonstrate higher-level behaviors and thought-processes,
such as lane formation and bottle-necking; however, they
largely do not allow engineers to customize these behaviors
or inject specific desired actions into a test scenario. The
presented simulation model provides a high degree of control
over pedestrian actions and behaviors currently lacking in
literature. Our model is explicitly decision-driven, through
the use of behavior trees, while still producing realistic low-
level movements. Such functionality can greatly benefit the
scenario-based testing of AVs, since testers can force rare or
possibly dangerous situations involving pedestrians in a safe
simulation environment.
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Aside from singular-concept approaches, multi-layered
models have been developed to address pedestrian behaviors
in traffic. Conjunctive use of trajectory-planning, rule-based,
and Social Force layers have been implementing to assist the
design of shared spaces [11] [12]. Another common approach
is to combine a popular microscopic model, such as a cellular
automaton, with higher-level game theoretic concepts [13]
[14] [15] [16], to construct a multi-layered model in which
high and low-level interactions can be handled by separate
components. As before, such models lack the flexibility
provided by behavior trees, which our model exposes to test
engineers as a domain-specific language and allows them to
create and customize diverse and realistic scenarios.

In summary, our work makes the following contributions:
1) a novel model for pedestrian motion simulation, with

(i) highly controllable and customizable decision mak-
ing via behavior trees, including a catalog of reusable
pedestrian maneuvers and decision conditions, and (ii)
realistic motion via an adapted Social Force Model;

2) an evaluation of the decision-making realism and mo-
tion fidelity of the model on two traffic trajectory data
sets, showing the ability to replicate (i) the high-level
decisions of the empirical pedestrians with a 98% or
better accuracy and (ii) the motion trajectories with an
average deviation of 1.36 m.

II. BACKGROUND

In this section we briefly describe some of the background
technology and concepts used in our approach.

A. Social Force Model

The Social Force model (SFM) treats pedestrian motion as
if it is based on attractive and repulsive physical forces. Our
model incorporates a variation of the classical SFM [17] with
additional forces. In its classical version, the SFM applies
three main collections of forces to the agent: an attracting
force drawing the agent towards their destination, a repelling
force from each of the other agents in the scene, and a
repelling force from each wall or border in the environment.
These three forces are summed into an acceleration equation
that describes the pedestrian’s change in velocity throughout
the scenario’s duration.

The attracting force, fadapt, is responsible for propelling
pedestrian i in the direction e0i (t), pointing towards their
destination point. Given a current velocity, vi(t), and a
desired speed, v0i (t), the attracting force acting on pedestrian
i with mass mi is

fadapt = mi
v0i (t)e0i (t)− vi(t)

τi

where their acceleration is over characteristic time τi.
Repelling forces acting on the pedestrian are divided into

three groups of forces: fotherPeds, fvehicles, and fborders. Each of
these forces is composed of a sum of sub-forces directed
away from an object (pedestrian, vehicle, or wall). They
describe the human tendency to avoid collision with and
maintain a comfortable distance from other objects and

agents in their surroundings. Further details on the fotherPeds
and fborders forces can be found in Helbing et al.’s model [17]
and fvehicles is presented by Anvari et al. [11].

The resulting sum of forces that drives each pedestrian’s
motion is given by

mi
dvi
dt

= fadapt + fotherPeds + fvehicles + fborders (1)

B. Behavior Trees

Behavior trees can be used to concisely and explicitly
model a wide range of decision making processes [18].
Within our model, behavior trees are used to select an
appropriate maneuver for each pedestrian at each simulation
cycle. Each pedestrian contains a personal behavior tree
which, at each time step in a given scenario, is “ticked”.
The ticking process traverses the tree with a certain path
and ultimately outputs a selected maneuver. The behavior
trees used in the presented model are composed of four
types of nodes: selector, sequence, maneuver, and condition.
Selectors and sequences are internal nodes and control the
path of the tree traversal, while maneuvers and conditions are
the tree’s leaf nodes. Each leaf node, after being evaluated,
returns a status to their parent node. Valid statuses are
Success, Failure, and Running. These statuses affect which
nodes are visited next by the tick.

Selector nodes, denoted by a question mark (?), are
analogous to a short-circuit OR in that they tick their child
nodes sequentially from left to right until a status of Success
or Running is received. This status is then returned to the
selector’s parent node. If all of the child nodes return Failure,
then Failure is returned to the selector’s parent. On the
other hand, sequence nodes, denoted by an arrow (→), are
similar to a short-circuit AND. They tick their child nodes
sequentially from left to right until a status of Failure is
received (or they run out of child nodes). Maneuvers and
conditions are leaf nodes that are evaluated and return one of
the three statuses to their internal parent node. The maneuver
node that is visited last before the tick returns from the entire
tree becomes the selected maneuver.

As a simple example, Figure 2 shows a valid behavior tree
an agent could use to determine whether to enter a crosswalk.
The process flow of this tree first checks if the crossing signal
is green. If so, the pedestrian enters the crosswalk and waits
at the entrance otherwise. In the case that the crossing signal
is not green, the tick returns from the left side of the tree
with a status of Failure (from the diamond condition node).
Since the root is a selector node, it proceeds to tick the right
side, consisting solely of a single maneuver node which will
return a non-failure status and become the selected maneuver.

III. MODEL DESIGN

To introduce our model, we first discuss the design re-
quirements necessary for a practical pedestrian simulation
model.



Enter crosswalk

->

?

Wait at crosswalk 
entrance

Crossing 
light green?

Fig. 2: Simple behavior tree for entering crosswalk decision
demonstrating the use of condition (diamond), maneuver
(ellipse), selector (?), and sequence (→) nodes.

A. Facilitation of Scenario Creation

An essential component of scenario-based testing is a
straight-forward and clear scenario creation process [19].
Test scenarios involving pedestrians running our model are
expressed in GeoScenario [20]. GeoScenario is a domain-
specific language for simple and extensible representation
of traffic scenarios, built using the Open Street Map (OSM)
standard. All of the essential components of a scenario can be
represented in GeoScenario, including dynamic agents, static
objects, and the underlying Lanelet2 map, among others.
Through GeoScenario, pedestrian agents are represented by
nodes containing tags to describe their individual attributes.
As GeoScenario abides by the Open Street Map standard,
we employ the OSM scenario editor tool, JOSM1, to create
and edit scenarios. JOSM provides engineers with a simple
visual tool to quickly add, move, and tag nodes and ways.
Pedestrian-specific agents must include tags defining their
identifying name, destination point, and the file containing
their personal behavior tree.

B. Customizable Pedestrian Behavior

Behavior trees are an integral part of each scenario as
they provide the tester with a fine-level of control over how
each pedestrian behaves in a given context. Each pedestrian
is assigned a behavior tree file in the scenario definition
file which dictates their decision process at each simulation
cycle. Our model comes with a library of reusable behavior
trees that represent common behaviors, such as walking
along a sidewalk and traversing signalized and unsignal-
ized crosswalks. The explicit nature of behavior trees in
representing discrete decision-making processes lends itself
well to forcing desired behaviors within scenarios. Testers
can intentionally trigger particular actions that can lead to
critical or dangerous situations; for example, pedestrians
unexpectedly running in front of a moving vehicle. The
behavior trees designed for our model are also augmented
with a number of tunable parameters that define the different
ways pedestrians may execute the same maneuver. When

1https://josm.openstreetmap.de

importing behavior trees from a library, their parameters and
sub-trees can be overridden to define the desired behavior.

C. Dynamic Interactions Between Agents

Dynamic interactions between agents within a scenario
are handled by both the Social Force model and behavior
tree components of our model, though in different ways.
The Social Force model (SFM) is responsible for immediate,
reactionary interactions with vehicles and other pedestrians.
At the trajectory level, a collection of repulsive forces is
applied to the pedestrian when another agent is in its prox-
imity that causes the pedestrian to naturally avoid collisions.
Behavior trees are designed to handle higher-level interac-
tions proactively. Depending on their composition, behavior
trees can check the relative states of other agents, such as
their distance and speed, to output an informed response to
another agent’s actions. If required by a scenario, behavior
trees can selectively and conditionally modify the forces for
specific pedestrians by manipulating SFM parameters.

D. Realistic Human Movements and Decisions

A practical pedestrian behavior model needs to be able to
simulate realistic movements and rational decision-making
processes. We evaluate this requirement on our model against
two naturalistic data sets with different road structures. Our
hierarchical approach of handling high-level decisions with
customizable behavior trees that inform low-level trajectory
movements is shown to be effective in producing realistic
movements and decisions that map to real-world scenarios.

IV. MODEL ARCHITECTURE

The model structure is composed of three layers: the
Behavior layer, Maneuver layer, and Motion Planner layer.
As an overview, the Behavior layer receives the environment
state representation and decides on an appropriate maneuver
to execute. This maneuver is then passed to the Maneuver
layer, which plans how best to execute the selected maneuver.
The layer forms instructions on how to adapt the current
trajectory in the form of a vector containing the pedestrian’s
updated waypoint, direction vector, and desired speed, to
pass to the Motion Planner layer. When the Motion Planner
layer receives these instructions, it feeds the passed vector
into the Social Force Model to determine the state informa-
tion of the pedestrian for the next time step. Finally, this state
information is updated and reflected in the environment. This
process flow is visualized in Figure 3.

The simulation traffic environment is represented in the
two dimensional Cartesian coordinate frame and all com-
putations for pedestrian movements are calculated within
this frame. The physical traffic structure of the world is
represented by Lanelet2 [21] compatible map files. Dynamic
elements of the environment include the changing states of
vehicles, other pedestrians, and traffic lights for both vehicle
lanes and crosswalks.

We define two types of pedestrian agents: Empirical
Pedestrians (EP) and Simulated Pedestrians (SP). Empirical
Pedestrians follow a predefined sequence of trajectory points

https://josm.openstreetmap.de
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Fig. 3: Multi-layered model diagram with process and infor-
mation flow

with preset time intervals and do not use our model to drive
their motion. Simulated pedestrians do apply the presented
model to determine their movements and are the focus of this
paper. Agents’ state information contains two dimensional
positional, velocity, and acceleration components as well as
heading in the vector |(x, ẋ, ẍ, y, ẏ, ÿ, θ)|t. In our evaluation,
Empirical Vehicle (EV) agents are used in the experiments;
however, our pedestrian model does not depend on the
particular implementation of vehicle agents, which allows
for targeted testing of a desired ADS or AV system. The
state vector format is shared between all types of pedestrian
and vehicle agents.

A. Behavior Layer

The Behavior layer is tasked with determining an appro-
priate maneuver to execute given the current environmental
context. At scenario creation, each SP agent is assigned
a text-based behavior tree file representing their personal
tree. The Behavior layer consumes the current traffic state
estimation as well as configuration parameters for the overall
tree and each possible maneuver. The output of this layer is a
selected maneuver with its specific configuration parameters,
which is subsequently passed to the Maneuver layer. Table I
contains the available maneuvers and conditions currently
implemented in the model. Behavior trees are constructed
with a subset of these lists as leaf nodes. This maneuver
and condition catalog was derived manually in the process
of developing the behavior trees required to simulate each
of the pedestrians in the data sets discussed in Section VI.

TABLE I: Maneuvers and conditions implemented in model

Maneuvers Conditions

Keep in Lane Reached goal
Stop Has target crosswalk
Enter Crosswalk Approaching target crosswalk
Wait at Crosswalk At target crosswalk entrance
Increase Walking Speed At target crosswalk exit
Select Crosswalk by Light State Waiting at target crosswalk entrance
Return to Crosswalk Entrance Target crosswalk has signal

Crossing signal is green/red/yellow
Can cross before signal turns red
Vehicle approaching crosswalk

As explained and visualized in Section II-B, the internal
nodes of a behavior tree are sequence and selector nodes and

the leaf nodes are maneuver, condition, and, optionally, sub-
tree nodes. The internal nodes dictate the traversal path of the
“tick” based on the return statuses of leaf nodes. A sub-tree
is itself a complete behavior tree that can be “plugged in” in
place of a leaf node of a different tree. Sub-trees are simply
an extension of their base tree that are useful to maintain
modularity and, in our case, add varying levels of behavior to
control how different pedestrians react to the same situation.
In our model, we have designed three sub-trees, representing
three levels of aggressiveness, to define different decision-
making processes when a pedestrian is planning to enter
a crosswalk. We label the three levels of aggressiveness
as Low, Medium, and High. Briefly, low aggressiveness
pedestrians only enter the crosswalk when the crossing signal
is green (or there is no crossing signal at all). A medium
aggressiveness pedestrian enters on green, but also on a
yellow signal when they judge that they can sufficiently
cross before the red signal. Finally, the pedestrians with a
high level of aggressiveness choose to enter the crosswalk
regardless of the signal state as long as they are not put in
danger by a vehicle in doing so.

At each simulation cycle, the behavior tree of each pedes-
trian is ticked and an appropriate maneuver is selected to be
executed by the following layers. This maneuver is passed
as input to the Maneuver layer for interpretation.

B. Maneuver Layer

The job of the Maneuver layer is to translate a maneuver
received from the Behavior layer into instructions on how
the pedestrian should adjust their trajectory. The instructions
must be interpretable by the subsequent Motion Planner
layer. Each received maneuver is converted into low-level
instructions containing the following three components: a
waypoint, a desired direction unit vector, and a desired speed.
A waypoint is defined as an intermediate goal point the
pedestrian visits before its final destination. As an example
of translating a selected maneuver, if the Enter Crosswalk
maneuver is received, the Maneuver layer determines the
updated waypoint to be a point at the end of the crosswalk,
the desired direction vector to be the unit vector pointing to
the new waypoint, and the desired speed to be the default
desired speed of the pedestrian. These three components are
passed to the next layer, the Motion Planner layer, which
handles the execution of the selected maneuver.

C. Motion Planner Layer

The Motion Planner layer is driven by an adaptation of the
Social Force Model. It receives the three components passed
by the Maneuver layer describing changes to the pedestrian’s
trajectory. This layer also has access to the traffic state esti-
mation and therefore all positions and velocities of the other
agents in the scene. Our model implements the classic SFM
described in Section II-A extended by Anvari’s method [11]
for handling pedestrian-vehicle interactions. The parameters
of our SFM were manually calibrated through simulation
testing. Our traffic environments in Section VI) did not
contain any walls, and thus the wall forces are currently not



included. Walking within a sidewalk or crosswalk’s bounds
is handled through the Keep in Lane maneuver, which uses
a desired walking direction vector (that may not necessarily
point to the waypoint) to guide the pedestrian within the
sidewalk or crosswalk (i.e., a pedestrian lane) and bias it
along the right or left lane-boundary. Wall forces may be
added for future environments containing physical walls.

The Motion Planner layer is tasked with running an
iteration of the Social Force model’s formula (1) to determine
the model pedestrian’s change in velocity at each simulation
time step. Subsequently, this layer directly updates the pedes-
trian’s state information before the next simulation cycle.

V. IMPLEMENTATION

The presented model is written in Python and integrated
into GeoScenario Server, a full scenario simulation environ-
ment capable of running traffic scenarios as a standalone
application. The Server provides the necessary infrastructure
for full scenario simulation. It parses GeoScenario scenario
files and initializes the necessary elements (pedestrians and
vehicle agents, agent goal points, traffic lights, etc.), reads
and loads the Lanelet2 map file to provide the underlying
road network structure for the scenario, maintains the static
and dynamic environment and facilitates the information flow
between agents and their surrounding environmental context,
and finally runs the scenario by iterating through each of
its agents to update their state in the environment at each
simulation cycle. Vehicles are simulated with the SDV model
from Queiroz et al. [22]. Pedestrians originally used a simple
model with Pre-defined Trajectories (PDTs). We extended the
server by adding our pedestrian model as an alternative to
replace the PDT-based model.

GeoScenario Server provides the optional integration with
WISE Sim, a simulator based on UnrealEngine2 to run the
WISE Automated Driving System. The server incorporates
a shared-memory interface with WISE Sim to integrate its
dynamic agents and scenario environment into the simulator,
but it also features an experimental integration with the
CARLA simulator [23]. More details on the GeoScenario
Server and how to use the pedestrian model can be found at
https://geoscenario2.readthedocs.io.

VI. EVALUATION

We assess our model in terms of how well it can reproduce
low-level trajectories and high-level decisions observed in a
naturalistic data set, as well as its extensibility when it is
applied to environments with different road structures and
geometries.

A. Evaluation Scenario Configuration

To approach and assess our evaluation criteria, we need a
standardized process for comparing a simulated pedestrian
generated by our model against a real-world pedestrian
from a naturalistic data set. We devise a process to create
evaluation scenarios. These generated scenarios assist in
validating our model against real-world data and provide a

2https://www.unrealengine.com

standard process that can be applied to any data set in a
compatible format.

The idea of an evaluation scenario is to replace a single
pedestrian in a given traffic recording with a simulated
pedestrian and observe how it interacts with other pedestrians
and whether it follows the same trajectory as the empirical
pedestrian it replaced. In terms of a GeoScenario scenario,
one pedestrian is selected as the evaluation pedestrian and
is created as an SP agent while all other pedestrians and
vehicles in the recording are created as EP and EV agents
respectively, and follow their corresponding trajectories from
the data set. We refer to the data set pedestrian that the
SP agent replaced as the empirical pedestrian or alterna-
tively, the evaluation pedestrian’s empirical counterpart. The
scenario begins when the evaluation pedestrian enters the
recording and ends when they exit.

The SP agent is initialized with three pieces of knowledge
about its empirical counterpart: its starting position, its last
position, and its average walking speed. In terms of the SFM
component of the model, the last position is set as the SP’s
destination point and the average walking speed is set as the
SP’s desired speed.

The evaluation scenario creation process is repeated for
each individual pedestrian in the data set, resulting in a
unique evaluation scenario for each real-world pedestrian.
As a result, each pedestrian in the data set produces their
own evaluation scenario in which they are replaced by a
model pedestrian that dynamically interacts with the other
agents. This process compiles a suite of evaluation scenarios
on which we can perform analysis and draw conclusions in
terms of our evaluation criteria.

Two separate naturalistic data sets from different locations
in Ontario, Canada, were used in the evaluation process.3

Each data set contains video files recorded by an overhead
drone. The video files were then analyzed and relevant
information, such as road user trajectory tracking and traffic
light timings, was extracted and saved into a database. The
first data set, referred to as the intersection data set, was
recorded at a busy four-way intersection with four signal-
ized pedestrian crosswalks and two additional unsignalized
crosswalks, each one across a right-turn merge lane (or slip
lane). The second, referred to as the single crosswalk data
set, contains a single unsignalized crosswalk across a two-
way two-lane road at a university.

During evaluation, we noted that the scenarios at the
intersection location had relatively longer durations with an
average of 66.82 seconds. Due to the minimal knowledge
about the empirical trajectory, a concern arose that small
deviations in the trajectories early in the scenario may
amplify and compound into large deviations further into
the scenario. These large deviations may not be represen-
tative of the model’s performance at each moment in time
and may be consequences of previous error. To mitigate
this, we introduce segmented scenarios, in which each full

3https://wiselab.uwaterloo.ca/
waterloo-multi-agent-traffic-dataset/

https://geoscenario2.readthedocs.io
https://www.unrealengine.com
https://wiselab.uwaterloo.ca/waterloo-multi-agent-traffic-dataset/
https://wiselab.uwaterloo.ca/waterloo-multi-agent-traffic-dataset/


evaluation scenario is subdivided into multiple segmented
scenarios. Each segmented scenario represents one section
of the pedestrian’s journey spanning, for example, a single
crosswalk or a single segment of sidewalk. For each eval-
uation scenario from the intersection data set, one or more
additional segmented evaluation scenarios are created and
grouped separately.

B. Realism of Low-Level Trajectories

It is crucial that our behavior model produces pedestrian
movements that are as natural and human-like as possible
in order to be relied upon as a realistic representation of
pedestrians in test scenarios. To evaluate our model’s effec-
tiveness at generating realistic motion, we run the evaluation
scenarios and record each evaluation pedestrian’s generated
trajectory. We compare this simulated trajectory generated by
our model with the trajectory of the corresponding empirical
pedestrian by two trajectory-matching metrics: Euclidean
distance and discrete Fréchet distance. Given the dynamic
nature of humans, it is unreasonable to expect a single
configuration of our model to completely cover the varying
behaviors of all the pedestrians in the data set. To accom-
modate this, we manually search for a custom configuration
of parameter values for each evaluation scenario that best
matches the corresponding real-world pedestrian’s actions
and behaviors.

The Euclidean distance (ED) measures the average dis-
tance between each pair of corresponding points between
the simulated and empirical trajectories. The ED metric we
use is also known as the spatio-temporal Euclidean distance
(STED) [24]. The points of each trajectory are equi-timed
and recorded at each simulation time step in the evaluation
scenario. On the other hand, the Fréchet distance provides
a measure of geometric similarity between the trajectories
or paths. It does not depend on the velocity profiles as the
Euclidean distance does and instead judges the similarity in
“shape” of the two compared trajectories.

The majority of test cases during development of our
model were derived from the intersection data set. While
this data set provides a substantial number of pedestrians
exhibiting a wide range of behaviors, a goal of any useful
pedestrian model should be extensibility to differing road
structures and geometries. We test the generalization and
extensibility of our model by extracting evaluation scenarios
from the second data set (single crosswalk). We evaluate
the model’s ability to navigate this new road structure with
the same trajectory-matching metrics. Table II displays the
average ED, the maximum ED, and the average FD over the
scenarios on each data set location.

To give context to our model’s results, we introduce a
method to generate a baseline trajectory-approximation for
each empirical pedestrian. We produce a baseline trajectory
for each evaluation scenario based on the empirical path.
We first define a set of points on the intersection map
that can be connected in various orders to approximate the
empirical paths. The selected map points closely resemble
the waypoints a model pedestrian may select to navigate

through the intersection. A baseline trajectory is constructed
by manually selecting an ordered set of points, beginning and
ending with the start and end points, respectively, that best
approximates the data set pedestrian’s path. Equi-distanced
and equi-timed points are then linearly interpolated between
these points to form a trajectory with the same number of
points as the corresponding empirical trajectory.

TABLE II: Trajectory-matching metrics

Location Length # Scenarios ED Max. ED Fréchet
(m) (m) (m)

Intersection
Baseline 198 5.45 12.48 2.90

Full 198 2.23 5.21 3.04
Seg. 527 1.55 2.65 1.81

Crosswalk Full 1017 1.36 2.01 1.71

It is interesting to note that the baseline method has a
slightly improved Fréchet distance over the model’s full
intersection scenarios. A reasonable explanation for this is
that the baseline does not react to other pedestrians along the
path, as it is simply a set of distances between waypoints.
The model, on the other hand, interacts with other pedestrians
and vehicles in their vicinity as do the empirical pedestrians.
This introduces the risk of the model choosing a different
course of action for their interaction than their empirical
counterpart, for example, avoiding oncoming pedestrians on
the right side instead of left, resulting in larger points of error.
The baseline method, being non-reactive, averages out these
deviations and may result in an improved geometric-based
metric over a long duration scenario.

To visually confirm our model’s trajectory-matching effec-
tiveness, we trace both the simulated and empirical pedes-
trians’ trajectories overlaid on a outline of the map file.
Figure 4 shows traces of evaluation scenarios at both the
intersection location (Figures 4a and 4b) and the single
crosswalk location (Figure 4c).

We note that the individual layers of the model are not
evaluated independently. The Social Force model and its
variations have been shown to effectively model both the
individual movements of agents in sparse groups [25] and
the crowd dynamics of dense groups [26] [17] [27]. We
focus on the conjunctive multi-layer use of high and low-
level planners to produce realistic motion.

C. Realism of High-Level Decisions

For a pedestrian behavior model to properly represent the
behaviors of real-world pedestrians, not only must it model
the low-level trajectory movements, but it must also be able
to replicate high-level decision-making processes. In order
to measure this criterion, we need to define a metric by
which we can conclusively declare that a decision made
by a model pedestrian is the same decision made by its
empirical counterpart. First, we must define a list of decisions
to be observed from the naturalistic data. It was determined
that there are two notable decisions pedestrians make while
navigating an intersection.



−40 −20 0 20 40
x (m)

−40

−30

−20

−10

0

10

20

30

40

y 
(m

)

(a) Intersection location
ED: 1.81 m
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Fig. 4: Trajectory traces of example evaluation scenarios with varying paths from both data set locations. Empirical trajectories
are displayed as blue dots and the simulated trajectories are shown as a solid red line.

1) Given a set of accessible crosswalks and the require-
ment that at least one crosswalk must be crossed to
reach the destination, which crosswalk is selected to
cross

2) Given a target crosswalk that the pedestrian has already
decided to take which displays a red/yellow crossing
light state, will the pedestrian begin to cross or wait
until the next green state

The above decisions were designed to ensure a binary
response can be recorded for each instance of the decision
across evaluation scenarios. The model pedestrian either
makes the same decision as the data set pedestrian or they
do not. In the rest of this section, we refer to these decisions
as Decision 1 and 2 respectively. Note that this metric is
only considered on the intersection data set due to the overly
simplified road structure of the second data set location. For
each full evaluation scenario, we noted the decision points
where one of the two listed decisions were made. If the
model pedestrian makes the same decision, a Same data point
is recorded, otherwise we record a Not Same data point.
Table III displays the results of this process.

TABLE III: Summary of decision-based metric results on
full length evaluation scenarios using the intersection data
set

Decision Decision Points Same Decisions
# # %

1 253 253 100.0
2 148 145 98.0

We see that our model pedestrians selected the same
crosswalk when presented with multiple options as the real-
world pedestrian 100% of the time. However, there are
three instances where the model pedestrian failed to enter
the crosswalk at the same time as defined by Decision 2.
After investigation, all three of these instances were due
to the real-world pedestrian waiting at a red signal for
most of its duration, then, when the vehicles’ traffic lights
show a two-way advanced green signal, they decide to enter

the crosswalk as soon as there are no more conflicting
left-turning vehicles. An adjustment to the High level of
aggressiveness can account for this specific situation. A range
of behaviors can be implemented, including a behavior where
the probability of entering the crosswalk on a red signal
increases with waiting time.

D. Vehicle-Pedestrian Collision Scenario

To showcase our model’s practicality in creating critical
scenarios, we revisit the scenario outlined in Section I. The
goal of this scenario is to demonstrate a plausible yet danger-
ous scenario that cannot be replicated with simple pedestrians
that follow a constant speed profile. We created a scenario
with one vehicle agent and one pedestrian agent in which the
vehicle wants to pass through an unsignalized crosswalk that
the pedestrian wants to cross. The pedestrian dynamically
adjusts their walking or running speed to ensure a collision
occurs at the crosswalk. At a technical level, this is achieved
with our model by including a parameter in the Keep in Lane
maneuver: collision vehicle = [vehicle id]. Provided that the
vehicle id exists in the scenario and there is a crosswalk
at which the agents can meet, the pedestrian dynamically
determines a collision point based on the point of intersection
between the crosswalk and the vehicle’s heading vector. With
assumed perfect perception of the vehicle’s distance and
speed, the pedestrian adjusts their own speed to ensure they
reach the collision point at the same time as the vehicle.

A key benefit to using our model for this scenario is that
the pedestrian will ensure a collision occurs regardless of the
starting positions and velocities of the agents. With preset
speed-profile pedestrians, the tester would need to manually
reset the scenario’s parameters with either trial and error
or complex search-based computations to achieve the same
result. Instead, with our approach, no changes need to be
applied in order to force a collision scenario at every run.

VII. DISCUSSION AND LIMITATIONS

In the current version of our model, we do not consider the
implicit or explicit communication between human drivers
and pedestrians, such as changes in speed or hand gestures.



Such interactions are important considerations in modelling
pedestrian movement and behavior. In our evaluation, we
do not have access to this communication due to the data
sets being recorded by overhead drones. Previous works,
such as TrafficSim [7], have learned pedestrian behavior
taking into account all forms of communication and external
factors through data-driven approaches. Given the black-box
nature of such approaches, we differentiate our work by
providing finer control over individual pedestrian behaviors
and interactions.

An extension of our model could incorporate human-driver
interactions through behavior trees, specifically through more
complex condition nodes. As long as the communication can
be perceived by each agent, the pedestrian can evaluate the
interaction and choose an appropriate action accordingly.

Adding to the set of available maneuvers and conditions
can enhance the complexity and accuracy of the pedestrian’s
behavior. However, more maneuvers and conditions may also
lead to a higher risk of incorrect or dangerous decisions.
We must mediate the trade off between a manageable set
of behaviors and their coverage and accuracy of real-world
decisions, with evaluation on the available real-world data.
Engineers must also be cautious of overfitting the behavior
trees when designing critical scenarios not found in data.
However, some scenario-based testing applications may re-
quire forcing a specific behavior to create a desired test
scenario. In these cases, it is not so important to construct
generalized behavior trees and it is sufficient to simply create
the tree that generates the isolated behavior.

Since behavior trees allow for any number of parameters
within their maneuver and condition nodes, it may be desir-
able to automate the process of tuning these parameters on
real-world data. With separate sets of scenarios for tuning
the trees and testing the model, the accuracy and robustness
of the behavior trees can be improved. Using real-world data,
the tuning process can also introduce the influence of implicit
communication methods not previously incorporated into the
model.

Another limitation of our model is the point-mass rep-
resentation of pedestrians. The SP model abstracts charac-
teristics from the agents, such as demographic information
(age, gender, etc.) and body pose, which may be relevant to
decisions for both drivers and pedestrians. For example, an
elderly person will tend to move at different speeds and make
different crossing decisions to an adult or a child in the same
situation. We anticipate more sophisticated representations of
pedestrians in future iterations of our model.

Finally, our model does not consider the uncertainty
and noise of human motion. This is especially relevant in
interactions between pedestrians and autonomous vehicles.
Though not included in this iteration of the SP model,
uncertainty can be injected into behavior trees. Noise can be
used in condition nodes to express perception or judgement
errors made by humans and in maneuver nodes to produce
unexpected movements or decisions that may be difficult for
an AV to predict.

VIII. CONCLUSIONS

In this paper, we presented a novel hierarchical pedestrian
behavior model that is capable of producing realistic trajec-
tories through different traffic environments while following
the rules of the road and making rational real-time decisions,
but also allowing for misbehaviors. A multi-layer approach
was applied to this problem that incorporates a high-level
Behavior layer that determines an appropriate maneuver to be
processed by the Maneuver layer, which informs the Motion
Planner layer on how to adjust the low-level trajectory
movements. The conjunctive use of behavior trees with an
adapted Social Force Model ensures the model’s agents are
an accurate representation of real-world pedestrians. They
were shown to make the same decisions when faced with
multiple options and also display natural movements and
interactions with other pedestrians and vehicles in the scene.

Our presented model offers benefit to the scenario-based
testing of autonomous vehicles. Since pedestrian decisions
and actions can be explicitly represented with behavior
trees, engineers are able to inject desired behaviors into
scenarios to test the AV’s responses to critical situations. We
provide an implementation of a set of basic maneuvers and
conditions shown to sufficiently cover real-world behaviors.
The flexibility and modularity of behavior trees allow for
extensions of this list and configurations of trees that cover
a wide range of conceivable behaviors.

We evaluated our model in terms of its ability to produce
realistic low-level movements in two environments with
different road structures and to replicate high-level decisions
made by real-world pedestrians observed in a naturalistic
data set. The results of our evaluation confirm that we present
a viable pedestrian simulation model capable of producing
realistic pedestrian decisions and movements.
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