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A Comparative Study of Deep Reinforcement Learning-based
Transferable Energy Management Strategies for Hybrid Electric

Vehicles

Jingyi Xu1, Zirui Li2, Li Gao1, Junyi Ma1, Qi Liu1 and Yanan Zhao1,∗

Abstract— The deep reinforcement learning-based energy
management strategies (EMS) have become a promising so-
lution for hybrid electric vehicles (HEVs). When driving cycles
are changed, the neural network will be retrained, which is
a time-consuming and laborious task. A more efficient way
of choosing EMS is to combine deep reinforcement learning
(DRL) with transfer learning, which can transfer knowledge
of one domain to the other new domain, making the network
of the new domain reach convergence values quickly. Different
exploration methods of DRL, including adding action space
noise and parameter space noise, are compared against each
other in the transfer learning process in this work. Results
indicate that the network added parameter space noise is more
stable and faster convergent than the others. In conclusion, the
best exploration method for transferable EMS is to add noise
in the parameter space, while the combination of action space
noise and parameter space noise generally performs poorly.
Our code is available at https://github.com/BIT-XJY/
RL-based-Transferable-EMS.git.

I. INTRODUCTION

Hybrid electric vehicles (HEVs) are currently important
carriers of self-driving technology [1]. HEVs involve two
or more energy sources. Thus there is a considerable need
for energy management strategies (EMS) to distribute power
supplements among several power sources to improve energy
efficiency and reduce emissions [2]. There are mainly three
types of EMS for HEVs: rule-based methods, optimization-
based techniques, and learning-based approaches [3].

The rule-based approach is the most common method
to achieve real-time control of HEVs, the effectiveness of
which depends on the intuition and experience of engineers
[4]. To reduce the reliance on professional engineers, the
optimization-based method is introduced, using optimization
algorithms to solve for optimal or sub-optimal solutions
in the feasible domain to obtain better fuel economy [5].
According to different optimal control objectives and algo-
rithms, optimization-based EMS can be divided into global
optimization and real-time optimization approaches. The
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classical optimization-based methods include linear program-
ming algorithm (LP) [6], dynamic programming algorithm
(DP) [7], [8], equivalent fuel consumption minimization
strategy (ECMS) [9], [10], model predictive control (MPC)
[11], etc. The above methods improve the real-time perfor-
mance and fuel economy of EMS to some extent, but they
have more computational cost than rule-based methods [12].

With the rapid development of machine learning in recent
years, the learning-based energy management method has be-
come a promising solution for HEVs. Current studies mainly
focus on deep reinforcement learning (DRL) based EMS due
to their strong learning ability, where the EMS problem is
modeled as a Markov Decision Process (MDP). The optimal
solution for EMS can be learned through the interaction be-
tween agents and the environment. [13] used deep Q-learning
network (DQN) algorithm for energy management, which
solved the dimensional catastrophe problem. Based on this,
[14] compared double deep Q-learning with DQN for energy
management of plug-in hybrid vehicles and demonstrated
advantages of the former in terms of convergence and fuel
economy. [15] showed that the energy management policy
based on deep deterministic policy gradient (DDPG) algo-
rithm has a strong characterization capability of deep neural
networks and can improve fuel economy significantly. In
addition, [16] indicated that asynchronous advantage actor-
critic (A3C) and distributed proximal policy optimization
(DPPO) improved the learning efficiency.

Although DRL-based methods have made a significant
breakthrough, their limitations are the long training time for
an agent to learn the optimal solution through trial-and-error
interactions with the environment [17]. Besides, the training
process must be repeated even when encountering a new but
similar task. Therefore, some works have combined transfer
learning with DRL to improve the training efficiency between
similar tasks. [18] combined proximal policy optimization
(PPO) and transfer learning to effectively reduce time con-
sumption and guarantee control performance. [19] combined
DDPG and transfer learning to derive an adaptive energy
management controller for hybrid tracked vehicles. Results
show that this method has the potential to be applied in real-
world environments. [20] incorporated transfer learning into
DDPG-based EMS for HEVs to transfer knowledge among
three types of HEVs that have apparently different structures.

In DRL, the agent utilizes exploration methods to acquire
knowledge about the environment, which may explore better
actions. The main approach is to add different types of
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noise while selecting actions. Comparing the impact of
different exploration methods on DRL is implemented by
much previous work [21], [22]. However, there are few
studies considering the effects of exploration methods on the
combination of DRL and transfer learning, which improve
the training efficiency of algorithms and reduce the compu-
tational cost.

This work is a comparative study, which focuses on
effects of different exploration methods of DDPG for trans-
ferable EMS. DDPG combines advantages of DQN and
the actor-critic architecture, which leads to stability and
high efficiency. Thus, DDPG is appropriate for evaluating
the strategies from network parameters transferring. In this
work, several types of noise are added to DDPG netwoks
which are trained by multiple driving cycles. Then, training
weights are saved to initialize a new DDPG network. The
second training process is performed with noise to acquire
the optimal transferable EMS.

In sum, the main contributions of this work are: Different
types of noise, i.e., action space noise and parameter space
noise, are added to the DDPG algorithm to explore in actions
selection. Parameters of networks with different exploration
methods are used to initialize new networks. The methods
of exploration that work best for DDPG-based EMS and suit
the most for transfer learning in the training efficiency are
given by the comparative study.

The remainder of this work is organized as follows:
Section II introduces the proposed method in comparing
effects of different exploration approaches of DDPG-based
EMS and the performance of the transferred new network;
Section III details experiment results, and the conclusion is
depicted in Section IV.

II. DEEP REINFORCEMENT LEARNING-BASED
TRANSFERABLE ENERGY MANAGEMENT STRATEGIES

A DRL-based transferable EMS is used to evaluate the
performance of different exploration methods. The sketch
map of DRL-based transferable EMS is shown in Fig.1.
This section describes the HEV model, the DRL-based EMS
formulation, different types of noise added to DRL networks,
and the effects of transferred new domain networks using
different kinds of noise. In this process, the effects of
different types of noise for exploration in DDPG and deep
transfer learning are compared in detail in Section III.

EMS A

EMS B

Multiple driving cycles

Other driving cycles

DRL with different 
types of noise

DRL with different 
types of noise

UDDS, US06, ...
NEDC

1: Learning in the 
source domain

3: Learning in the 
target domain

2: Transferring 
knowledge

Fig. 1. The sketch map of DRL-based transferable EMS.

A. Hybrid Electric Vehicle Model

The EMS for Prius, one of the most classical HEVs, has
been extensively studied [23].

1) Prius configuration: Prius is equipped with the Hybrid
Synergy Drive system, which consists of an internal combus-
tion engine ICE, an electric motor MG2, and a generator
MG1. Prius is also equipped with a low-capacity nickel-
metal hydride (Ni-MH) battery used to drive the motor and
generator. These systems in Fig.2 are integrated with a power
splitting planetary gear, which provides various power flow
configurations for different operating.

Motor (MG2)Generator (MG1)

Engine

Generator
controller

Power
distribution

Motor
controller

Ni-MH
Battery

Vehicle
controller

BMS

CAN bus

Main 
reducer

Fig. 2. Architecture of Prius powertrain.

2) Power request model: After building the Prius model,
the vehicle power demand is calculated using the longitudinal
force balance equation. The longitudinal force F consists
of rolling resistance Ff , aerodynamic drag Fw, gradient
resistance Fi, and inertial force Fa [24]:

F = Ff +Fw +Fi +Fa

Ff = mg · f

Fw =
1
2

ρ ·A f ·CD · v2

Fi = mg · i
Fa = m ·a

(1)

where m is the curb weight, g is the gravitational constant,
f is the rolling friction coefficient, ρ is the air density, A f is
the fronted area, Cd is the aerodynamic coefficient, v is the
speed in regard to a certain driving cycle, i is the road slope
(not considered in this paper), and a is the acceleration.

3) Powertrain system model: The engine, the electric
motor, and the generator of the Prius are modeled by their
corresponding efficiency maps from bench tests. The Ni-MH
battery is modeled by an equivalent circuit model ignoring
temperature changing and battery aging:

P(t) = I(t) ·Voc(t)−R0 · I2(t)

I(t) =
Voc(t)−

√
V 2

oc(t)−4 ·R0 ·P(t)
2R0

SoC(t) =
Q0−

∫ t
0 I(t)dt
Q

(2)

where P is the output power, I denotes the current, Voc is
the open-circuit voltage, R0 is the internal resistance, SoC is
the state of charge, Q0 is the initial battery capacity, and Q
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TABLE I
PARAMETERS OF PRIUS

Components Parameters Values

Engine Maximum power, Pe 56 kW
Maximum torque, Te 120 Nm

Motor Maximum power, Pm 50 kW
Maximum torque, Tm 400 Nm

Battery Capacity, Q 1.54 kWh
Voltage, Voc 237 V

Vehicle

Curb weight, m 1449 kg
Roll resistance coefficient, f 0.013
Air resistance coefficient, fA 0.26

Frontal area, A f 2.23 m2

Wheel radius, r 0.287 m

Transmission Final gear ratio, ig 3.93
Characteristic parameter, C 2.6

is the nominal battery capacity. Details on Prius parameters
are shown in Table I.

B. DRL Formulation

A DRL problem that satisfies the Markov property can
generally be modeled in terms of the MDP, which can be
characterized as (S,A,P,R,γ). S represents a set of state
spaces. A is a set of action spaces. P denotes a state transition
probability matrix. R represents a reward function. γ denotes
a discount factor.

DDPG is one of the most typical actor-critic DRL meth-
ods, which is an off-policy and model-free algorithm. As
illustrated in Fig.3, DDPG has an actor network µ(s|θ µ), a
critic network Q(s,a|θ Q), an actor target network µ ′(s′|θ µ ′),
and a critic target network Q′(s′,a′|θ Q′). The actor target
network has the same structure as the actor network, while
the critic target network has the same structure as the critic
network. s is the agent state as the input of actor network
and critic network. a is the agent action as the output of
actor network and the input of critic network. θ represents
parameters of the corresponding network. s′ and a′ are
defined in the same way.

The DDPG algorithm is used to learn the optimal policy of
Prius EMS in this work. The neural network has a pyramid-
like architecture, with the number of neurons in hidden layers
decreasing layer by layer. The optimal EMS utilizes the
DDPG algorithm, which is trained with different driving
cycles.

TD
error

S

{SOC, v, acc }

state
S

{SOC, v, acc }

a

{Teng }

S'

{SOC ', v ', acc ' }

state
S'

{SOC ', v ', acc ' }

a'

{Teng }

Soft target updates

Value

Target value

Actor network

Actor target network

Critic network

Critic target network

Soft target updates

...

...

...

...

...

...

...

...

...

...

...

...

...
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...
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Fig. 3. The architecture of DDPG.

The DDPG-based EMS is formulated according to the
following MDP.

1) State space, S: The state of the system,

s = {SoC,v,acc} (3)

which consists of SoC, the velocity of Prius v and the
acceleration acc.

2) Action space, A: At each episode, the agent can select
actions in continuous engine power Teng:

a = {Teng} (4)

3) Reward function, R: There are two aspects of the re-
ward function of DDPG-based EMS, the energy consumption
and the SoC sustaining. The multi-objective reward function
is defined as:

r =−{α[ f uel(t)+ elec(t)]+β [SoCre f −SoC(t)]n} (5)

where α is the weight of Prius consumption including
the fuel consumption of engine f uel and the electricity
consumption of motor elec, β is the weight of battery charge-
sustaining, and SoCre f represents the SoC reference value.
The goal of the reward function is to minimize the energy
consumption and retain the battery SoC at an appropriate
range. To control for variables, in the following comparison,
SoCre f is selected as 0.6 according to the minimum charge-
discharge internal resistance. α is selected as 1, β is set to
350, and n is set to 2, according to the previous work [24].

C. Transfer Learning

Traditional DRL algorithms are used to solve the problem
with training and test data in the same domain. How-
ever, once the domain is changed, the network needs to
be retrained, which is quite complex and time-consuming
[25], [26], [27]. Transfer learning is extremely useful in
solving this problem. When two domains are similar, network
parameters can be stored and reused in the new one along
with transfer learning approaches [28], [29], [30].

Given a source domain Ms and a target domain Mt , transfer
learning aims to learn an optimal policy π∗ from Ms for Mt .
Ms provides prior knowledge Ds that is accessible for Mt .
Thus, by leveraging the information from Ds, the target agent
learns better and faster in Mt [31].

A network that specializes in obtaining source EMS is
used in our work. Since driving cycles of Ms and Mt have
the same feature space and are correlated with each other,
source domain knowledge can be transferred to the novel,
but relevant target domain [32]. The majority of parameters
in the neural network are the same, and only parameters
of the output layer should be retrained. Thus, both the
source network and the target network use the same DDPG
architecture shown in Fig.3, and the weights of the source
network except for the last layer are used to initialize the
target network that will be trained on new driving cycles.
Further details about hyperparameters of DDPG in Ms and
Mt are given in Table II.
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TABLE II
DDPG HYPERPARAMETERS

Parameters Source Domain Target Domain
Number of Episodes, K 1000 300
Replay memory size, M 50000 50000

Learning rate of actor network, lra 0.001 0.0009
Learning rate of critic network, lrc 0.01 0.009

Discount factor, γ 0.9 0.9
Target network update frequency, τ 0.01 0.01

Mini-batch size, batch 64 64

In DDPG, the agent utilizes exploration to acquire knowl-
edge about the environment and applies exploitation to select
a control action based on current knowledge [33]. Thus,
the coordination between exploitation and exploration is
essential. The following parts of this subsection provide a
description of exploration methods used in the DDPG-based
transferable EMS.

The primary purpose of exploration is to avoid local
optimum for agent’s behaviors [21]. Thus, to realize efficient
and effective exploration, random noise is frequently added
to perturb selected actions, which is mainly focused on in
our work. Main approaches can be classified into two groups:
adding noise in the action space and adding noise directly
to agent’s parameters.

1) Action space noise: When the agent selects actions
using the actor network, the noise N is added to the action
space. The final selected action at at each step satisfies:

at = µ(s|θ µ)+N (6)

Action space noise could be a simple Gaussian noise or
a more advanced Ornstein-Uhlenbeck (OU) correlated noise
process [22]. Gaussian noise satisfies N ∼N(0,σ2I), where
σ2 denotes variance and the expected value is set to 0. An
OU process [34] can be used as a temporally correlated noise.
Just like the Gaussian noise mentioned above, the expected
value of OU noise N ∼ OU(0,σ2) is set to 0, and the
variance can be set to multiple values.

2) Parameter space noise: While adding noise in the
action space to explore, there is no guarantee that the same
action will be chosen in the same state each time, which
can lead to inconsistent exploration. The parameter space
noise solves this problem and directly perturbs actor network
parameters to get a rich set of behaviors. The final selected
action at at each step satisfies:{

at = µ(s|θ̃ µ)

θ̃ = θ +N(0,σ2I)
(7)

III. EXPERIMENTS

The purpose of our work is to compare effects of different
exploration methods of DDPG-based EMS and transferred
new networks in terms of transfer efficiency. Driving cycles
are selected for the source domain and the target domain,
which are different but similar. Then, networks with different
exploration methods are trained in the source domain, of

TABLE III
NETWORKS ADDED DIFFERENT TYPES OF NOISE

Space Added Noise Noise Type Variance

Action space Gaussian 0.02,0.03,0.04,0.05,0.06
OU 0.08,0.09,0.10,0.11,0.13

Parameter space Gaussian 0.03,0.04

Action & parameter space Gaussian & Gaussian 0.06 & 0.03
OU & Gaussian 0.09 & 0.03

which parameters are saved. Finally, the adaptation of target
domain networks, of which parameters are initialized using
saved weights, is evaluated.

A. Driving Cycles

In this work, driving cycles are all selected from stan-
dard data. Source tasks are performed over multiple cycles,
including Urban Dynamometer Driving Schedule (UDDS)
[35], FTP75 [24], etc. Target tasks are conducted on New
European Driving Cycle (NEDC) [36], which is different
from driving cycles used in the source domain but similar.
Using multiple driving cycles for training in the source
domain improves the generalization ability of the trained
model, which leads to better transfer results. A driving cycle
with a high similarity to the source driving cycles is chosen
for the target domain, since similarity is a necessary factor
for transfer learning.

B. Training in the Source Domain

To ensure the validity of weights to be transferred, net-
works with different exploration methods are firstly trained
on the source domain. Settings of networks with different
types of noise are shown in Table III. By comparative
studying, suitable networks, of which parameters are used
to initiate weights of target networks, are selected according
to the training results.

As described in Fig.4, Gaussian noise added in the action
space, OU noise added in the action space, Gaussian noise
added in the parameter space, and their mixture are used to
explore in DDPG-based EMS. In Fig.4(a), different variance
values σ2 of Gaussian noise added in the action space
are set to 0.02, 0.03, 0.04, 0.05, 0.06, respectively. The
reward fluctuates the most when the variance is set to 0.02.
Only the network with variance 0.05 shows considerable
oscillations once the trained weights converge. Thus, the
network with variance 0.06 is the most stable. Similarly,
Fig.4(b) and 4(c) illustrate that the network’s variance of 0.09
with OU noise added in the action space and the network’s
variance of 0.03 with Gaussian noise added in the parameter
space are the most stable, respectively. Results of other
noise configurations, which converge to a local optimum or
fluctuate too much, are not shown here. Besides, different
effects of a single noise and a mixed noise are compared
in Fig.4(d). Results using the Gaussian noise added in the
action space and parameter space are very unstable, as shown
by the yellow line. The noise of multiple Gaussian processes
makes the agent tend to explore rather than exploit to a great
extent, leading to more non-optimal actions with fluctuating
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(a) Action space noise with Gaussian (b) Action space noise with OU (c) Parameter space noise with Gaussian

(d) Mixture noise (e) Transferred networks

Fig. 4. Comparison of different exploration methods in the source domain.

reward values. The most stable is the Gaussian noise added
in the action space, followed by the Gaussian noise added
in both the action space and parameter space.

Above all, the most stable network is the one that uti-
lizes the Gaussian noise added in the action space with
0.06 variance to explore, followed by the network with the
combination of OU noise added in the action space and
Gaussian noise added in the parameter space to explore.
Chosen networks which are transferred to a new domain are
shown in Fig.4(e).

C. Adaptation of Transfer Learning

Results of the transferred DDPG in the target domain using
different exploration methods in EMS are discussed in this
subsection. A new network is trained on the new driving
cycle, learning from scratch or initializing the network pa-
rameters using prior ones.

As shown in Table IV, following criteria are adopted to
evaluate the adaptation of the transferable EMS [37]:

1) Jumpstart Performance (JP): The initial performance
of the agent. The mean reward of the first 50 episodes is
used to evaluate it.

2) Asymptotic Performance (AP): The ultimate perfor-
mance of the agent. The mean reward of the convergence
interval is used to evaluate it.

3) Time to Threshold (TT): The learning time needed for
the target agent to reach a certain performance threshold.
The iteration number of convergence is used to evaluate it.

In Table IV, TFS means the source network trained from
scratch. Gaussian AS, OU AS, Gaussian PS and APS mean

source networks with Gaussian noise added in the action
space, OU noise added in the action space, Gaussian noise
added in the parameter space, and both OU noise added in
the action space and Gaussian noise added in the parameter
space, respectively. While target networks use the same type
of noise, the maximum reward value obtained from first
50 episodes is larger than the maximum convergence value
in the convergence interval, which means that the DDPG
network falls into a local optimum during the exploration
process. Besides, the initialization of parameters of target
networks with parameter space noise generally works well in
terms of convergence speed and mean reward value, except
for target networks using the mixture of action space and
parameter space noise for exploration. After target networks
have converged, convergence values of different exploration
methods do not differ significantly.

As shown in Fig.5(a), no noise is added on the target
network. In first 50 episodes, the network which is trained
from scratch (gray line) starts out with a small reward value,
which means that its JP is poor. The green, blue, yellow, and
orange lines represent parameters of networks with different
exploration methods to initialize current target networks.
Weights of these networks are perturbed by Gaussian noise
added in the action space (σ2 = 0.06), OU noise added in
the action space (σ2 = 0.09), Gaussian noise added in the
parameter space (σ2 = 0.03), both OU noise added in the
action space noise and Gaussian noise added in the parameter
space to explore, respectively. The yellow line fluctuates the
least. In the convergence interval (50 300 episodes in all
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TABLE IV
MEAN REWARD AND ITERATION NUMBER OF TARGET NETWORK

Exploration Method
(Target Network)

Transferred Network Parameter
(Source Network)

Mean Return
(First 50 Episodes)

Mean Return
(Convergence Interval)

Iteration
Number

No noise

TFS -21.6386 -1.2101 30
Gaussian AS -0.9186 -1.0540 20

OU AS -0.9451 -1.2019 29
Gaussian PS -0.9009 -1.4133 21

APS -2.0715 -1.1878 29

Gaussian noise added in the ation space

TFS -20.9453 -0.8766 36
Gaussian AS -0.8780 -0.8776 35

OU AS -0.9748 -0.8908 30
Gaussian PS -0.7987 -0.9071 25

APS -1.7628 -0.9159 32

OU noise added in the ation space

TFS -25.3330 -1.1527 36
Gaussian AS -1.1239 -1.0585 24

OU AS -0.9035 -1.0417 22
Gaussian PS -0.8720 -1.1611 31

APS -2.3262 -1.0474 23

Gaussian noise added in the parameter space

TFS -21.6009 -1.1523 35
Gaussian AS -1.0250 -1.1132 21

OU AS -1.1109 -1.1652 22
Gaussian PS -1.5669 -1.2466 34

APS -4.4550 -1.2734 30

Noise added in ation space and parameter space

TFS -21.1288 -1.0919 35
Gaussian AS -1.4819 -1.0066 31

OU AS -0.9408 -1.1473 27
Gaussian PS -13.8613 -0.9998 24

APS -2.6120 -1.1589 30

(a) No noise (b) Gaussian action space noise (c) OU action space noise

(d) Parameter space noise (e) Action space and parameter space noise

Fig. 5. Comparison of different exploration methods in the target domain.
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target cases), the green line is the most stable, gray and blue
lines are the second most unstable, and the most unstable one
is the yellow line. In general, they do not differ much. This
means that it is the most stable to initialize the target network
with parameters of the original network with Gaussian action
space noise.

The Gaussian noise is added in the action space of target
networks, of which the training process is shown in Fig.5(b).
In first 50 episodes, the gray line fluctuates the most, and the
orange line fluctuates the least, while the blue line fluctuates
the least in the convergence interval. This indicates that the
most stable approach is to initialize the target network with
parameters of the original network with OU action space
noise, and use Gaussian action space noise to explore.

The action space noise with OU process is added on the
target network, of which the training process is shown in
Fig.5(c). The gray line has the most considerable fluctuation,
followed by the orange line in first 50 episodes. The blue
line has the slightest fluctuation. In the convergence interval,
the most stable one is still the blue line, which indicates
that it has a better learning effect to initialize the target
network, which uses OU action space noise to explore, with
parameters of the original network with OU action space
noise.

The Gaussian noise added in the parameter space is added
on the target network, of which the training process is shown
in Fig.5(d). In first 50 episodes, the gray line has a small
initial value because it does not have any prior knowledge.
The orange line fluctuates the second most, which means
that parameters of the network with action space noise
and parameter space noise are not suitable for initializing
the new target network with parameter space noise. In the
convergence interval, the most stable one is still the blue line,
followed by the green line, and the most unstable one is the
yellow line. The blue line is the most stable one throughout
the training process.

Both the action space noise and the parameter space noise
are added on the target network, of which the training process
is shown in Fig.5(e). The gray line has the smallest initial
value, while the yellow line has the largest fluctuation in
first 50 episodes. It means that parameters of the network
with parameter space noise are not suitable for initializing
the target network with action space noise and parameter
space noise. In the convergence interval, the fluctuation of
each method is negligible.

Combining results expressed in Fig.4 and Fig.5, the net-
work with the action space noise works best for DDPG-
based EMS. For transfer learning, the network with the
parameter space noise is the most stable, while the network
with multiple noises of action space and parameter space has
poor initial performance.

IV. CONCLUSION

In this paper, choosing an optimal and efficient EMS is
formulated as a deep reinforcement learning-based trans-
fer learning problem. We compared different exploration
approaches for deep reinforcement learning and transfer

learning to find out the best energy management strategy.
Effects of action space noise and parameter space noise
which are added to the DDPG algorithm, are presented. Ex-
perimental results show that the method of parameter space
noise exploration works best for DDPG-based transferable
EMS.

Despite these encouraging comparison results, there are
several avenues for future research. First, we want to inves-
tigate other exploration modalities, not only adding noise for
action selecting. We furthermore plan to compare different
exploration methods based on more robust DRL algorithms,
such as twin delayed DDPG and soft actor-critic.
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