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Abstract— Learning-based approaches, such as reinforcement
learning (RL) and imitation learning (IL), have indicated
superiority over rule-based approaches in complex urban
autonomous driving environments, showing great potential
to make intelligent decisions. However, current RL and IL
approaches still have their own drawbacks, such as low data
efficiency for RL and poor generalization capability for IL.
In light of this, this paper proposes a novel learning-based
method that combines deep reinforcement learning and imi-
tation learning from expert demonstrations, which is applied
to longitudinal vehicle motion control in autonomous driving
scenarios. Our proposed method employs the soft actor-critic
structure and modifies the learning process of the policy
network to incorporate both the goals of maximizing reward
and imitating the expert. Moreover, an adaptive prioritized
experience replay is designed to sample experience from both
the agent’s self-exploration and expert demonstration, in order
to improve sample efficiency. The proposed method is validated
in a simulated urban roundabout scenario and compared with
various prevailing RL and IL baseline approaches. The results
manifest that the proposed method has a faster training speed,
as well as better performance in navigating safely and time-
efficiently.

I. INTRODUCTION

Autonomous driving in urban scenarios remains a major
challenge today, primarily due to the complicated driving
conditions, including great variance of traffic density and
agent interactions, as well as the requirement of balance
between efficiency (speed), comfort (smoothness), and safety
[1], [2]. Current motion control strategies focus on rule- or
model-based methods. These methods excel in interpretabil-
ity but are with several inherent drawbacks. First of all,
the rules or models are designed manually with potentially
inaccurate assumptions, thus making it hard to scale to
complicated real-world environments. Moreover, the rules
themselves are hard to define and maintain for continual
improvement.

On the other hand, with diverse and large-scale driving
data, the learning-based methods that can handle large state
and action spaces and complicated situations in urban driving
scenarios are becoming viable. Essentially, there are two
paradigms to learn the motion control strategies, namely imi-
tation learning (IL) and reinforcement learning (RL). For IL,
suppose that the trajectories from an expert demonstration are
close to optimal, then IL can effectively learn to approximate
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the expert driving policy by reproducing expert actions given
states, which could guarantee a lower bound of performance.
For RL, the agent interacts with the environment and aims to
optimize long-term rewards and make better decisions using
its collected experiences. However, both these two paradigms
have their own disadvantages. For IL, its ability is limited
since its performance can at best amount to expert demon-
strations. Besides, IL can easily encounter the distributional
shift problem [3] because it only relies on static datasets.
For RL, it suffers from poor data efficiency and in complex
driving situations, the reward is sparse and hard to specify.
To mitigate the problems in both RL and IL and facilitate the
development of the learning-based motion control strategy, a
method that integrates reinforcement learning and imitation
learning should be considered. Combining the merits from
RL with ones from IL, reinforcement learning from demon-
stration (RLfD) [4] is expected to not only accelerate the
initial learning process of RL with the help of expert data,
but also gain the potential of surpassing the performance of
experts.

In this paper, we propose a novel framework combining
reinforcement learning and expert demonstration to learn a
motion control strategy for urban scenarios. The experiments
are carried out in a roundabout scenario in the high-fidelity
CARLA driving simulator. To reduce the complexity, we
decompose the motion control of the vehicle into lateral con-
trol governed by a pure-pursuit controller for path tracking
and longitudinal control enabled by the proposed learning
framework. We first collect human driving data as the expert
demonstration dataset and then utilize the designed RLfD
method, which samples the experiences from both the expert
demonstrations and the agent’s self-exploration, to learn a
motion control strategy. The results reveal that the proposed
framework can effectively accelerate the learning process
and accomplish better performance. The contributions of this
paper are listed as follows.

1) A soft-actor-critic-based reinforcement learning from
demonstration method is proposed, in which the learn-
ing process of the policy network is modified to
accordingly combine maximizing the Q-function and
imitating the expert demonstration.

2) A dynamic experience replay is proposed to adap-
tively adjust the sampling ratio between the agent’s
self-exploration and the expert’s demonstration in the
learning process.

3) A comprehensive test is carried out in a simulated
urban driving scenario, where various RL and IL
baselines are compared against our proposed method.
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II. RELATED WORK
A. Deep reinforcement learning

Significant progress in deep reinforcement learning (DRL)
has been made in recent years, expanding its applications in
a wide variety of domains, especially in the field of robotics.
Previous works have shown that the model-free DRL-based
approach is promising for applications in autonomous learn-
ing motion control strategies, and thus much effort has been
put on DRL-based methods. Zhang et al. implemented a
vehicle speed control strategy using the double deep Q-
network (DDQN) that utilizes visual representation as system
input [5]. Chen et al. investigated four model-free DRL algo-
rithms for motion control in a roundabout scenario, namely
DDQN, deep deterministic policy gradient (DDPG), twin
delayed DDPG (TD3), and soft actor-critic (SAC) [6], and
the results demonstrated that the SAC algorithm outperforms
the others. DRL has also been applied in dedicated motion
control modules on the vehicle, which delivers favorable
and robust performance. Chae et al. adopted DQN with a
carefully-designed reward function for an adaptive braking
system, which could effectively avoid collisions [7]. Ure
et al. successfully introduced DRL to tune the parameters
in MPC [8] controllers, in order to achieve better and
more stable performance in path tracking. Some of these
DRL algorithms will be used as the baselines to show the
effectiveness of our proposed method.

B. Imitation learning

In addition to the DRL method, a renewed interest in
imitation learning (IL) for autonomous driving has been
raised. The behavior cloning method has become the prevail-
ing method in end-to-end autonomous driving thanks to the
significant improvement brought by deep neural networks.
Xu. et al. proposed a combination of the fully convolu-
tional network (FCN) and long-short term memory (LSTM)
network for learning driving policy [9]. Codevilla et al.
designed a conditional imitation learning framework which
incorporates navigational command inputs [10]. Huang et
al. presented a multimodal sensor fusion-based end-to-end
driving system with imitation learning and scene under-
standing [11]. Besides, some more sophisticated imitation
learning methods have been proposed recently, including
generative adversarial imitation learning (GAIL) [12], and
Soft-Q imitation learning (SQIL) [13], in order to enable the
agent to learn from demonstrations in a more effective way.
These methods are used as the imitation learning baselines
in the experiment.

C. Reinforcement learning from demonstrations

Both RL and IL have inherent downsides, as stated in
Section I, which gives rise to the concept of combining
RL with IL for a more efficient learning process, i.e.,
reinforcement learning from demonstrations (RLfD). For
example, Liu et al. [14] utilized DDPG with expert demon-
stration data in track following in The Open Racing Car
Simulator (TORCS). Liang et al. brought forward control-
lable imitative reinforcement learning (CIRL) built upon

DDPG and imitation learning for urban navigation [15].
Deep imitative model [16] proposed by Rhinehart et al.
combined R2P2 and imitation learning to improve goal-
directed planning. Our method is closely related to deep Q-
learning from demonstrations (DQfD) [4] and DDPG from
demonstrations (DDPGfD) [17], which incorporate small sets
of expert demonstration data into experience replay and thus
show a massively accelerated training process and better
performance. However, our proposed method is based on
SAC, which employs a maximum entropy and probabilistic
setting rather than a deterministic manner (DDPG-based
method). Besides, an adaptive experience sampling method
is proposed to dynamically adjust the learning objectives.

III. METHOD

A. Learning framework

As shown in Fig. 1, the learning framework is composed of
three main parts. The simulated driving environment receives
the actions of the agent or human expert and then emits the
states of the environment. A human expert drives in the same
environment using the steering wheel and pedals and their
actions are collected in the demonstration dataset. For the
RL driving agent, its motion control strategy is explicitly de-
composed into longitudinal (acceleration) control with neural
network (learnable) and lateral (steering) control with a pure-
pursuit controller (non-learnable) that tracks the predefined
route.

The learning process follows the discrete-time Markov
decision process (MDP). At every timestep t, the agent
receives the state st of the environment and executes an
action at according to its policy π(at|st), and the environ-
ment returns a reward rt and transitions to the next state
st+1. The goal of RL is to optimize the policy to maximize
the long-term expected returns: maxEπ [

∑
t γ

tr (st, at)]. On
the other hand, the goal is IL is to imitate the expert
demonstrations, which can be represented as minimizing the
discrepancy (L2 norm) between the policy’s action and the
expert’s action: minEπ

∥∥π (at|sEt )− aEt ∥∥2. The core idea
of our proposed approach is to add the IL target when using
RL to train the motion control policy, in order to accelerate
the training process and achieve better performance.

We maintain two experience replay buffers to store the
agent’s self-exploration experiences DS and expert demon-
strations DE separately. Both DS and DE are stored in
the format of state-action pairs along with the reward and
state transition: {(st, at, rt, st+1)}. In the training process,
the policy πφ parameterized by φ, samples a batch of mixed
experiences from those two buffers with an adaptive ratio at
each gradient update step. An off-policy DRL (SAC) learner
integrated with imitation learning is introduced to carry out
the training and the details of the learning process are given
in the following subsections.

B. Soft actor-critic with imitation learning

We implement the SAC algorithm with automatic entropy
adjustment [18], augmented by the proposed experience
replay mechanism and imitation learning objective, to train
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Fig. 1. An overview of our motion control system. The learnable module (policy network) receives bird-eye observations and generates throttle command.
The lateral motion controller generates the steering command adaptively according to the throttle, predefined route, and vehicle states.

the policy network. SAC optimizes a stochastic policy in an
off-policy manner and combines the actor-critic framework
with the maximum entropy principle, which helps mitigate
the issues on exploration-exploitation. The algorithm con-
currently learns a policy network πφ, a twin Q-function
networks Qθ1 , Qθ2 for reduction in Q-value variances, and
a value function network Vψ . The twin Q-function networks
are updated according to the following loss function:

LQ(θi) = E
(st,at,rt,st+1)∼D

[
(Qθi (st, at)− yQ)

2
]
, (1)

where i = 1, 2 and D is composed of the experience
collected by both the agent’s self-exploration and the expert’s
demonstration D = DE ∪DS . The target yQ for Q-function
update is given by:

yQ = rt + γVtarget (st+1) , (2)

where Vtarget is the target value function network, which
is obtained by Polyak averaging the value network Vψ
parameters at each gradient step.

The value function network Vψ gets update through the
following loss function:

L(ψ) = E
st∼D

[
(Vψ (st)− yV )

2
]
, (3)

and the target for value function is given by:

yV = min
i=1,2

Qθi(st, ãt)− α log πφ(ãt|st), (4)

where α is a non-negative temperature parameter that con-
trols the trade-off of the entropy term. The parameter is
automatically tuned over the course of training according
to [18]. The actions are obtained from the current policy
ãt ∼ πφ(·|st), where the states are sampled from the replay
buffer st ∼ D.

The agent explores the environment according to its
stochastic policy, i.e., at ∼ πφ(·|st), and the exploitation

and exploration trade-off is controlled by the entropy of
the policy, e.g., increasing entropy results in more explo-
ration. In practice, we use the Gaussian policy and thus
the policy network outputs two values that represent the
mean and standard deviation of a Gaussian distribution, i.e.,
at ∼ N (µφ(st), σφ(st)). To make the stochastic policy
differentiable, we use the reparameterization trick, in which
a sample of actions from the stochastic policy is drawn by
computing the following deterministic function:

ãt = tanh (µφ(st) + σφ(st)� ξ) , ξ ∼ N (0, I), (5)

where ξ is independent Gaussian noise and tanh is used to
ensure that actions are bounded to a finite range.

We can utilize both imitation learning and reinforcement
learning to optimize the policy network, leveraging the
experiences from the expert demonstration and the agent’s
exploration, respectively. For reinforcement learning, the
policy network should be updated to maximize the expected
future return plus expected future entropy. The loss function
for the policy network πφ when learning from the agent’s
experience should be:

L(φ)RL = E
st∼DS

[α log πφ (ãt|st)

− min
i=1,2

Qθi (st, ãt)].
(6)

For learning from expert demonstrations or imitation
learning, the loss function for updating the policy network
πφ becomes:

L(φ)IL = E
(st,at)∼DE

[
(ãφ(st)− at)2

]
, (7)

where DE is the buffer that contains expert demonstrations.
In the imitation loss function Eq. (7), the agent’s ac-

tion ãφ (st) is the mean value of the stochastic policy
tanh (µφ(st)), instead of a sample from the action distri-
bution. In addition, we add a Q-value regularization so as



to combat the overfitting issue and boost the learning speed,
which means the imitation loss is only referred to if the
following condition is satisfied:

Qθj
(
sEt , a

E
t

)
≥ min
i=1,2

Qθi
(
sEt , ãt

)
, ãt ∼ πφ(·|sEt ), (8)

where j = 1, 2, meaning any of the two Q-function networks
can trigger the condition.

Eq. (8) illustrates that the policy network will cease
imitation loss update when the agent’s performance (Q-
value) outweighs the expert. Empirically speaking, adding
this constraint can effectively adjust the imitation learning
process and filter the suboptimal demonstrations, and avoid
overfitting the policy to expert demonstrations.

Putting all together, the loss function for the policy net-
work πφ in SAC with imitation learning is:

L (φ) =

{
L(φ)RL, if st ∼ DS ,
L(φ)IL, if (st, at) ∼ DE and Eq. (8). (9)

where L(φ)IL would be masked for expert data pairs
unsatisfied by Eq. (8). To balance the sources of experience
the agent learns from (i.e., the ratio of the agent’s experience
and expert’s demonstration), we design a mechanism of
experience replay that can adaptively sample experiences
from the two sources, which is explained below.

C. Adaptive prioritized experience replay

Following the prioritized experience replay (PER) mecha-
nism [19], each transition tuple in the two replay buffers will
be assigned a priority, such that more important transition
tuples with greater approximation errors can more likely be
sampled. This way, the sampling process becomes more effi-
cient and goal-directed. The devised priority pi for transition
tuple i in the agent replay buffer is:

pRLi = Lπ(φ)RL + ¯LQ(θ) + ε, (10)

where ε is a small positive constant to ensure that all tran-
sitions are sampled with some non-zero probability. ¯LQ(θ)
indicates the mean value of the twin-Q losses. Likewise, the
priority pi for transition tuple i in the expert replay buffer is

pILi = Lπ(φ)IL + ¯LQ(θ) + ε. (11)

The probability for a transition tuple being sampled is
P (i) =

pωi∑
k p

ω
k

, in which ω is a hyper-parameter that
determines the level of prioritization. To correct the bias
introduced by not uniformly sampling during backpropaga-
tion, an importance-sampling weight is assigned to the loss
regarding the transition tuple w(i) = ( 1

NP (i) )
β , where N is

the number of experience tuples in the buffer and β is another
hyper-parameter that controls how much prioritization to
apply.

We sample the experiences separately for expert and agent
buffers while updating the priorities of them, and the ratio
of the samples from the two sources is dynamically adjusted
using the following equation:

B ←
(
ρB ∼ DS

)
∪
(
(1− ρ)B ∼ DE

)
, (12)

where B is a mini-batch, and ρ ∈ [0, 1] is the sampling ratio
clipped by 0 to 1, which is updated after an episode is done
according to:

ρ← ρ+
1

NB
1

(∑
t

rAt ≥ rE
)

(13)

where NB is the size of the mini-batch,
∑
t r
A
t denotes the

episodic reward of the agent, and rE represents the average
episodic reward of the expert demonstration. It indicates that
the sampling ratio for the agent buffer will gradually increase
if the episodic reward for the agent is greater than the average
performance of the expert. For a more specific illustration of
the learning framework, the pseudo-code implementation is
given in Algorithm 1.

Algorithm 1 Soft Actor-Critic with Imitation Learning
Input: Expert demonstration buffer DE , initial sampling

ratio ρ, initial entropy parameter α, Polyak averaging
weight λ.

1: Initialize policy network φ, value network ψ, and Q
networks θi, i = 1, 2

2: Initialize target value network Vtarget ← Vψ
3: Initialize empty agent replay buffer DS
4: repeat
5: Observe state st and sample action at ∼ πφ(·|st)
6: Execute the action at in the environment
7: Observe the next state st+1 and reward rt
8: Store transition (st, at, rt, st+1) in agent buffer DS
9: if time to update then

10: Sample a mini-batch B using Eq.(12)
11: Update Q networks θi using Eq.(1) and Eq.(2)
12: Update value network ψ using Eq.(3) and Eq.(4)
13: Update Vtarget ← λψ + (1− λ)Vtarget
14: Update policy network φ using Eq.(9)
15: Update entropy parameter α
16: Update priorities of transition tuples pRLi and pILi
17: using Eq.(10) and Eq.(11) respectively
18: end if
19: if st+1 is terminal then
20: Reset environment state
21: Update sampling ratio ρ using Eq.(13)
22: end if
23: until Convergence

IV. EXPERIMENTS

A. Experimental Setup

We use the CARLA simulator [20] as the experimental
platform, where the autonomous vehicle is tasked to run
safely and time-efficiently through a roundabout consisting
of multiple intersections in the urban area, shown in Fig. 2(a).
The starting and destination areas are fixed but the traffic
flows vary in different training episodes. The ego vehicle is
first spawned randomly within the starting area and follows
the planned route to the destination, while avoiding colli-
sions with the surrounding vehicles in the dense traffic. We



only consider surrounding vehicles, including motorcycles,
sedans, and trucks, as traffic participants and a total of 100
vehicles are randomly spawned in the scene. The surrounding
vehicles are running by keeping the target speed (8 m/s) and
performing emergency stop when detecting potential danger
to the nearby vehicles. The simulation timestep is 0.1 seconds
and a training episode ends when encountering the following
cases: 1) the ego vehicle reaches the destination area; 2)
the ego vehicle collides with other vehicles; 3) the episode
exceeds the maximum time steps (800).

Destination

Start

Agent

(a) (b)

Fig. 2. Overview of the urban driving task and processed scene represen-
tation: (a) overview of the roundabout; (b) an example of bird-view image
input.

We take the bird-eye view image shown in Fig. 2(b) as
the scene representation because it contains rich information
of the ego vehicle and its route, the road topology, and sur-
rounding vehicles. We assume that the perception informa-
tion is perfect, which means the states of the ego vehicle and
all surrounding objects, as well as other information on the
road, can be projected into a bird-eye view map accurately.
The bird-eye view image is an RGB image encoding different
information about the driving environment. The drivable
areas and lane markings are rendered in grey and white, and
the planned route for the ego vehicle is rendered as a thick
blue polyline. The historical bounding box trace of the ego
vehicle is rendered in red while the historical bounding boxes
of the detected surrounding vehicles are rendered as green
boxes. The image is with a pixel size of 64×64×3, encoding
a field of view with a size of 40×40 m2. The image is aligned
to the ego vehicle’s local coordinate where the ego vehicle
is positioned at the center.

We decouple the vehicle motion control into longitudinal
and lateral directions. Considering that the vehicle basically
just needs to follow the drive lane in the lateral direction, to
reduce the complexity of the problem and guarantee lateral
control stability, the lateral control (steering) is conducted
by a pure-pursuit controller to track the target waypoint on
the planned route. For the longitudinal control, we utilize
two kinds of action spaces for different algorithms. The
continuous action space is the normalized throttle and brake
control [−1, 1], where [−1, 0] is for brake input and [0, 1]
for throttle input, and the discrete action space consists of
three actions corresponding to the normalized throttle and
brake, which are {−1, 0, 1}. The policy network employs the
convolutional neural network (CNN) structure as the feature
extractor and generates the mean and standard deviation of
a Gaussian distribution through two fully connected layers,

each with 64 hidden units. The critic networks’ feature
extractors share the same CNN structure.

In the stage of collecting expert demonstration data, a
human expert with a driving license is asked to demonstrate
his execution to finish the driving task in the CARLA envi-
ronment. The expert observes the driving environment from
the bird-eye representation with the instant speed information
displayed at the same time, and controls the pedal of a
Logitech G29 driving set to output continuous actions or
presses the keyboard to output discrete maneuvers. It is
worth noting that the expertise of the human participant
is relative to the RL agent because humans possess prior
knowledge on scene understanding and driving with the
common goal to drive safely and efficiently. Therefore, the
human expert is just asked to drive as usual to finish the task
without imposing any other requirements but the speed limit.
Overall, a total of 50 trajectories of expert demonstrations are
collected for continuous actions, with approximately 15,000
transition tuples. The same amount of trajectories are also
collected for discrete maneuvers.

B. Reward function

Considering the critical factors in urban autonomous driv-
ing, we design a reward function that keeps balance on
efficiency, ride comfort, and safety. After some trials, the
reward function is designed as a combination of four terms:

rt = rv + rstep + rcol + rsafe. (14)

The first term rv is for travel efficiency, which stimulates
the agent to run as fast as possible but within the speed limit
vmax:

rv = v + 2 (vmax − v)1 (v ≥ vmax) , (15)

where v is the speed of the ego vehicle. The second term
rstep = −0.1 is a constant step penalty and devised to
encourage the agent to complete the task as quickly as
possible.

The other two terms are set for ensuring safety. First of
all, rcol = −10 is a penalty for collision. To provide more
information to the reward signal, we consider the potential
danger in the front-detection zone shown in Fig. 3. It consists
of two fan-shape areas Z1(α1, R1) and Z2(α2, R2), where
αi and Ri denote its angle and radius. These two areas
are responsible to provide long- and short-range potential
collision information to the reward signal, respectively. If
multiple vehicles are in an area Zi, only the nearest vehicle
is detected and its distance to a certain center point di will
be returned. Thus, the safety reward rsafe is given as:

rsafe = −
[
λs
R1 − d1
R1

1(d1) + (1− λs)
R2 − d2
R2

1(d2)

]
vsafe,

(16)
where λs = 0.8 balances the importance of the two areas.
vsafe is a speed-related regulator. It removes the penalty
if the ego vehicle decelerates or waits when facing traffic
congestion:

vsafe = v [1− 1 (v ≤ vmin, at < 0)] , (17)



where vmin is a speed threshold and at is the agent’s action.
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Fig. 3. Illustration of the front-detection area for the ego vehicle.

C. Comparison baselines

To make a comprehensive evaluation of the performance
of the proposed approach, we compare it with other existing
methods. The baseline DRL algorithms are:

1) DQN [21]: a value-based method and Q-function loss
gets update through one-step temporal difference error.

2) PPO [22]: an on-policy method and has been widely
used in robotics control.

3) TD3 [23]: an improved method with twin delayed Q-
networks based on the DDPG algorithm.

4) A3C [24]: an on-policy actor-critic framework with
asynchronous sampling and advantage estimation.

5) SAC [25]: the basis of our approach, which has
been recently reported with higher performance in practical
applications.

The IL baseline methods are listed as follows:
1) BC: a supervised learning method, which has been

commonly used in learning driving policy from expert
demonstrations.

2) SQIL [13]: a regularized behavioral cloning method,
which combines the maximum likelihood of BC with regu-
larization that can stimulate the agent return to demonstrated
states upon encountering new states.

3) GAIL [12]: a variant of imitation learning using gener-
ative adversarial training, in which the generator is RL-based
and the reward function comes from the discriminator that
tries to tell apart the demonstrated and generated trajectories.

Moreover, we take DQfD [4] as the reinforcement learning
from demonstration baseline method. The DQN, DQfD, and
SQIL baseline methods are implemented with discrete action
space, and the rest of the baseline methods (PPO, TD3,
SAC, A3C, BC, GAIL, and our proposed approach) are
implemented with continuous action space.

D. Implementation details

Our proposed approach and other baseline methods are
trained for 100k steps. The neural networks are trained on
a single NVIDIA RTX 2070 Super GPU using Tensorflow
and Adam optimizer with a learning rate of 3 × 10−4, and
the training process takes roughly 6 hours. The parameters

related to the experiment are listed in Table I. All the listed
algorithms are trained once with the same total training steps
and random seeds, and the policy networks are saved after
finishing an episode during training. For each algorithm, we
take the trained policy network with the highest episodic
return for the subsequent testing phase.

TABLE I
PARAMETERS USED IN THE EXPERIMENT

Notation Meaning Value

vmax Speed limit (m/s) 12
vmin Speed threshold (m/s) 0.1
αi=1,2 Angles of front detection area (deg) 60, 30
Ri=1,2 Radius of front detection area (m) 10, 20
Lwb Wheelbase (mm) 2850

γ Discount rate 0.995
λ Polyak averaging weight 0.005
α Initial entropy weight 1
Hmin Desired minimum expected entropy -1
Nbuffer Agent buffer capacity 50000
NB Mini-batch size 64
ρ Initial sampling ratio 0.3
ω Hyperparameter for PER 0.6
β Hyperparameter for PER 0.4
ε Hyperparameter for PER 10−6

V. RESULTS

A. Training results

We evaluate the training performance of our proposed
method in comparison with other RL and IL methods intro-
duced in the previous section. Fig. 4 shows the training result
of each RL baseline algorithm for 100k training steps, and
the black dotted line represents an average episode reward
(940.81) that an agent can get reaching the destination area.
Fig. 5 shows the training result of the IL algorithms, and the
grey shade area in Fig. 5 is the performance of the expert
demonstrations with a mean episode reward of 1060.4 (dash-
dotted line) and standard deviation of 227.0.

As seen in Fig. 4, compared with other RL baseline
methods, our proposed method shows a faster convergence
speed and better performance at the end. We can find out that
the average episodic reward of the proposed method quickly
climbs to a very high level and gradually improves and finally
converges after roughly 40k steps. At the beginning of the
training process, with a larger part of samples from expert
demonstration, the agent is basically imitating the expert
demonstration with high rewards. Then, with the training
going on and the agent’s performance getting better, more
experience from the agent’s self-exploration will be sampled,
and thus the training process leans towards reinforcement
learning. For the on-policy methods, A3C behaves poorly
and can barely reach the entrance of the roundabout. It
is because the traffic scenario for each training epoch is
notably different, and the A3C policy easily falls into a local
minimum of staying close to the starting point. PPO can
mitigate this problem to some extent and quickly learn to
move forward in the first few episodes, thereby gaining a
relatively higher reward at the beginning, but it still cannot
learn to reach the destination with dense traffic, showing a



limited performance. The three off-policy algorithms perform
well and they all can basically reach the destination. SAC
performs the best but takes longer steps to converge. DQN
actually performs well with only discrete action space due
to using double Q-networks, dueling branch, and PER. This
is because the value-based method can at least guarantee
the training progress, but is heavily relied on the design of
the reward function. TD3 takes the longest steps to actually
improve the policy, and is very unstable in performance
during our experiment: it shows no progress without adding
noise, but after adding the noise, its performance still varies
greatly. As a closely related method to ours, the DQfD
algorithm shows a faster adaptation efficiency and its reward
curve converges faster. However, the final performance of
DQfD is pretty close to the DQN method and lower than
SAC and our proposed method. This is because the policy
update of DQfD only depends on the Q values from the
Q-network and thus expert demonstrations are not fully
exploited, whereas our proposed approach also utilizes expert
demonstrations for policy updates. Therefore, the perfor-
mance of the DQfD baseline cannot reach the same level
as our proposed approach.
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Fig. 4. The training curves of RL baselines and our approach. Our approach
shows the highest episode reward than other methods at the end of training.

In comparison with other IL baseline methods, our ap-
proach converges quite fast and quickly reaches the level
of the human expert. SQIL can also converge very fast but
performs notably worse than our method in terms of average
episodic reward as it only uses expert demonstration data.
GAIL shows the worst performance, probably because it
is good at deal with low-dimensional state inputs but fails
to handle high-dimensional image inputs, which has also
been mentioned by [3] and [13]. The results reveal that
our approach can not only imitate the expert demonstrations
but also improve the performance to some extent because
of adding RL to the framework. For the behavior cloning
method, because its learning mechanism is different from
other methods (only offline supervised learning), we only
show its testing results in the next subsection.

Wrapping up, the performance improvement of our pro-
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Fig. 5. The training curves of IL baselines and our approach. Our approach
shows a faster convergence as well as steady progress.

posed method may come from three factors. First of all, the
off-policy RL setting ensures that more abundant and diverse
trajectories are stored in the buffer, and the dynamic PER we
introduced can make sure that these stored agent trajectories
and the expert trajectories can be reused efficiently. Further-
more, we adopt the SAC algorithm that optimizes a stochastic
policy through entropy regularization, which brings better
exploration capability. Eventually, the introduction of expert
demonstration trajectories and imitation learning objectives
into the policy training guarantees a lower bound of agent
performance, as well as making a faster adaptation for con-
vergence, which is why our proposed method outcompetes
other off-policy methods including SAC.

B. Testing results

The testing scenario is the same as the training scenario
in the roundabout but with different traffic conditions. The
surrounding traffic participants are randomly spawned in the
scene, and each is assigned with a random route in every
epoch. We use the trained policy for each method to control
the vehicle to navigate through the roundabout. The success
rate, collision rate, average episodic reward, and episodic
length are recorded and the summary of test performance
of all the methods is given in Table II. The results reflect
that our proposed approach achieves a high success rate, as
well as reaching the destination in a shorter time. In line
with the training results, A3C does not perform well, and
the BC method also suffers from a low success rate due to
the distributional shift during the test. SAC and DQN show
good performance during the test, and SQIL is also quite
effective in solving this problem.

In addition, we add two rule-based methods as compar-
isons. The first method is a pure rule-based controller that
follows the default rule defined by the CARLA simulator.
The vehicle will follow the target speed by a PID controller,
and will emergently stop if encountering obstacles in a fan
shape area like Zi in our reward design. The second one
combines our RL-based controller with a rule-based safety
controller that will take over the control (emergency brake) if



TABLE II
SUMMARY OF THE TEST RESULTS

Method Success rate (%) Collision rate (%) Episode reward Episode length (s)

BC 16 52 987.37 ± 248.60 48.7 ± 10.4
A3C 18 49 39.844 ± 42.764 49.3 ± 2.5

Rule-based 60 40 940.44 ± 337.21 21.1 ± 5.0
GAIL 65 26 769.32 ± 235.47 24.5 ± 6.4
PPO 65 31 903.69 ± 253.74 32.1 ± 8.3
TD3 67 29 802.45 ± 184.66 31.6 ± 5.9
SAC 76 14 1050.9 ± 205.80 41.0 ± 8.4
SQIL 78 12 966.35 ± 199.13 38.2 ± 8.2
DQN 79 18 1006.3 ± 191.28 38.4 ± 8.4
DQfD 80 17 1092.6 ± 149.07 35.0 ± 7.2
Ours 90 8 1205.3 ± 135.79 23.9 ± 6.5

Ours+Safety 93 5 1227.1 ± 124.05 22.8 ± 5.5

encountering near-collision situations. The results in Table II
indicate that pure ruled-based system does not perform very
well. Although the rule-based controller can occasionally
finish the task in a shorter time, it suffers from a lower
success rate, mainly because of collision with other vehicles.
This is because the rules are very simple and the vehicle
cannot timely stop to avoid collision with other vehicles. On
the other hand, combing RL and rule-based controllers are
beneficial in the testing, leading to a higher success rate.
When it comes to a real-world scenario, we can design
more sophisticated rules to derive a safety control system
and combine it with an RL-based control module to ensure
both safety and efficiency.

VI. CONCLUSIONS

In this paper, a novel reinforcement learning algorithm
with expert demonstrations is put forward to leverage human
prior knowledge, in order to improve the sample efficiency
and performance. Specifically, we modify the update of the
policy network by combining maximizing the Q-function
and imitating the expert’s actions, and design an adaptive
experience replay method to adaptively sample experience
from the agent’s self-exploration and expert demonstration
for policy update. We validate the proposed method in a
simulated challenging urban roundabout scenario with dense
traffic. A comprehensive comparison with other RL and
IL baselines validates that our method has better sample
efficiency and performance in the training process. The
testing result reveals that our proposed method can achieve
a higher success rate with less time to reach the destination.
We also demonstrate that combining a rule-based safety
controller with the RL-based controller can further improve
the success rate.
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