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Abstract— In navigation activities, kinematic parameters of
a mobile vehicle play a significant role. Odometry is most
commonly used for dead reckoning. However, the unrestricted
accumulation of errors is a disadvantage using this method.
As a result, it is necessary to calibrate odometry parameters to
minimize the error accumulation. This paper presents a pipeline
based on sequential least square programming to minimize
the relative position displacement of an arbitrary landmark
in consecutive time steps of a kinematic vehicle model by
calibrating the parameters of applied model. Results showed
that the developed pipeline produced accurate results with small
datasets.

I. INTRODUCTION

The calculation of motion is one of the most fundamental
and challenging tasks for intelligent vehicles (IV) [1]. In
order to create safe and reliable autonomous behavior of ve-
hicles the motion estimation must be as accurate as possible.
In the most fundamental manifestation the vehicle motion
is derived by the integration of wheel motion relying on
parameters such as wheel radius and baseline [2]. This results
in ego motion estimation (dead reckoning) which is needed
for autonomous navigation [3], mapping [4], [5] and obstacle
avoidance [6], [7] for intelligent vehicles [8]. In addition,
the mobile robotic community proposes methodologies for
motion estimation based on probability theory known as
probabilistic robotics [9]. Based on those models, machine
learning is used to obtain motion from sensor data [10],
[11]. Nevertheless, due to limited explainablitiy of recent
machine learning models [12]–[14] classic models relying
on deterministic kinematic properties are still used in IVs
[15].

However, the major drawback of these systems is the
error accumulation over time which is primarily driven by
systematic errors due to production inaccuracies, abrasion or
inaccurate computer-aided design (CAD) data [16]–[20]. The
authors of the study in [19] argued, that vehicle calibration
can be used to limit the aforementioned source of error.
However, calibrating vehicles is a tedious task and must be
done in a pre-defined track or on single arbitrary paths [17].

We show in the presented paper that it is possible to
calibrate a vehicle relying on internal and external sensor
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Fig. 1: Visualization of the proposed pipeline. We calibrate
the vehicles kinematic parameter relying on a detected land-
mark as well as encoder sensors.

data, and we contribute to the state of the art of parameter
calibration by providing a novel pipeline for the optimization
of vehicle parameters such as wheel radii or baselines in
order to (re)calibrate the motion estimation function of
intelligent vehicles. Our proposed framework uses sensor
data to reduce potential drift by observing the environment
and internal sensor data. For this reduction we use wheel
encoder data, an initial guess of vehicle parameters and a
distance measurement to an arbitrary landmark. Further the
proposed approach does not rely on a predefined trajectory
and end-point optimization but can be applied in any area
where one arbitrary landmark can be tracked during the data
collection. Finally, it uses a general landmark description. To
this end we rely on range sensor data and euclidean clustering
to track the landmark over time. The framework can also be
extended using deep learning alternatives e.g. [21].

The proposed pipeline is based on the change of the
landmark’s pose measured by the vehicle’s sensor system
and the data of the wheel encoders. These measurements
were used to optimize the kinematic parameters of a vehicle.
The proposed pipeline is visualized in Fig. 1. To this end we
applied linear optimization [22] in order to estimate vehicle’s
kinematic parameters relying on the rotational velocity of
actuators such as wheels and/or steering angles as well as
on the relative pose of an arbitrary landmark. Our pipeline
was tested with two kinematic configurations of autonomous
vehicles. For this purpose we used simulated data.

This paper is structured as follows: In the following
section we describe related literature in the field of param-
eter calibration for vehicles. In section III we describe the
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proposed approach followed by experimental setup in section
IV. Section V presents the results and section VI concludes
the paper outlining future research.

II. RELATED LITERATURE

The manual process of kinematic parameter calibration
for vehicles is a time consuming work [23] thus automatic
calibration of autonomous vehicles is an active research area.
Classic methods for parameter calibration [17] have several
limitations in the sense that they are either defined by a given
path with certain motion sequences (e.g. [24]) or have to
track the actual position of the vehicle with additional sensors
(e.g. [25], [26]).

In [24] a calibration method of the wheel radii and track
distance of car-like mobile robots (CLMR) was proposed
that reduces systematic errors of dead reckoning by cali-
brating the kinematic parameters via the average final pose
displacement of a predefined track.

[23] provided an intrinsic and extrinsic calibration method
for automated guided vehicles with four wheels that follow
dual drive kinematics or Ackerman drive. Their method
computes the expected trajectories based on the state of the
wheels and the change of heading which was observed by an
on-board range-sensor using a loop closure based registration
method. Both intrinsic and extrinsic calibration parameters
were obtained in a calibration process of about 15 minutes,
by closed-form solutions of least-square optimization using
the model equations derived for the particular kinematics and
the loop closure based pose updates.

In [27] a calibration approach was presented that estimates
the wheel radii, sensor positions as well as the robot’s
position online during Simultaneous Localization and Map-
ping. The authors achieved this by relying on a probabilistic
approach which allows for online radii estimation even when
the load of the robot or its ground surface changes. The key
to their method is to utilize the map estimate as a calibration
pattern, then apply a least-squares algorithm to constantly
adjust the map, trajectory, and robot parameter estimates.

[28] presented an approach that calibrates, for a differen-
tial drive vehicle, the extrinsic parameters of an exteroceptive
sensor, which is capable of sensing ego-motion, as well as the
intrinsic parameters of its odometry motion model simultane-
ously. The core idea was to use the principle of recursive pre-
integration theory in combination with Lie theory enabling
a true on-manifold estimation of the parameters.

We contribute to the state of the art in autonomous
vehicle calibration by applying linear optimization in order
to estimate a vehicle’s kinematic parameters by relying on
the rotational velocity of wheels as well as on the relative
pose of an arbitrary landmark. This approach constitutes
an advancement in the field because it only utilizes 40
seconds of data for a simulated differential drive vehicle,
and 90 seconds for a simulated Ackerman vehicle. Further
the proposed approach does not rely on a fixed trajectory
and end-point optimization but it can be applied in any area
where one arbitrary landmark can be tracked during the data
collection.

Fig. 2: Feature extraction pipeline

III. METHODS

We interpreted the vehicle parameter (re)calibration prob-
lem relying on the comparison of the vehicle’s motion
observed by two sensor sources. We assumed that the static
objects observed in the environment move in accordance
to the vehicle motion. In this study the calibration of a
vehicle’s parameters was achieved by optimization. This
chapter introduces the explanation of the applied feature
extraction followed by the formulation of the optimization
problem as well as the definition of the kinematic models.

A. Feature Extraction

The following subsection explains the feature extraction
approach utilized in our method, which is visualized in
Fig. 2. As depicted, the feature extraction consists of two
major parts: point cloud pre-processing and feature ex-
traction, which were both implemented using the pcl ros
API1. In the first part, we utilize CropBox and PassThrough
filters to remove any vehicle-related measurements and noise.
After pre-processing we handled the feature extraction by
downsampling the pre-processed point cloud, followed by a
ground removal process using RANSAC Perpendicular Plane
Segmentation, and finally, we applied euclidean clustering
to estimate the center of the landmark. Finally, the cluster
and the encoder data are synchronized and stored for our
parameter estimation approach.

B. Optimization for Vehicle Parameters

To this end we formulated the optimization problem by
observing the vehicle’s motion from time step t−1 to t. The
motion was observed relying on wheel angular motion as
well as the motion of the vehicle relative to the landmark.

In time step t − 1 we measured the distance to the
landmark ~Lt−1 =

(
xlt−1 ,ylt−1

)T from the vehicle’s pose ~x =

(xt−1,yt−1,θt−1)
T . From time step t − 1 to t, we further

observed the same landmark at ~Lt =
(
xlt ,ylt

)T . Furthermore,
we stored actuator encoder data and used this information to
formulate a motion equation ~ρ = f

(〈
∆~φ ,∆δ

〉
,Θ
)

, where

∆~φ describes the angular difference of the wheels from
t − 1 to t, ∆δ describes the change of steering angle and
Θ describes the set of vehicle parameters, such as wheel
radius r, baseline B and wheel base L.

1https://github.com/ros-perception/perception_
pcl/tree/melodic-devel/pcl_ros

https://github.com/ros-perception/perception_pcl/tree/melodic-devel/pcl_ros
https://github.com/ros-perception/perception_pcl/tree/melodic-devel/pcl_ros


Fig. 3: Proposed method from time step t−1 to t. With the
robot’s 2D pose ~xt−1 respectively ~xt , the landmark distances
~Lt−1 and ~Lt , and ||~ρ || the traversed distance in ∆t. r, B, and
L are the desired wheel radii, track distance and wheel base
respectively.

We assumed smooth wheel motion and a rigid body, thus
the true vehicle motion as well as the landmark motion must
be in accordance. This assumption is visualized in Fig. 3.

Relying on smooth wheel motion we optimized the vehicle
parameters in order to minimize the difference between ~ρ
and the vehicle motion calculated by landmark observation.
This optimization problem is formulated in (1)

arg min
Θ

(
n

∑
i=0
|| Rt

i,t−1 ·~Li,t−1−~Lt −~ρi ||22

)
(1)

where

Rt
i,t−1 =

(
cosθi −sinθi
sinθi cosθi

)t

t−1

~L j =

(
xil j

yil j

)
~ρi =

(
ρix
ρiy

)
and solved relying on a set of motion and sensor observations
with sequential least squares programming (SLSQP) [22] by
minimizing the squared l2−norm of the loss function defined
in (1).

C. Kinematic Configurations

In order to quantify the performance of the proposed
pipeline we used different kinematic configurations by re-
lying on simulated data.

1) Differential Drive Model: As depicted in Fig. 4 dif-
ferential drive vehicles solely rely on the change of wheel
speeds to steer the agent on the 2D plane. The distance
traveled by the origin of the robot is thus only dependent
on the change of wheel speeds as (2) points out [2]. The
change of heading is conditioned on the change of wheel
speeds and the baseline of the mobile agent (3) [2].

Fig. 4: Differential drive kinematics. vl,r are the wheel
velocities, θ is the change of orientation and ICC is the
Instantaneous Center of Curvature. r and B are the wheel
radius and baseline.

Fig. 5: Bicycle kinematics. vrl,rr are the rear wheel velocities,
and ω is the angular velocity around the ICC. r and L are
the wheel radius and wheel base.

ρ =
vl + vr

2
·∆t =

ωl +ωr

2
· r ·∆t =

∆φl +∆φr

2
· r (2)

θ =
∆φr−∆φl

B
· r (3)

2) Bicycle Model: The bicycle model is a frequently used
simplification of the profound Ackerman steering model [15],
[29]. The traveled distance ρ between two time steps can
be computed by considering the change of wheel speed (4)
whereas the change of heading can be computed as described
in (5). The combined steering angle of the bicycle model
can be expressed using the actual inner (δi) and outer (δo)
steering angle of the Ackerman model as seen in (6).

ρ =v ·∆t = ωwheels · r ·∆t = ∆φ · r · 1
∆t

(4)

θ =θt−1 +ω ·∆t (5)

cotδ =
cotδo

cotδi
(6)

where

∆φ =
∆φrl +∆φrr

2

ω =
v · tan(δ )

L



IV. EXPERIMENTAL SETUP

This section explains the experimental setup and describes
the mobile vehicles, as seen in Fig. 6, utilized to validate the
proposed calibration method. We recorded the datasets with
a simulation of a mobile differential drive platform2 and a
simulated Ackerman steering vehicle3 based on the Cognitive
and Autonomous Test Vehicle (Catvehicle) [30] as depicted
in Fig. 6.

(a) Modified Catvehicle [30] simu-
lation with 360◦ 64 layer Velodyne
LiDAR: Ackerman steering

(b) Turtlebot3 Burger
simulation with 360◦
64 layer Velodyne
LiDAR, educational
robot: differential
drive

Fig. 6: Mobile vehicles used in this study. In order to
investigate the applicability of the proposed framework, we
implemented two vehicle simulations (an autonomous car in
Fig. 6a and a mobile robot in Fig. 6b). The used vehicles
rely on different kinematic configurations.

To this end we adopted a kinematic bicycle model for
the simulated Ackerman vehicle and a differential drive
model for the Turtlebot3 respectively, Fig. 3 illustrates a
generalization of the developed approach. For both, the
differential drive as well as the bicycle model we assume
constant control inputs during the time intervals [t−1, t] and
further assume ∆t to be reasonably small. For the simulated
differential drive and the Ackerman vehicle, we utilized the
Robot Operating System (ROS) [31] and the Point Cloud Li-
brary (PCL) [32] to capture the distance data in combination
with the joint state data for the encoder states. The simulation
of the two vehicles was implemented in GAZEBO [33]
which simulates physics using the Open Dynamics Engine
(ODE) [34], where friction and damping coefficients, sensor
noise, gravity, buoyancy, and other parameters of the Gazebo
models can be tuned to approximate genuine real world
behavior. For the purpose of this study, the vehicle models
of the Turtlebot as well as for the Catvehicle were updated
by an additional 360◦ 64 layer Light Detection and Ranging
(LiDAR)4 for distance estimation to the landmark and with
a ground truth (GT) positioning sensor5 to acquire the GT

2https://github.com/ROBOTIS-GIT/turtlebot3
3https://github.com/jmscslgroup/catvehicle
4https://bitbucket.org/DataspeedInc/velodyne_

simulator
5http://docs.ros.org/en/electric/api/gazebo_

plugins/html/group__GazeboRosP3D.html

trajectory. As landmarks we chose cylindrical objects with a
diameter of 0.1m and a height of 0.4m for the differential
drive simulation and 0.5m in diameter and 0.4m in height
for the Ackerman simulation. In comparison to other objects
such as cuboids, which may not be mapped completely due
to the 2.5D shadow cast by the LiDAR sensor, we utilized
cylindrical objects since they make it easier to determine the
center.

(a) GT trajectory of the differ-
ential drive dataset, containing
108 straight and 293 turn data-
points

(b) Velocities of the left (vl) and
right (vr) wheels of the differen-
tial drive dataset

(c) GT trajectory of the Catve-
hicle dataset, containing 77
straight and 824 turn datapoints

(d) Velocity of the combined rear
wheel (v) and the steering angle
(δ ) of the Catvehicle dataset

Fig. 7: 40 seconds long Turtlebot3 data set (top) and 90
seconds long Catvehicle data set (bottom) consisting of 401
encoder and cluster datapoints for the Turtlebot and 901
encoder and cluster data points for the Catvehicle.

The Turtlebot3 is an educational differential drive mobile
robot [35] produced by ROBOTIS [36]. Fig. 7a displays
the ground truth trajectory of the dataset as well as the
corresponding wheel velocities (Fig. 7b), generated by the
joint states of the left and right wheel vl and vr respectively.

For the Ackerman steering simulation we adapted the
Catvehicle, a research test-bed for autonomous driving tech-
nology [30], which is based on a Ford Hybrid Escape.
The following Fig. 7c displays the GT trajectory of the
dataset, provided by the GT positioning sensor, as well as the
corresponding wheel velocities v (Fig. 7d), generated by the
rear joint states of the left and right wheel and the combined
steering angle δ respectively.

In order to obtain reliable and correct results we split
the optimization procedure in two steps, namely radius

https://github.com/ROBOTIS-GIT/turtlebot3
https://github.com/jmscslgroup/catvehicle
https://bitbucket.org/DataspeedInc/velodyne_simulator
https://bitbucket.org/DataspeedInc/velodyne_simulator
http://docs.ros.org/en/electric/api/gazebo_plugins/html/group__GazeboRosP3D.html
http://docs.ros.org/en/electric/api/gazebo_plugins/html/group__GazeboRosP3D.html


(a) Turtlebot3 optimizations: Ra-
dius

(b) Turtlebot3 optimizations:
Baseline

(c) Turtlebot3 radius optimization
results of 100 iterations

(d) Turtlebot3 baseline optimiza-
tion results of 100 iterations

(e) Catvehicle optimizations: Ra-
dius

(f) Catvehicle optimizations:
Wheel base

(g) Catvehicle radius optimiza-
tion results of 100 iterations

(h) Catvehicle wheel base opti-
mization results of 100 iterations

Fig. 8: Optimization results of the simulated Turtlebot3 Burger (top) and the Catvehicle (bottom) compared with the GT
values in red and the corresponding distributions.

estimation on a straight part of the track and baseline opti-
mization on curvy parts of the track. For the differential drive
vehicle the straight/turn dataset were created by splitting in
accordance to the difference of wheel speeds (∆v=∆vr−∆vl)
whereas for the Ackerman steering the straight/turn dataset
were created in accordance to the steering angle δ .

V. RESULTS

The following section presents and discusses the kinematic
parameters obtained via the proposed optimization approach
and further compares them to the GT values, taken from the
corresponding Universal Robot Description Format (URDF)
files. Table I displays the resulting mean values of a total of
100 optimizations with different first initial guesses (FIG) for
each parameter of the different kinematic configurations as
well as the error with respect to the ground truth values. To
obtain the FIG values we sampled from a normal distribution
with the mean located at the GT value.

Fig. 8 displays 5 SLSQP optimizations processes for
each parameter of the kinematic models, based on the loss
functions as defined in (1), and the corresponding boxplots.
As illustrated in Fig. 7a and 7c the curved path segments out-
weigh the straight path segments in the recorded datasets, this
explains the more precise optimization of the baseline (Fig.
8b) and wheel base (Fig. 8f) of the Turtlebot3 respectively the

TABLE I: Results of 100 optimizations

Vehicle GT [m] Optimization [m] Error [%]
r B/L r B/L r B/L

Turtlebot3 0.033 0.16 0.03144 0.15866 4.73 0.84
Catvehicle 0.03672 2.62 0.38255 2.61462 4.18 0.21

Catvehicle. Meanwhile, because there are fewer datapoints
available in the straight path segments, the wheel radius
optimization for the Turtlebot and the Catvehicle converges
after 4 iterations (Fig. 8a) or 5 iterations (Fig. 8a), and
the baseline (14 iterations, see Fig. 8b) or wheelbase (6
iterations, see Fig. 8f) took longer to achieve the desired
optimization tolerance of 1e−16.

The here proposed pipeline takes less sensor measure-
ments (60 sec on average) compared to other approaches (e.g.
15 min in [23]) to produce reasonably precise estimations
of the kinematic parameters. Further the presented method
works with an arbitrary trajectory which makes it easier to
carry out compared to approaches such as [24] that require
a programmed trajectory for calibration. Meanwhile, as can
be seen in table II, the optimization problem can be solved
fairly fast.

VI. CONCLUSION AND FUTURE STEPS

In this paper, we proposed a novel pipeline for param-
eter estimation of kinematic models. The pipeline applied
minimizes the error of the relative position displacements of
an arbitrary landmark compared to the forward kinematics
of the vehicle by optimizing the desired parameters using
sequential least square optimization. The error, compared to

TABLE II: Mean optimization duration of 100 optimizations
on AMD Ryzen 7 3700X

Vehicle Turtlebot Catvehicle
r B r L

Time [s] 0.0397 0.2206 0.0220 0.8061



the GT values, of the estimated parameters range between ≈
4.7% with 40s of data and ≈ 0.2% with 90s of data.

Since the proposed pipeline heavily depends on the track-
ing of the observed landmark, occlusions will falsify the
results. Therefore, future work will address the fusion of
multiple landmarks, to overcome possible occlusions. Fur-
ther, the development of an online capable pipeline as well
as multiple radii estimations, to detect load changes and
different abrasions will be tackled in future work.
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