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Abstract— Testing in virtual road environments is a wide-
spread approach to validate advanced driver assistance systems 
(ADAS). A number of automated strategies have been proposed 
to explore dangerous scenarios, like search-based strategies 
guided by fitness functions. However, such strategies are likely 
to produce many uninteresting scenarios, representing so ex-
treme driving situations that fatal accidents are unavoidable ir-
respective of the action of the ADAS. We propose leveraging da-
tasets from real drives to better align the virtual scenarios to rea-
sonable ones. The alignment is based on a simple distance metric 
that relates the virtual scenario parameters to the real data. We 
demonstrate the use of this metric for testing an autonomous 
emergency braking (AEB) system, taking the highD dataset as a 
reference for normal situations. We show how search-based test-
ing quickly converges toward very distant scenarios that do not 
bring much insight into the AEB performance. We then provide 
an example of a distance-aware strategy that searches for less 
extreme scenarios that the AEB cannot overcome. 
 

I. INTRODUCTION 

Advanced driver assistance systems (ADAS) and autono-
mous driving functions require a thorough validation. Their 
failures may cause accidents, sometimes fatal [1]. Real-world 
testing by driving on public roads would need a huge amount 
of time, effort and cost in order to demonstrate that the safety 
goals are met [2]. Virtual validation seems a promising com-
plementary solution, especially with the emergence of simu-
lation platforms dedicated to driving environments. Thus, 
several works in progress seek to define innovative testing 
methods, exploiting the simulation and virtualization facili-
ties offered. They can be broadly classified into two main cat-
egories: methods centered on the replay of scenarios encoun-
tered during real drives, and methods based on parameterized 
environment models, making it possible to explore a wider 
space of test scenarios.  

In the first category, the collected data are processed to rec-
reate the corresponding scenarios in simulation [3]. For ex-
ample, the geometry of a road section is reconstructed from 
the data [4], or by superimposing location data on digital road 
network maps [3][5]. In [6], the driving data are used to train 
neural networks to reproduce trajectories similar to human 
ones. These methods are limited to the scenarios in the data-
base and do not allow a diversity of scenarios, especially the 
most critical ones. Other work has sought to obtain more di-
versification by creating new scenarios, corresponding to var-
iants of the real scenarios [7]. These variants are obtained by 
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applying transformations such as trajectory translations. 
However, the types of diversification remain limited. 

The second category of work offers more flexibility in creat-
ing diverse scenarios. It involves defining a model of the vir-
tual environments to be considered for testing, based on do-
main expertise. For example, the space of possibilities will be 
identified in terms of road segment parameters (number of 
lanes, with or without crossroads, curved segment, slope, 
etc.), mobile objects in the environment (type of car or pedes-
trian, departure coordinates, travel parameters), visibility con-
ditions (brightness, fog or good weather), etc. The modelling 
can take advantage of the ontologies defined for ADAS, 
which provide a structured view of the concepts of situation, 
scene, scenario, and the elements that populate them [8][9] 
[10]. Once the generation parameters have been identified, 
procedures are developed to automatically produce the con-
tent of the tests according to the values of these parameters. 
As in the case of data from real drives, unguided generation 
is likely to produce a large volume of redundant tests. Some 
authors have proposed either to a priori guide the generation 
by test criteria, for example, by considering the coverage of 
combinations of model parameter values [11][12], or to create 
a large base of virtual tests and then to a posteriori extract 
subsets by filtering and classification processes [13]. Another 
approach consists in implementing metaheuristic processes to 
optimize scenario hazard criteria [14][15][16][17][18][19]. 
The generation is then iterative, seeking to increase the dan-
gerousness of the virtual tests created by successive trials. In 
the literature, this approach has been the most studied to find 
collision scenarios. It will also be the focus of this paper. 

While the metaheuristic search can be very effective at 
finding collisions, we experienced that many of the found 
cases fail to provide any useful insight into the tested ADAS. 
They correspond to so extreme driving situations that an ac-
cident is simply unavoidable. Facing the same problem, some 
authors have recently worked on the search-based generation 
of avoidable collision scenarios [18]. They consider systems 
having a weighted decision function. A collision is then 
avoidable if a change in the weights is found, which makes 
the system able to avoid the collision. In this paper, we pro-
pose a different solution that does not rely on the internals of 
the system. It is based on the premise that the search produces 
too extreme scenarios because it lacks an alignment with rea-
sonable driving situations. For this, we propose leveraging the 
datasets recorded from real drives, which provide a reference 
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for normal situations. We then introduce a simple distance 
metric measuring how far the virtual tests are from those nor-
mal situations. The test alignment approach is illustrated on 
an Autonomous Emergency Braking (AEB) system, taking 
the HighD dataset [20] as the reference. We first revisit the 
results of a previous implementation of the search that pro-
duced numerous useless scenarios. We show how the distance 
metric is helpful to visualize the quick convergence of the 
search toward very extreme scenarios. We then revise the 
search to make it distance-aware and demonstrate the produc-
tion of stressful scenarios that are closer to the real ones.  

The structure of the paper is as follows. Section II presents 
the motivating example of the AEB. Section III presents the 
data extraction from the HighD dataset, the mapping of real 
data to test parameters, and the proposed distance metric. Sec-
tion IV analyzes the distance of the scenarios generated with-
out consideration for the real data. Section V presents a new 
generation strategy that includes the distance to real scenarios 
as an optimization criterion. Section VI concludes. 

II. A MOTIVATING EXAMPLE  

To illustrate the issue of testing against useless scenarios, 
we report on the example of an autonomous emergency brak-
ing (AEB) system. The AEB under test is an R&D Simulink 
model that we used for experimental purposes. We performed 
the model-in-the-loop tests on a simulator based on 
Unity [21]. The simulator allows us to create roads and target 
vehicles in the vicinity of the ego vehicle under test. The phys-
ical ego car is represented by a sensor module (a lidar) and an 
actuator that approximates the braking profile of a real Re-
nault car on dry roads. The simulator API provides predefined 
test actions to control the behavior of the ego and target vehi-
cles, like actions to set their position and speed, or a lane 
change action. They facilitate the implementation of classical 
AEB scenarios (car following, cut-in, cut-out). Here, we re-
port on experiments involving cut-in scenarios. 

A. Virtual Cut-in Scenario 
 

In a cut-in scenario, a target car merges into the lane just 
in front of the ego. The scenario is parametrized so that nu-
merous cut-in instances can be tested. A test case is then a 
vector of parameter values, yielding a cut-in instance. 

 We chose the following parameters: 

• RelPos ∈ [10.0, 100.0]: initial longitudinal position 
of the target relative to the ego, in meters. The defi-
nition domain only has positive values; hence the 
target is always ahead of the ego when it starts the 
lane change.  

• Ve ∈ [60.0, 160.0]: speed of the ego car in km/h. It 
will remain constant during the scenario unless the 
AEB applies the brakes. 

• Vt ∈ [60.0, 160.0]: speed of the target in km/h. It will 
remain constant during the scenario. 

• T ∈ [1.0, 7.0]: duration of the lane change in seconds. 
The test action to perform the change computes the 
lateral shift based on a cosine function, tuned by the 
desired duration time T. The shorter the time, the 
sharper the lane change.  

  Weather parameters are not considered because they are 
currently not covered by the simulator (it simulates the effect 
of bad weather on camera-based vision, but not on the lidar-
based vision of the AEB).  

The AEB under test is intended for rear-end collisions while 
driving in highways and trunk roads. It may apply the brakes 
if the driver does not react to an imminent forward collision. 
The aim is to prevent or at least mitigate the impact. If the 
impact occurs at a relative speed of less than 30 km/h, the 
mitigation is considered a success. In the rest of the paper, an 
impact at more than 30 km/h will be called a critical collision. 

B. Search-Based Testing 
We used an evolutionary test approach to search for cut-in 

cases where the AEB would not succeed in avoiding critical 
collisions. The approach is based on the Non-dominated Sort-
ing Genetic Algorithm Version 2 (NSGA-II), a multi-objec-
tive search optimization algorithm [22]. NSGA-II follows the 
general steps of a genetic algorithm: it starts with an initial 
population of candidate test cases and evolves it toward better 
test cases during a number of iterations. The evolution of the 
population uses a selection of the fittest test cases, followed 
by breeding and mutation to produce new cases. Being multi-
objective, NSGA-II may accommodate several possibly con-
flicting fitness functions at the same time. At the end, it re-
turns a set of test cases that form a Pareto front, representing 
the best trade-offs found for the fitness functions. 

The search for critical cut-in instances was based on the 
NSGA-II implementation in the platypus library [23]. We de-
fined two fitness functions: we want to minimize the Time-
To-Collision (TTC) and at the same time maximize the rela-
tive speed of the vehicles. The fitness evaluation requires run-
ning each candidate test case and reporting the observed TTC 
at every simulation step as well as the final speed of the ego. 
To speed-up the search, we only run test cases that will yield 
a collision unless the AEB applies the brakes. That is, we run 
test cases with inputs Vt < Ve and assign the others predefined 
penalizing fitness values. A test execution is stopped when-
ever a collision occurs (TTC = 0), or the AEB has reduced the 
speed of the ego below the one of the target. The fitness func-
tions are then the following: 
 

• F1 (to be minimized) = if Vt < Ve return (min ob-
served TTC) else return (100.0). 

• F2 (to be maximized) = if Vt < Ve return (Ve_final 
– Vt) else return (-100.0). 

 

C. Test Results 
 

We ran the search with a population size of 100 test cases 
and performed 10 iterations. A complete run of the search 
takes approximately 8 hours with an Intel Core I7-6600U 
CPU performing at 2.6 GHz. 

The search was successful since it returned a Pareto front 
of 100 test cases, all with critical collisions. However, all 
these cases correspond to the extreme scenario shown in 
Fig. 1.a: the target vehicle suddenly veers sideways into the 
ego, crashing into it. There would be no way for the AEB (or 
a human driver) to avoid the side collision. The test cases are 
thus irrelevant to challenge the AEB logic. 



 

 

 

 
 
 

 
 

(a) First version of the search: 
side collisions 

(b) Second version of the search: 
extremely aggressive lane 
changes 

Figure 1. Critical cut-ins found by NSGA-II 
(blue car = the ego, red car = the target) 

 

We then modified the fitness functions to guide the search 
towards rear-end collisions. F1 and F2 receive penalizing val-
ues (resp. 100.0 and -100.0) if, at the end of the test case, the 
target vehicle is not in front of the ego. We reran the NSGA-
II search with the improved fitness. Again, the search returned 
a Pareto front of 100 critical test cases.  All of them corre-
spond to extremely aggressive cut-ins. The lane change is 
very sharp and puts the target in a position so close (a few 
centimeters) to the ego that the cars are almost touching each 
other (see Fig. 1.b). The impact is unavoidable and occurs 
with a high relative speed (typically, the ego is initially driv-
ing at nearly 160 km/h while the target is at 60 km/h). In sev-
eral cases, the AEB even has no time to start braking. Such 
test cases are too extreme to be worth consideration. 

The search produced numerous critical test cases – not just 
the ones retained in the Pareto front. The initial population of 
100 random cases contains 2 critical ones (2%). At Iteration 5, 
the rate is already about 60%. It exceeds 80% at all subsequent 
iterations. All in all, 512 tests out of 1,000 (100 tests x 10 
iterations) yield a critical collision. We did not manually ana-
lyze all of them but suspect that many are just variants of the 
ones in the Pareto front. 
 

D. Discussion 
This experience illustrates how a randomized search for 

dangerous scenarios may leave the tester with numerous cases 
to analyze, a significant proportion of which may actually 
prove useless. They represent so extreme driving situations 
that they do not bring much insight into the adequacy of the 
ADAS function under test. Their analysis is a waste of effort. 
Also, the test execution resources are poorly utilized, as the 
search is trapped into extreme test cases and produces variants 
of these cases at higher and higher rates. 
 

It would be desirable to integrate a concept of “normality” 
into the test process, where the extreme nature of tests cases 
would be determined based on how “far” they are from nor-
mal driving situations. We propose an approach that captures 
the characteristics of reasonable scenarios from a dataset of 
real vehicle trajectories. A simple distance metric allows us to 
compare the virtual test cases to the real cut-ins. We demon-
strate the usefulness of the metric to revisit the results of the 

search, visualize the convergence toward extreme cases and 
adapt the search to produce critical test cases better aligned to 
real situations. 

III. LEVERAGING DATASETS AS A REFERENCE FOR NORMAL 
SITUATIONS 

For a proof-of-concept demonstration, we consider the 
HighD dataset as a reference for normal situations. 
HighD [20] is a German dataset gathering data from 6 Ger-
man highways. It contains 110,000 vehicle trajectories which 
represents a recording of 16.5 hours. The recordings are made 
by a drone and cover a segment of 420 m. 

 
We present below the extraction of cut-ins from the rec-

orded data, the mapping of real data elements to virtual test 
parameters, and finally introduce a distance metric that char-
acterizes the extremal degree of the test cases compared to 
naturalistic cut-ins. 

A. Cut-in Extraction  

A lane change is not necessarily a cut-in. Here, we are in-
terested in the extraction of a subset of lane changes, those 
where the vehicle inserts in front of another. The cut-in detec-
tion is done according to the following criteria: 

• We keep only the scenarios with a complete lane 
change.  

• The relative position between the two vehicles must 
be less than 100 m. 

• The vehicle in the destination lane (i.e., the blue ve-
hicle in Fig. 2) must have a higher speed than the one 
changing lane. 

• The vehicle in the destination lane must be the same 
during the entire lane change. 

 

We applied a filter on the selected cut-in subset to detect 
the presence of anomalies. We verify that the evolution of the 
positions is consistent with the speed. We also eliminate the 
scenarios where the recording is partial. At the end, we have 
1100 cut-in scenarios that meet our criteria. The collected data 
are time series describing the scenario between Positions 1 
and 2 (see Fig.2). Position 1 is when the red vehicle is still in 
its departure lane but touches the separation line. Position 2 is 
when the vehicle is in the new lane and still touches the line.  

  

 

Figure 2. Positions 1 and 2 in cut-in scenarios 
 



 

 

 

B. Mapping Real Data to Test Parameters 

The collected data do not exactly correspond to the param-
eters of the virtual scenarios. It is therefore necessary to create 
a mapping between the two. 

In the test scenarios, the speed of the vehicles is constant. 
While in real life, there are speed variations. We choose to 
take the speed captured in Position 1 (see Fig.2). For the ve-
hicle that has the role of the target (i.e., the one making the 
cut-in), we could verify that the speed varies little between 
Positions 1 and 2. For the vehicle corresponding to the ego 
(i.e., the one undergoing the cut-in), there are braking actions. 
The constant speed in the virtual tests does not reproduce 
these actions but this is not an issue: we want to test the AEB 
in situations where the driver should brake but does not.  

Another difference comes from capturing the partial dura-
tion of a lane change between Positions 1 and 2 (for real sce-
narios), rather than the total duration starting and ending at 
the lane centers (for virtual tests). In real life, vehicles never 
drive perfectly aligned with the center of the lane, so that it is 
difficult to pinpoint the precise start or end of the maneuver. 
We tried several detection thresholds on the lateral position 
and lateral speed but could not find a satisfactory setting. 
There were always poorly detected cases, e.g., a start detected 
well before the actual lane change, or an undetected end. We 
considered it safer to measure the time between two well-de-
fined positions. Moreover, they correspond to a key fragment 
of the scenario: it is during this time interval that the ego de-
tects the cut-in. We can then infer the total time of the virtual 
lane change, so that the time spent between Positions 1 and 2 
exactly corresponds to what is measured in real life. Similarly, 
we calculate the initial relative position of the ego and the tar-
get such that, when Position 1 is reached in a virtual test case, 
the distance matches the one in the real situation.  

B. Distance Metric 

For the distance calculation, we compare the virtual test pa-
rameters to their equivalent values calculated for the real data. 
A test case corresponds to a vector of n test parameters (in the 
AEB example, n = 4). The real data, after mapping, give a set 
of m vectors of size n (for the AEB, we have a vector for each 
cut-in extracted from the database, where m = 1,100). For 
each parameter pi, we define a stepi which corresponds to a 
fraction of the interval of values of pi from the dataset. Here 
we take 5%, yielding stepRelPos = 4.89 m, stepVe = 4.85 km/h, 
stepVt = 3 km/h and stepT = 0.15 s. The step normalizes the 
distance along the dimensions of the vector. 

Let TC = <p1, ..., pn> be a test case, and let R be the set of 
vectors extracted from the dataset, taken as a reference for 
reasonable driving situations. We compute the distance from 
TC to R as follow:  

Distance (TC, R) = min
%&',	..,+	

∑ |./01/2|
345./

6
7&'  

 

The distance between a test case and a real cut-in is meas-
ured by the Manhattan distance, and we take the minimum for 
all cut-ins extracted from the dataset. Thus, each virtual sce-
nario is compared to all real scenarios to identify the closest 

one. This approach was chosen because the total number of 
cut-ins is small enough to allow it. If there were a large num-
ber of cut-ins, we could for example group them into clusters, 
and compare TC to each cluster. 

This metric will be used to revisit the results of the AEB 
test, by investigating how far from the actual cut-ins the test 
cases produced by the NSGA-II are. 

IV. REVISITING THE SEARCH-BASED EXPERIMENTS 

We study the distance of the virtual scenarios produced by 
the second search (see Fig. 1.b). We report the boxplot of dis-
tance values at each iteration (see Fig. 3), which allows us to 
confirm our manual observations. The search quickly deviates 
from normal situations and converges towards extreme test 
cases. At the 5th iteration, the median distance is nearly 20, 
which is already far from the reference dataset. After the 5th 
iteration, the median distance is always above 30, indicating 
that the search produces extreme cut-ins compared to the ref-
erence. This is not satisfactory because the search is not ex-
ploring enough of the scenario subspace close to the baseline. 
This does not allow us to know whether the system is able to 
handle situations close to real scenarios. The analysis of the 
Pareto front confirms that the retained test cases are very dis-
tant from real scenarios (see Table I, first row) yielding ex-
treme collision cases.  

Determining the relevance of critical scenarios can be com-
plex and even require a domain expert. The interest of the dis-
tance concept lies in the possibility to identify, among all the 
critical cases produced, those which are the least extreme and 
which may deserve closer analysis. They represent a small 
proportion of the total number of critical cases. Each test case 
is then associated with the closest real scenario and we re-
port the difference. This allows us to identify the changes 
made to a real cut-in and to better judge the relevance of 
the test case. In Table II, we illustrate this analysis for the crit-
ical test case having the smallest distance to the dataset (dis-
tance = 10.93). This test case was not retained in the Pareto 
front but clearly deserves analysis, being the least extreme 
critical case produced during the search. Table II compares it 
with its closest real cut-in scenario, both in terms of the dif-
ference in values and in terms of the normalized distance 
along each vector dimension. 
 

 
Figure 3. Boxplot of the distances at each iteration 



 

 

 

TABLE I.  PARETO FRONT DISTANCE DESCRIPTION 

Configuration  Min Median Max 
NSGA II with 2 fitness 

functions 13 31.08 36.57 

NSGA II with 3 fitness 
functions 1.43 4.82 19.44 

 

TABLE II.  ANALYSIS OF THE LEAST DISTANT CRITICAL TEST CASE 

ID RelPos Ve Vt T 

Virtual scenario 86.68 m 157.61 km/h 75.67 km/h 4.71 s 
Real 

scenario 108.62 m 154.04 km/h 89.06 km/h 4.89 s 

Delta  -21.95 m 3.57 km/h -13.39 km/h -0.19 s 

Distance 4.48 0.73 4.46 1.26 

 
From the comparison in Table II, the ego speed and lane 

change duration values are very close. The target speed and 
relative position values are lower. Following this pattern of 
changes, we further investigate whether the virtual case can 
get closer to the real scenario. Starting from the virtual values, 
we gradually increase the target speed and relative positions 
until no critical collision is observed under test. We obtain a 
new critical case having a smaller deviation compared to a 
real cut-in. This variation analysis can be applied to each pair 
of virtual/real cut-ins of interest, selected based on the dis-
tance metric. 

V. DISTANCE-AWARE TEST STRATEGY 

While distance provides a valuable indicator for analyzing 
test results, this information can also be used in the test strat-
egy. As an example of a strategy that takes distance into ac-
count, we can use the NSGA-II but add a third fitness function 
to it. We will try to minimize the distance to the real cut-in.  

The search deviates much less than previously from the ref-
erence database (see Fig.4, to be compared to Fig. 3). This al-
lows us to considerably reduce the number of extreme critical 
scenarios (see the comparative plots in Fig.5) and to more ex-
tensively explore the scenario subspace close to the reference 
dataset.   

The Pareto front is this time very interesting to study because 
it provides us with a synthesis of AEB’s performance. In the 
second row of Table I, we observe that the distance is much 
smaller than previously. Ninety percent of the scenarios are 
less distant than the previous case shown in Table II. We have 
a set of 52 scenarios that are very close to the dataset (min 
distance: 1.43 and median distance: 3.32) for which the AEB 
manages to avoid the collision. A second set of 13 scenarios 
with a reasonable distance (min distance: 3.87 and median 
distance 5.52) that cause collisions at a relative speed lower 
than 30 km/h. Finally, we have a set of 35 scenarios with a 
higher distance (min distance: 6.83 and median distance 
10.16) that cause critical collisions. The test case with the min 
distance of 6.83 is also the least distant critical case found by 
the entire search. 
  

We report this test case in Table III together with its closest 
real scenario. Interestingly, the real scenario is the same as in 
Table II. However, the virtual test case is now closer than the 

one found by the previous search. The variation analysis 
shows that the test case is actually at the boundary between 
critical and non-critical scenarios. Any reduction in distance 
beyond 0.4 makes the scenario non-critical. 
 
Setting a distance threshold of 10, there are 3 additional criti-
cal test cases deserving analysis. These ones are not in the Pa-
reto front. The variation analysis shows that they also are 
boundary cases. The four test cases, including the one in the 
Pareto front and the three other ones, represent distinct critical 
cases. There are differences on all parameters, yielding di-
verse boundary cases of cut-in regarding the abruptness of the 
lane change and the relative speed and position. 
 

 

Figure 4. Boxplot of distances with the new test generation process 
 

 

Figure 5. Evolution of the median distance of critical scenarios 
as a function of iterations. 

TABLE III.  DESCRIPTION  OF THE NEW LEAST-DISTANT CASE  

ID RelPos Ve Vt T 

Virtual scenario 105.71 m 167.55 km/h 82.78 km/h 5.10 s 

Real scenario 108.62 m 154.04 km/h 89.064 km/h 4.89 s 

Delta  -2.91 m 13.51 km/h -6.28 km/h 0.21 s 
Distance 0.59 2.78 2.09 1.4 

 



 

 

 

VI. CONCLUSION 

In this paper, we have addressed the problem of the con-
vergence of search-based testing towards extreme scenarios. 
If the search is not constrained, it produces a significant num-
ber of irrelevant scenarios. We have illustrated the problem 
through the example of virtual cut-in scenarios for an AEB. 
Taking a real-world dataset as a baseline allows us to consid-
erably reduce the number of extreme scenarios. The align-
ment is done by means of a simple distance metric. The dis-
tance to real-world conditions proves a very useful indicator 
for both guiding the test generation and analyzing the results. 
Compared to the unconstrained search, the distance-aware 
search better explores the boundary between the safe and un-
safe scenarios, and so allows a better characterization of the 
behavior of the system under test.  
 This work opens several perspectives. One is to study al-
ternative distance-based test strategies. For example, we may 
consider strategies that move away progressively, starting 
with test cases similar to the dataset characteristics, and con-
trolling the allowed distance at each iteration. Another per-
spective is the development of various usages of the distance 
concept: for debugging, for comparing two candidate versions 
of an ADAS function, etc.  The debugging would focus in pri-
ority on the fail scenarios that are the closest to the normal 
operational domain. The comparison of candidate ADAS de-
signs could include the smallest distance at which the scenar-
ios become critical in each case. This metric would act as a 
robustness measurement, quantifying the ability of each 
ADAS version to assist the driver in situations that deviate 
from normal driving. Finally, we intend to work on improving 
the scalability of the approach. The main effort lies in the real 
data extraction and its mapping to virtual test parameters. The 
effort has to be repeated for each pair of parametrized scenario 
and dataset. It could be alleviated by developing a common 
framework to store the data, with facilities to ease the data 
querying and data transformation required by the scenarios.  
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