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Abstract— Urban intersections are prone to delays and inef-
ficiencies due to static precedence rules and occlusions limiting
the view on prioritized traffic. Existing approaches to improve
traffic flow, widely known as automatic intersection manage-
ment systems, are mostly based on non-learning reservation
schemes or optimization algorithms. Machine learning-based
techniques show promising results in planning for a single
ego vehicle. This work proposes to leverage machine learning
algorithms to optimize traffic flow at urban intersections by
jointly planning for multiple vehicles. Learning-based behavior
planning poses several challenges, demanding for a suited
input and output representation as well as large amounts of
ground-truth data. We address the former issue by using a
flexible graph-based input representation accompanied by a
graph neural network. This allows to efficiently encode the
scene and inherently provide individual outputs for all involved
vehicles. To learn a sensible policy, without relying on the
imitation of expert demonstrations, the cooperative planning
task is considered as a reinforcement learning problem. We
train and evaluate the proposed method in an open-source
simulation environment for decision making in automated
driving. Compared to a first-in-first-out scheme and traffic
governed by static priority rules, the learned planner shows
a significant gain in flow rate, while reducing the number
of induced stops. In addition to synthetic simulations, the
approach is also evaluated based on real-world traffic data
taken from the publicly available inD dataset.

I. INTRODUCTION

Urban traffic regularly exhibits disturbances and inef-
ficiencies caused by simple traffic management schemes
faced with large volumes of vehicles. Especially smaller
intersections are typically handled by static priority rules,
resulting in vehicles approaching from a minor road having
to yield. Moreover, occlusions through buildings or other
objects are highly prevalent in urban areas, limiting the view
for both human drivers and vehicle-bound sensory systems.

The increasing use of connected vehicles (CVs) and con-
nected automated vehicles (CAVs) opens up new opportu-
nities to increase the traffic efficiency. Those vehicles can
announce their presence and possibly share perception data
with surrounding road users via a communication link. More-
over, with edge computing resources becoming available in
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Fig. 1. Cooperative maneuver at an urban intersection. The planning
module on the edge server requests the blue vehicles on the main road
to slow down. Hence, the turquoise vehicle can merge without having to
stop.

urban areas, it is viable to build and maintain a local envi-
ronment model of, e.g., an intersection and its surroundings.
Such an edge server can distribute the environment model
to connected vehicles in the operational area. CAVs, for
instance, can make use of the information by incorporating
it into their planning algorithms.

In the publicly funded project MEC-View, research on
connected automated driving was conducted using a testing
site at a suburban three-way intersection in the city of Ulm in
Germany [1]. Due to buildings occluding the view onto the
priority road, an automated vehicle merging from the side
road has to decelerate strongly, before being able to safely
enter the intersection based solely on its own perception
system. With the support of the environment model provided
by the edge server, the automated vehicle can transition
smoothly onto the main road, given that appropriate space
is available. We build upon this approach and discuss the
potential of multi-agent planning schemes that are executed
on the server. Based on the fused environment model, a
cooperative plan for handling intersection traffic is derived
that can be proposed to the connected vehicles as behavioral
instructions. Explicit deviations from static priority rules
become possible. For instance, vehicles on the main road
can be requested to slow down and thus letting a vehicle
from the side road merge into the emerging gap, as depicted
in Fig. 1.

Prior research on automatic intersection management
(AIM) primarily focuses on non-learning algorithms, like
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reservation-based or optimization-based programs. At the
same time, machine learning-based approaches show remark-
able results on prediction tasks in automated driving as well
as planning for a single ego vehicle. The lack of fitting
ground-truth data prevents the application of supervised
learning for cooperative behavior planning. To bridge this
gap, the present work proposes to train a reinforcement
learning (RL) policy for multi-agent planning in a simulated
environment, resulting in the following contributions:
• Leveraging machine learning to perform cooperative

multi-agent planning for urban automated driving,
• To the best of our knowledge, we propose the first AIM

system exploiting graph neural networks,
• Evaluation based on real-world traffic data taken from

a publicly available urban driving dataset.
The remainder of the paper is structured as follows:

Section II discusses related work in the field of AIM and
machine learning-based planning for automated driving. The
proposed behavioral planning scheme is comprehensively
introduced in Section III. Afterwards, evaluation results
obtained in synthetic simulations and based on real-world
traffic data are given in Section IV. Section V concludes the
paper and gives an outlook on future work.

II. RELATED WORK

The analysis on the state of the art first considers existing
approaches to AIM. Because machine learning is seldom
used for AIM, we subsequently investigate learning-based
behavioral planning methods. Due to the large body of
existing literature, we present a selection of commonly used
approaches and refer the reader to surveys for a more
extensive overview.

A. Automatic Intersection Management

Past research brought forth a variety of AIM schemes, sur-
veyed for instance by [2]. The authors identify centralization
as a crucial feature for distinguishing AIM schemes. Thereby,
a fully centralized scheme exhibits a single coordination unit
that is in charge of planning the intersection traversal and
acts as the communication partner for all vehicles. In a fully
distributed AIM, a cooperative plan is negotiated by the
vehicles on their own.

A centralized, reservation-based AIM system is proposed
in [3], which employs a first-in-first-out policy for assigning
clearance to cross the intersection. A driver agent places
a request when its vehicle is about to enter the monitored
intersection area, covering possible conflict points with other
paths. The intersection manager maintains tile-based reser-
vations and confirms the request if the affected tiles are
free. This approach can be combined with a traffic light to
enable the co-usage of the intersection by human drivers and
automated vehicles.

Optimization-based intersection management systems are
published, for instance, in [4] and [5]. Those works assume
full penetration of CAVs that laterally follow predefined lanes
on urban intersections. The distributed energy-optimizing
approach [4] further disallows turning maneuvers and the

utilization of two conflicting paths at the same time. In
[5], the longitudinal control of vehicles is performed by a
centralized intersection coordination unit employing a model
predictive control (MPC) scheme. Both works demonstrate
efficiency gains in time and fuel consumption by comparison
to a traditional signalized intersection. A prevalent issue with
optimization-based approaches is the unfavorable scaling of
computational demand with increasing traffic density. In [6],
a novel AIM scheme is presented, that is also capable of
handling mixed traffic, i.e., simultaneous usage by automated
and human-driven vehicles.

The concept of platooning [7] can also be used for AIM.
Based on a so-called virtual inter-vehicle distance, a pair
of vehicles can adapt their velocities to cross their conflict
point with sufficient clearance. The authors acknowledge that
significant adaptions would have to be made for managing
an intersection under mixed traffic.

B. Machine Learning-Based Planning

Machine learning-based approaches to automated driving
experience rising interest of researchers during the last years.
A survey of recent deep reinforcement and imitation learning
planning methods for a single ego vehicle can be found in
[8]. The authors categorize published works by the type of
input data (e.g. sensor measurements or object detections)
and output representation (e.g. behavioral planning or direct
control outputs). Because individual sensor measurements
are not suited for cooperative planning over multiple vehi-
cles, we limit our analysis to methods that require a prior
perception system to be in place. Readers interested in
machine learning-based prediction for automated driving are
referred to comprehensive surveys on the topic, like [9]. On
the output side, multi-agent planning requires an intermediate
representation that can be passed to various vehicles in the
scene, laying the focus on high-level behavioral planning
approaches.

Imitation learning describes the application of supervised
learning techniques to automated driving by training on
expert drivers’ demonstrations, which can be obtained from
datasets or accordingly equipped testing vehicles. Based on
object detections from a dedicated perception system and
high-definition map information, a typical approach is to ren-
der the surroundings of the ego vehicle in a raster image that
is subsequently processed by a convolutional neural network
(CNN) [10], [11]. To address the problem of distributional
shift between training data and closed-loop test conditions,
various improvements have been proposed, like perturbing a
random subset of training trajectories to teach the model to
recover from atypical states [11]. Being based on supervised
learning, those techniques share the large needs for high-
quality training data. This limits their prospective transfer to
cooperative multi-agent planning because ground-truth data
showing cooperative maneuvers is virtually not available.
Urban traffic datasets (e.g. the inD dataset [12]) show road
users obeying to static priority rules or traffic lights; both
entities that shall become obsolete with cooperative planning.



In contrast to supervised learning, RL approaches evade
the requirement for large datasets by instead exploring pos-
sible actions in a simulated environment and exploiting a
reward signal to learn the desired behavior. In [13], a driving
policy for controlling the acceleration and steering angle is
trained through RL that is applied to multiple vehicles in
a common simulated environment. As there is no explicit
communication between the different vehicles’ policies, no
cooperation is shown in traffic. Based on a raster image
representation, this approach shares the unfavorable scaling
of computational load with the number of participants in the
scene, because each vehicle requires an individual image,
centered on its pose for sensible inference. An alternative
RL-based approach to coordinated driving on an urban in-
tersection was published in [14]. By maintaining a tile-based
reservation of the intersection, the decentralized policies
can choose from the set of actions that do not cause a
collision. Apart from this limitation of the action space, there
is no further inter-agent communication that could enable
cooperative maneuvers.

When encoding the semantic environment of a vehicle
in urban traffic, the number of potentially relevant entities
(e.g. other vehicles) is highly dynamic. This makes fixed-size
network architectures and input representations often used in
RL unsuitable for the task at hand. In [15], it is proposed
to encode input features per vehicle using a multilayer
perceptron followed by a permutation invariant operation for
pooling the resulting features. The aggregated feature vector
is then propagated through another fully connected network
to finally infer actions for a single ego vehicle. The authors
extend their work to encode whole traffic scenes including
lanes and traffic signs and compare it to using a graph
convolutional network for the same task in [16]. Similarly,
[17] proposes to encode the vehicles being present in the
scene as graph vertices. However, none of the described
works can handle multi-agent planning.

III. PROPOSED APPROACH

In this section, our proposed approach is presented, begin-
ning with a discussion on learning paradigms for multi-agent
usage. Afterwards, the graph-based input representation is
introduced, followed by details on the network architecture
and reward engineering.

A. Learning Paradigm

In RL algorithms, an agent typically interacts with an
environment in discrete time steps. The agent observes the
current state of the environment and subsequently chooses
an action, whose effect is evaluated by a reward signal.
With multiple entities to be controlled, one can pursue
different learning paradigms depending on the degree of
centralization in multi-agent reinforcement learning [18].
Instead of having the various agents interact individually
with the environment and learn independent policies, coop-
erative planning is modeled best by the centralized training
centralized execution paradigm. Because different agents,
which shall take part in a cooperative maneuver, have to be

able to communicate explicitly. This holds not only during
training, but also at inference time. In paradigms relying
on decentralized execution, the agents would have to learn
an implicit communication scheme through their behavior.
With the fused environment model being available to the
server-side planner, considering the planning problem over
all vehicles in the scene using a joint RL agent allows for
explicit communication and hence better cooperation.

Like many RL problems, the cooperative planning problem
can be denoted as a Markov decision process (MDP), defined
as the tuple (S, A, T, R). It consists of a set of states S that
fully describe the traffic scene at a given time. A denotes the
set of actions the RL agent can choose from while interacting
with the environment. The transition function T (s , a , s′)
describes the probability of changing from state s ∈ S to
s′ ∈ S when applying action a ∈ A, whereas the reward
signal is determined by the function R(s, a). Since the multi-
agent planning problem contains different vehicles in the
scene, the dimensionalities of the state space and the action
space depend on the number of vehicles currently present
and may vary over time.

B. Input Representation

A well-suited input representation is crucial for applying
artificial neural networks successfully. We identify three
major requirements for an input scene representation to be
used in cooperative multi-agent planning:
• Invariance on the number of vehicles in the scene,
• Permutation invariance of the input nodes,
• Permutation equivariance regarding the output nodes.

Simple tabular representations already lack the invariance
properties. The limitations of fixed-sized inputs for behavior
planning are elaborated more extensively in [15]. A rendered
raster image of the scene, as often used for CNNs, fulfills the
invariance requirements, but typically requires a target agent
to be centered around [10]. This process must be repeated
to produce individual outputs for each agent, making the
application to a large number of vehicles computationally
infeasible. Permutation equivariance means that the inferred
outputs of given agents in the scene are independent of their
ordering in the input vector. Hence, our work proposes to
use a lean and flexible graph-based scene representation,
shown in Fig. 2, which fulfills all above requirements. The
current state of the environment is thus defined as S =
(V, E, U), with V being the set of vertices corresponding to
the vehicles in the scene and E denoting edges depending on
the pairwise relation between vehicles. For each vehicle, one
vertex in V stores the corresponding input features. Each of
the directed edges is assigned one of two edge types in U ,
either same lane, or crossing:

(v1, r, v2) ∈ E = V × U × V. (1)

Two vehicles in front of the intersection whose paths cross
or merge are being connected bidirectionally with crossing
edges, like v1, v2, and v3 in the figure. The same lane edge,
in contrast, is used to connect two vertices of vehicles on
the same path, pointing from the predecessor to the following



crossing

same lane

Fig. 2. The graph-based input representation illustrated on an arbitrary
traffic scene at a four-way intersection. The vehicles’ turning intentions are
denoted by arrows on their hood.

one (e.g. v6 and v5). This is motivated by the observation that
vehicles should adapt their behavior to the preceding vehicle
and not vice-versa. Note that the graph does not need to be
connected. Some vehicles may form a disjoint sub-graph, if
they share no conflicts with the remaining vehicles, as it is
the case for v5 and v6 or v7 in Fig. 2.

The input feature vector for each vehicle consists of three
values and is denoted as h(0) = [s, v, d]T , where the upper
index denotes the layer number. The longitudinal position
of the vehicle along its path is denoted by s, with s = 0
defined as the point where the path leaves the intersection
area. This corresponds to the longitudinal coordinate of a
Frenet coordinate pair. Because different maneuvers (e.g.
straight driving and right turns) cause a difference in the path
length on the intersection, the effective path length is scaled
to a common reference length sref , as depicted in Fig. 3.
Thereby, the entry point to the intersection area is located at
s = −sref consistently, ensuring that the localization on the
incoming lanes is independent of the maneuver to be driven.
Moreover, this normalization makes the scene representation
robust to slight changes in intersection geometry.

The second input feature v denotes the scalar velocity of
the corresponding vehicle normalized over the speed limit
of the lane it is currently driving on. To allow the network
to sense immediate proximity of other vehicles, the input
features are complemented by a distance measure d based
on the Mahalanobis distance [19]. The distance measured
from vehicle i to vehicle j is calculated as

dij =
√

(pj − pi)TΣ
−1
i (pj − pi), (2)

where pi denotes the position of vehicle i in cartesian
coordinates. The covariance matrix is given as

Σi = Rψi

[
l2/4 0

0 w2/4

]
RT
ψi
, (3)

with l = 5 m and w = 2 m describing the standardized length
and width of a vehicle. Rψi denotes the 2D rotation matrix

Fig. 3. Path parameterization by a common reference length. Each path
enters the intersection area at s = −sref and leaves it at s = 0.

using the heading angle ψi. To determine the input feature
for a particular vehicle, the distance to each other vehicle is
computed according to (2), and the inverse of the minimum
distance value is passed to the network. Using the inverse
instead of the plain distance value proved to yield better
model convergence.

C. Network Architecture

In the present work, the behavioral control of vehicles is
performed by applying a commanded longitudinal accelera-
tion within the range [amin, amax], requiring an RL algorithm
suited for continuous control. We propose to use the twin
delayed deep deterministic policy gradient (TD3) algorithm
[20], an extension of the deep deterministic policy gradient
(DDPG) [21]. Both methods are actor-critic RL algorithms
for actions in continuous space. TD3 consists of two function
approximators, namely the actor and the critic. Based on a
given state and action input, the critic network is trained to
predict the discounted reward as Q value estimates. The actor
gets the current environment state as an input and outputs an
action to be performed in the particular time step, optimized
by using the critic output as the loss.

The proposed graph neural network (GNN) architecture
is depicted in Fig. 4. For each vertex, the low-dimensional
input features are first processed by a dense layer enc. Note
that this operation is performed individually for each vertex
using shared parameters, disregarding the graph structure
defined by the edges. The encoded vertex features are
then propagated through two relational graph convolution
layers, conv 1 and conv 2. In contrast to simple graph
convolution layers, multiple weight matrices corresponding
to the different edge types are used for message passing
[22]. During a forward pass, the hidden features of the
vertices are propagated along the outgoing edges, while being
multiplied by the respective weight matrix. Hence, each node
receives a variable amount of such messages that have to be
integrated into its own feature vector. This is done using a
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Fig. 4. The graph neural network architecture is depicted, consisting of one
dense encoder layer, two graph convolution layers, and one dense output
layer. Below the layer identifiers, their dimensionalities are shown. The
encoder has three input channels for the actor and four channels for the
critic network.

permutation invariant aggregation function like the element-
wise maximum, mean, or sum. In the present work, the
maximum operation delivered the best results. The update
for the hidden feature vector of node i is thus given as

h
(l+1)
i = σ

(
Σr∈U max

j∈N r
i

W (l)
r h

(l)
j +W

(l)
0 h

(l)
i

)
, (4)

where the set of neighbor nodes connected to the target node
i by incoming edges is denoted by N r

i . The weight matrices
for each edge type r ∈ U are called W r, while the previous
target node vector is multiplied by W 0. In case a vertex
has no incoming edges (like v4 or v7 in Fig. 2), the node
update coincides with a single dense layer on the node’s own
state. Finally, the resulting feature vector is passed through a
non-linear activation function, empirically chosen as rectified
linear unit (ReLU).

While the actor network and the critic network are con-
structed analogously up to the point described above, they
differ in the output layer, depicted on the right side of Fig. 4.
The actor network is responsible for deriving an action for
each entity in the scene to be executed for a given time
horizon, while the critic is in charge of estimating the Q value
for the entire graph. With each vehicle being represented
by a vertex in the graph, there is one regression target per
vertex that describes the commanded acceleration for the
corresponding vehicle in the actor network. The latent feature
output by the GNN is reduced to a single unit using a
final dense layer a dec, whose weights are shared across
nodes. To limit the action output to a defined range, a
tangens hyperbolicus activation function is used on the output
layer. The normalized value range is subsequently mapped
to an acceleration between −5 m

s2
and 5 m

s2
. With the critic

network’s output being a performance measure in form of
a single Q value estimate, an aggregation function for the
latent feature vector of all nodes is required. The Q values’

range is not limited, hence a final dense layer a dec with
linear activation is used as the output layer. Because the critic
network requires the chosen action in addition to the state
representation, the action values are concatenated with all
vertex input features.

D. Reward Engineering

Apart from the network architecture described above, the
RL algorithm requires a reward scheme to learn a reasonable
behavior within the simulation environment. The reward
signal is composed of a weighted sum of reward components

R =
∑
k∈R

wkRk, (5)

where the set of reward components is given as R =
{velocity, action, idle, proximity, collision}. The velocity
reward is the main driver for learning a non-trivial solution
through rewarding large velocities and is defined as

Rvelocity =


1.25 v

vlim
v
vlim
≤ 0.8

1.0 0.8 < v
vlim
≤ 1.0

6.0− 5.0 v
vlim

1.0 < v
vlim

,

(6)

where vlim describes the vehicle’s lane speed limit. Regu-
larizing the model against applying large acceleration mag-
nitudes is done by the action penalty that is defined as the
negative absolute commanded acceleration. When striving to
avoid collisions, the simplest solution is to stop the whole
traffic, which is not desirable. Therefore, the idle penalty
is set to Ridle = 1 in case all vehicles are standing still.
To teach the model to keep suitable safety distances to
nearby vehicles, the proximity component is used to penalize
actions that cause two vehicles to get dangerously close. This
penalty is calculated based on the aforementioned modified
Mahalanobis distance measure (cf. (2)), which takes the
relative direction of the obstacle into account. In the case
that two vehicles collide, the collision penalty Rcollision = 1
is used to let the model implicitly learn collision avoidance,
while aborting the episode on the spot preventing further
positive rewards from being accumulated.

IV. EXPERIMENTS

Training and evaluation of RL algorithms require a suited
simulation environment. For the task of behavioral planning
in automated driving, the simulator should at least pro-
vide a kinematic vehicle model and reasonable interaction
between vehicles. In the present study, the open-source
environment Highway-env [23] is used and slightly adapted
to be employed for centralized multi-agent planning. The
simulation of vehicle kinematics is done according to the
kinematic bicycle model [24], which suffices for behavioral
planning. The graph-based scene representation and graph
neural network layers are based on the PyTorch Geometric
API [25].

The choice of reward weights is based on a grid search
that was conducted on a reduced variant of the simulation
environment resembling the key behavior, while being much
less computationally demanding. The reward weights used



TABLE I
REWARD WEIGHTS

Reward velocity action idle proximity collision

Weight 0.03 0.01 0.01 0.2 1.0

throughout this study are given in Table I. During training,
the latest model is evaluated on a separate validation environ-
ment for ten episodes every 5000 time steps. The validation
environment is constructed the same way as the training
environment but initialized with a different seed. Each time
the validation shows a new best validation reward, the current
model parameters are saved to disk.

We benchmark our approach against two baselines in
synthetic simulation: static priority rules (PR) and a first-in-
first-out scheme (FIFO), resembling the currently prevalent
approach in real-world and a seminal AIM scheme. Traffic
obeying to static priority rules is simulated using the driver
models provided by Highway-env, which rely on the intel-
ligent driver model (IDM) [26] for longitudinal control and
additional logic for handling intersections. We applied minor
tweaks to the driver models to obtain reasonable results for
more dense traffic:
• The derivation of the commanded acceleration is mod-

ified to correctly handle a target speed of zero.
• Scheduling at an intersection is based on vehicle pri-

orities that are inferred from their intended maneuver
instead of the current lane priority.

• The yielding logic is extended to respect a specific stop
point in front of the intersection.

The FIFO scheme, on the other hand, prioritizes the incoming
vehicles based on their distance to the intersection. Thereby,
non-conflicting paths can be used at the same time, possibly
allowing multiple vehicles on the intersection at a given time.
Note that this policy does not enforce a strict FIFO ordering
on the whole intersection, but rather groups of conflicting
paths, which leads to a considerable performance increase.

The way of generating simulated traffic differs between
training and evaluation runs. During training, vehicles are be-
ing spawned on all incoming lanes featuring enough space at
a certain probability with their destination also being chosen
randomly. In the course of training, the spawn probability
is continuously increased until it saturates at 5 % per time
step. Thereby, the intersection is kept busy and allows the RL
algorithm to obtain meaningful data samples to learn from.
The evaluation runs are based on scenario definitions that
are generated using a slightly different scheme. In that case,
the time between vehicles appearing on a particular lane is
governed by a shifted exponential distribution. This resem-
bles a Poisson process, where the shift on the distribution
of the spawn period ensures a minimum distance between
vehicles. If a traffic jam has formed so that there is no space
for a vehicle to be spawned, the generation is suspended
to prevent immediate collisions. For each scenario to be
generated, the desired vehicle rate is chosen randomly from
a uniform distribution over the interval [0.2, 0.4] vehicles per

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Flow rate - veh/s

PR

FIFO

RL

Fig. 5. Flow rate during various evaluation runs by using static priority
rules (PR), the FIFO policy, and the RL planner.

second and major road lane. The vehicle rate on the minor
road lanes is set to half of that value. In both training and
evaluation, the initial vehicle velocity is chosen uniformly
between 60 % and 100 % of the corresponding lane speed
limit.

A. Synthetic Simulation

All experiments within this subsection were performed on
a four-way intersection, whose layout is analogue to the one
depicted in Fig. 2. The flow rate describes the number of
vehicles that cross an intersection (or other road infrastruc-
ture) during a given time frame. Figure 5 shows the flow rate
distribution over 100 evaluation runs (each of 100 s length)
of varying traffic density. It can be observed that already
the rather simple FIFO scheme achieves a benefit over static
priority rules, while the learned RL planner outperforms both
baselines regarding the median values. To further investigate
the performance gain, we analyze the ratio of vehicles that
had to stop during the maneuver. A vehicle trajectory is
considered to contain a stop, if the velocity falls below 0.3 m

s
for at least one time step. This threshold was chosen due
to numeric reasons. By categorizing the vehicles by their
incoming road priority, the effect on traffic approaching from
a minor road becomes apparent, as depicted in Fig. 6. Clearly,
the static priority rules induce a significant traffic buildup
on the minor road that forces nearly all vehicles to stop.
The FIFO policy manages to let more vehicles from the
minor road pass the intersection, but in turn causes a large
proportion of stops also on the major road. In contrast, the
RL planner succeeds to get a large amount of vehicles across
the intersection, while keeping the traffic flow mostly intact.
This behavior might be explained by the planner’s learned
ability to adapt the vehicles’ velocities early to fit into an
emergent gap. It should be mentioned that the RL planner
cannot completely eliminate collisions, as denoted in the first
row of Table II. However, the occurrence is extremely rare,
making it very challenging to further reduce them, given the
RL algorithm has to implicitly learn it via the reward signal.
In practice, the remaining failure cases are not an issue,
because the cooperative maneuver will only be advertised to
the connected vehicles, if it fulfills sanity checks like being
collision-free. In the case no viable cooperative plan was
found, the vehicles simply resort to local planning.
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Fig. 6. The number of vehicles approaching the intersection from the major
and minor road as well as the ratio of those that had to stop when governed
by static priority rules (PR), the FIFO policy, and the RL planner.

TABLE II
COLLISION RATES

Intersection Priority rules FIFO scheme RL planner
Synthetic 4-way 0.0% 0.0% 0.028%

inD 0.0% 1.918% 0.584%

B. Simulation Based on Real-World Traffic Data

Apart from the simulation based on synthetic data, we
also evaluated the cooperative planning scheme on real-world
urban traffic data taken from the inD dataset [12]. The dataset
contains tracks of vehicles and vulnerable road users that
were recorded at four urban intersections in Germany. We
selected a four-way intersection connecting a priority road
with a minor road that is managed by static priority rules.
The major road also features isolated lanes for turning left,
as depicted in Fig. 7. Simulating the traffic according to
the cooperative planning approach on this intersection makes
the following assumptions inevitable. Firstly, the intersection
geometry is only approximated in simulation. However, this
is not an issue for behavioral planning, which is mostly in-
dependent of road geometry. Considering the road curvature,
vehicles may not traverse it with arbitrary speed, which is

Fig. 7. Bird’s-eye view of the intersection, where the real-world vehicle
tracks taken from the inD dataset were collected (image adopted from [12]).
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Fig. 8. The number of vehicles that perform a certain maneuver and ratio
of those that had to stop in real-world data (inD), using the FIFO policy,
and the RL planner.

ensured by defining lane-dependent velocity limits. As the
dynamic properties of the vehicles shown in the dataset
are unknown, a default parameter set is used in simulation.
Moreover, the real-world tracks deviate from the lane center
lines that are used for guiding the simulated vehicles. The
recorded intersection is also used by vulnerable road users
like pedestrians and bicyclists that cannot be modeled in the
simulation as of now.

Compared to the synthetic simulation, not all metrics are
viable for evaluation when using the dataset as the baseline.
The flow rate, for instance, cannot be improved by any
intersection management system, because the number of
vehicles in the scene is specified by the dataset. In total,
the used dataset excerpt provides 2446 vehicle tracks over
a recording time of 3.08 hours, resulting in an average
traffic density of 794 veh

h or 0.221 veh
s . Compared to the flow

rates obtained in the synthetic simulations, those numbers
are rather small, which might indicate that there are not
many interesting situations during most of the recording.
Evaluating the RL planner and FIFO policy on real-world
data is performed by spawning vehicles in simulation accord-
ing to the appearance time in the dataset and subsequently
simulating their motion based on the vehicle models.

Figure 8 compares the number of vehicles that had to
come to a complete stop categorized into the maneuvers
left turn, straight driving, and right turn. The total number
of vehicles being managed by the FIFO policy and the
RL planner has to be identical to the amount given by the
dataset recording. It is clearly visible from the real-world
data that many left turning vehicles have to come to a
stop before being able to safely pass the intersection. Note
that although one minor road access is governed by a stop
sign, the real-world recordings show that by far not all road
users obey to it. The FIFO scheme naturally distributes the
stops to all maneuvers including vehicles driving straight on.
Meanwhile, the RL planner is able to avoid the vast majority
of stops and maintains a smooth flow of traffic.

As it can be seen in the last row of Table II, both the



FIFO and the RL planner suffer from an increased collision
rate. This can, at least in parts, be attributed to the way
the real-world tracks are mapped to simulation. Especially
the minor road is only depicted for a very short distance
in front of the intersection (cf. Fig. 7), which makes it
difficult for the planner to influence the incoming vehicles
before they enter the intersection area. In case one vehicle
waits at the stop point while a second vehicle enters the
scene at high speed, a collision might be inevitable. This is
merely an issue of the evaluation and does not diminish the
remarkable improvement in traffic efficiency that is raised by
the RL planner.

V. CONCLUSION

In this work, a novel multi-agent behavioral planning
scheme for connected automated vehicles at urban inter-
sections was presented. We chose a reinforcement learning
algorithm to leverage recent advances in machine learning
while evading the need for ground truth data that is virtually
unavailable for cooperative maneuvers. The developed graph-
based input representation effectively encodes the semantic
environment at the operational area. By employing graph
neural networks, our approach confidently handles the vary-
ing number of vehicles in the scene. The proposed approach
was evaluated in synthetic simulation and additionally based
on real-world traffic data. Compared to static priority rules
and a FIFO scheme as baselines, the learned planner in-
creases the vehicle throughput significantly. In addition, the
number of induced stops is reduced which indicates better
traffic flow.

The proposed behavioral planning framework can serve as
a sound foundation for solving more sophisticated planning
problems. In the future, we plan to extend this work to be
applicable to intersection layouts that were not seen during
training. Moreover, cooperative planning in mixed traffic, i.e.
human drivers and automated vehicles sharing the road, shall
be addressed.
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