
  

  

Abstract—Environment perception including detection, 

classification, tracking, and motion prediction are key enablers 

for automated driving systems and intelligent transportation 

applications. Fueled by the advances in sensing technologies and 

machine learning techniques, LiDAR-based sensing systems 

have become a promising solution. The current challenges of this 

solution are how to effectively combine different perception 

tasks into a single backbone and how to efficiently learn the 

spatiotemporal features directly from point cloud sequences.  In 

this research, we propose a novel spatiotemporal attention 

network based on a transformer self-attention mechanism for 

joint semantic segmentation and motion prediction within a 

point cloud at the voxel level. The network is trained to 

simultaneously outputs the voxel level class and predicted 

motion by learning directly from a sequence of point cloud 

datasets. The proposed backbone includes both a temporal 

attention module (TAM) and a spatial attention module (SAM) 

to learn and extract the complex spatiotemporal features. This 

approach has been evaluated with the nuScenes dataset, and 

promising performance has been achieved.    

I. INTRODUCTION 

With the goal of taking human drivers out of the equation, 
automated driving systems (ADS) have the potential to 
improve safety performance at the individual vehicle level and 
enhance accessibility for people with limited unsupervised 
mobility (e.g., elderly or disable). This can be fulfilled by 
leveraging a more comprehensive suite of onboard sensors and 
by eliminating human-related behaviors that lead to accidents, 
e.g., driving under the influence (DUI), distraction, fatigue, 
and recklessness [1].  

 Representative sensing technologies for AVs include 
camera, LiDAR (Light Detection And Ranging), radar, and 
ultrasonic sensors. In particular, LiDAR outperforms the other 
type of sensors in terms of providing precise depth 
measurements of 3D surroundings and retrieving high-fidelity 
information about the underlying scenery [2]. 

 The rapid advances in deep learning (DL) techniques 
unlock a plethora of opportunities for extracting features from 
exteroceptive sensor data (e.g., LiDAR point clouds) and 
performing end-to-end tasks in automated driving [3]. For 
example, YOLO [4] defines an early paradigm for fast object 
detection and classification. Further progress on one-stage 
anchor-based detection has been made to improve the real-
time performance and accuracy [5], or to adapt similar ideas to 
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LiDAR-based 3D object detection using point cloud data [6]. 
Following this direction, various types of object detection 
models have been designed. As a recent breakthrough in 
natural language processing (NLP), “Transformer” leverages 
the self-attention mechanisms to explore positional 
relationship and representation within a sequence [7], and has 
been successfully extended to the field of computer vision [8]. 
However, much fewer efforts have been focused on the 
application of transformer to LiDAR point clouds, not to 
mention multiple tasks (e.g., detection, classification, and 
motion prediction) on 3D objects. 

 In this research, we propose a novel spatiotemporal 
attention network based on transformer self-attention 
mechanism for joint semantic segmentation and motion 
prediction in point cloud at voxel level (see Figure 1). The 
designed spatiotemporal learning backbone includes both a 
temporal attention module (TAM) and a spatial attention 
module (SAM) to learn and extract the complex 
spatiotemporal features. The temporal attention module is 
designed to learn the motion feature inherited in a sequence of 
point clouds and the spatial attention module is designed to 
learn and extract the spatial features at different scales so that 
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Figure 1. Joint semantic segmentation and motion prediction in point cloud 

with spatiotemporal attention. 



  

the semantic objects with different sizes can be accurately 
extracted and classified. The entire model is trained in an end-
to-end manner with multiple task heads which are 
complementary to each other. The input of the model is a 
sequence of voxelized point clouds and the outputs of the 
model are voxel-level classification and motion predictions.   

 The rest of this paper is organized as follows. Section II 
presents the background information related to LiDAR-based 
tracking or/and trajectory prediction, semantic point cloud 
segmentation, and motion prediction, as well as transformer 
application. In Section III, the proposed spatiotemporal 
transformer pipeline is introduced, followed by the elaboration 
of validation results with the nuScenes dataset [39] in Section 
IV. The last section concludes this paper with further 
discussion on future steps.  

II. RELATED WORK 

A. Information Representation 

Typical approaches on information representation for 2D 

or 3D environment perception in automated driving include, 

but are not limited to: a) bounding box identification [9]; b) 

anchor-free pointwise feature detection [10]; c) occupancy 

grid mapping (OGM) or voxelization [11]; and d) bird’s eye 

view-based (BEV) mapping [12]. 

 Bounding boxes or anchors provide a straightforward 
representation of 2D or 3D objects from the semantic or 
contextual perspective. Although being widely adopted, they 
fail to address the open-set scenarios where not all the objects 
have been well labeled as associated classes in the training 
dataset, not to mention those present in the complicated real-
world situations. The same issue may apply to the anchor-free 
detection approaches. By contrast, cells or voxels are 
considered as building blocks for a generalized spatial 
representation of 2D or 3D environment. For example, OGM 
discretizes 3D point clouds into evenly spaced grids with 
binary variables indicating the presence of an object at that 
location (under the assumption that at least one point is 
occupied in the grid). To better correlate grid level information 
across time, BEV-based mapping extends OGM by 
discretizing the space around the ego-vehicle into cells and 
describing the associated class and dynamics of each of them. 
In the extreme cases, pixel-wise or point cloud-wise 
classification and prediction are needed for the applications 
with Unman Aerial Vehicles (UAVs). 

B. Semantic Point Cloud Segmentation 

Semantic segmentation on 3D point clouds aims to classify 
each point or voxel independently into different homogeneous 
regions such that points or voxels inside the same region 
exhibit similar characteristics (e.g., same semantic meaning). 
This task is challenging mainly due to the complicated 
structure (such as sparsity and heterogeneity in sampling 
density) and inherent noises of point cloud data. Over the past 
few years, semantic point cloud segmentation with deep 
learning has been attracting more and more attention. Previous 
attempts can generally be classified into three paradigms: 
point-based [13], spatially discretized [14], and projection-
based [15]. Point-based approaches take point clouds directly 
as the input without significant effort in data transformation, 
which may be further divided into point-wise multilayer 
perceptron (MLP) based, point convolution, recursive neural 

network (RNN) based, and graph-based [16]. By contrast, 
spatially discretized approaches separate 3D cloud points into 
different volumetric cells based on their spatial relationship. 
Although such data aggregation process is natural from the 
perspective of 3D data structure, it may result in the dilemma 
between resolution requirements and computational loads. To 
handle large-scale point cloud datasets, projection-based 
approaches project 3D point clouds into multiple 2D planes or 
apply spherical projection to represent 3D information into 2D 
images. Such dimension reduction techniques may facilitate 
the extended use of those state-of-the-art networks for 2D 
images, but they inevitably suffer from information loss (e.g., 
occlusion). 

C. Motion Prediction 

Traditional work on motion prediction or trajectory 

prediction is performed at the object level based on the history 

information, which is considered as the downstream stage of 

object detection and tracking [17, 18]. Therefore, the 

prediction results heavily rely on the accuracy and reliability 

of trajectory acquisition from upstream stage(s). Recent 

studies on end-to-end joint tasking for 3D object detection, 

tracking as well as trajectory forecasting have shown 

promising results [19, 20], but they all depend on the 

bounding box identification with well-labeled training 

datasets and their applicability to automated driving systems 

(ADS) for real-world scenarios is questionable. As 

aforementioned, more generalized spatial information 

representation, such as voxel or occupancy grids, can alleviate 

this concern without the need to acquire bounding boxes for 

objects. In addition, multistep dynamic OGM [21] and BEV-

based mapping [22] can better represent the temporal 

association between grids, which is suitable for the motion 

prediction purpose. 

D. Transformer Self-Attention 

Achieving tremendous success in the domain of NLP [7], 

Transformers, designed for modeling long-range 

dependencies in the data, has gained increasing attention from 

researchers in the domain of computer vision (CV). Recently 

investigations demonstrated the promising results on certain 

CV tasks, such as image classification [8] and joint vision-

language modeling [23].  

 Inspired by the power of the self-attention layer and 

structure of the Transformer, some works tried to replace 

partial or all spatial convolutional layers in some popular CV 

backbones, like ResNet [24-26]. Specifically, local-window-

based self-attention for each pixel was applied and these 

models achieved slightly better performance with the trade-

off of costly computational resources than the convolutional 

networks [24]. Another different way of investigation was to 

augment a standard convolutional layer with self-attention 

layers or Transformers. For instance, endowing the capability 

to model the dependencies or heterogeneous in the data, self-

attention layers can augment the backbone networks [27-30] 

or the head networks [31, 32]. Recently, transformer-based 

vision backbone designs have been proposed and achieved 

outstanding results in CV tasks, such as the Vision 



  

Transformer (ViT) [33] and its follow-ups [34-36]. 

III. METHODOLOGY 

In this section, we present a proposed pipeline for road-
side LiDAR-based joint perception and motion prediction for 
cooperative driving automation: (1) data representation from 
3D LiDAR point clouds to BEV images; (2) Transformer-
embedded spatiotemporal pyramid network as the backbone; 
and (3) task-specific heads for voxel-level classification and 
motion prediction. 

A.  Input and Output Data Representation 

Input Representation: Since 3D point clouds are usually 

collected in a sparse and nonuniform formation, we convert 

the points into voxels with a fixed resolution on the three 

dimensions, respectively. For the input, we consider five 

timesteps of points within 64 meters in X and Y dimensions, 

and five meters in Z dimensions, therefore the field of view 

(FOV) is of size 5 × 64𝑚 × 64𝑚 × 5𝑚. The five time steps 

of data are sampled from a total of 20 past consecutive time 

frames with a frame skip equals to three to save computational 

power. Similar to [12], we use a binary state for each voxel 

stating whether it was occupied by at least one LiDAR point. 

With a resolution of 0.25𝑚 × 0.25𝑚 × 0.4𝑚, this result in 

a sequence of 13-channel binary pseudo-image of size 

5 × 256 (𝐻) × 256 (𝑊) × 13(𝐶) cells. 

 Compared with other data representation methods such 

as point cloud based [13] or view-based network [37], voxel-

based representation can utilize the well-established 

convolution and pooling operations for feature extraction, 

therefore making the computation much more efficient than 

other representations. 

 Output Representation: There are three output heads 

and each of them is organized differently. For the motion 

prediction head, we predict the future trajectory of each cell 

in the FOV with output represented as {𝑋𝑡 = (𝑥𝑡 , 𝑦𝑡)}𝑡=1
𝑇 , 

where 𝑋𝑡 ∈ 𝑅𝑇×𝐻×𝑊×2 is the future position of the cell at each 

time step t; 𝑥𝑡  and 𝑦𝑡 are the predicted position in X and Y 

axis, respectively; and T=20 is the total number of predict 

frames. For the cell classification head, we predicted the class 

of each cell of the current time step with output ∈ 𝑅𝐻×𝑊×𝐶, 

where C= 5 is the total number of classes. For the state 

estimation head, we predict the probability of static for each 

cell at the current step with output ∈ 𝑅𝐻×𝑊. Note that all the 

three heads omit the height dimension since the objects are 

assumed to be moving on the ground without overlapping.  

B. Transformer-embedded Backbone 

Transformers are based on attention mechanisms with 

input denoted as a sequence of discrete tokens 𝑥 ∈ 𝑅𝐶×𝑑𝑥 , 

where C represents the number of tokens in the sequence and 

Figure 2. Spatiotemporal transformer network. Three temporal transformers are applied at 3 levels in the down-sampling path to extract the temporal 

features. One spatial transformer is applied after the concatenation of all levels in the down-sampling path to extract the spatial features among all 

dimensions. 



  

𝑑𝑥 is the dimension of the feature vector in each token. A 

learnable positional encoding feature is also included to 

encode the positioning information of each token. Given such 

input, the queries (Q), keys (K), and values (V) are then 

calculated using projections as shown below: 

 

𝑄 = 𝑥𝑊𝑄 , 𝐾 = 𝑥𝑊𝐾 , 𝑉 = 𝑥𝑊𝑉    (1) 

where 𝑊𝑄 ∈ 𝑅𝑑𝑥×𝑑𝑄 , 𝑊𝐾 ∈ 𝑅𝑑𝑥×𝑑𝐾 , and 𝑊𝑉 ∈ 𝑅𝑑𝑥×𝑑𝑉 are 

parameter matrices. Then the attention is calculated using the 

dot products between Q, K, and V, as shown below: 

 

Attention(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝐾

) 𝑉     (2) 

Finally, the calculated attention will go through multilayer 

perceptron (MLP) to form the output y, which has the same 

size as input x.  

 

𝑦 = MLP(Attention(𝑄, 𝐾, 𝑉)) + 𝑥 (3) 

Since the input to the network is a time sequence of binary 

pseudo-image, our key idea is to utilize the well-established 

2D and 3D convolutional layers as well as the self-attention 

mechanism of transformers to exploit the spatial and temporal 

features across different levels of the network. As shown in 

Figure 2, the input follows a horizontal down-sampling path 

with 2D convolutional blocks and 3D convolutional layers, 

and vertical transformer paths with convolutional layers, 

transformers and up-sampling layers. The 2D convolutional 

block consists of 2 convolutional layers that double the 

number of channels and decreases the size of the feature map 

by a factor of 4. The 3D convolutional layer decreases the 

dimension in the temporal channels and is appended after 

every 2D convolutional block until the temporal dimension is 

decreased to 1.  

As aforementioned, the transformer is originally designed 

in the area of NLP and is not suitable for the input of images. 

Inspired by [38], we consider the intermediate feature maps 

of each down-sampling level to be a token set. As shown in 

Figure 2, both the temporal and spatial attention transformers 

require the input to be a two-dimensional token structure. 

Therefore, the feature maps in different layers in the backbone 

are first reshaped to the required dimension before feeding 

into the transformer. More specifically, assume that an input 

feature map of size 𝑇1 × 𝐻 × 𝑊 × 𝐶 is fed into the 

transformer. The tensor is first reshaped to the size of 

(𝑇1 × 𝐻 × 𝑊) × 𝐶 to match the token structure. Then, a 

learnable positional embedding feature of same size is added 

to the input feature map so that the tensor contains the 

spatiotemporal information during training. Finally, the 

output of the transformer is reshaped back to the size of input 

and is fed into the following convolutional layers. Since the 

same structure is applied multiple times at each down-

sampling level, it is computationally expensive to operate on 

the original-sized feature maps at each level. Therefore, the 

feature map is down-sampled to H = W = 8 and is resized back 

to its original size before adding the input to form a residual 

connection. 

 The temporal attention module (TAM) takes the input 

sequence from each down-sampling block and learns the 

information embedded within the temporal dimension. The 

outputs are then upsampled and fed into a convolutional layer 

to form the same shape 1 × 𝐻 × 𝑊 × 32. The five outputs 

from each level of downsampling layers contain spatial 

information from different scales. Therefore, a spatial 

attention module (SAM) is used at the end to fuse the spatial 

information using the concatenated output from temporal 

transformer blocks. Note that the structures of the spatial and 

temporal transformer modules are identical. They are named 

differently due to the different physical meanings applied.  

C. Output Heads and Loss Function 

Three output heads are appended to the proposed backbone 

to obtain desired outputs: (1) motion prediction; (2) cell 

classification; and (3) state estimation, which consist of 2 

convolutional layers with 1 batch normalization layer to 

formulate the dimensions of the output representation in each 

output head as mentioned above. To regulate the predicted 

motion and avoid small interference to static cells, such as 

background or stopped vehicles, the output of state estimation 

and cell classification heads are also utilized in the motion 

prediction head. More specifically, when a cell is classified as 

background from cell classification head or static from state 

estimation head, the motion prediction result for that cell will 

be set to 0. The cooperation of the three output heads can help 

avoid unnecessary computation and increase the training 

speed. 

The loss function of the proposed spatiotemporal 

transformer network is adapted from the design of MotionNet 

[12], and is defined as the summation of six separate losses, 

which ca be globally optimized for the best performance: 

 

𝐿𝑡𝑜𝑡 = 𝐿𝑚𝑜𝑡𝑖𝑜𝑛 + 𝐿𝑐𝑙𝑠 + 𝐿𝑠𝑡𝑎𝑡𝑒  

+𝐿𝑆𝑝𝑎𝑡𝑖𝑎𝑙 + 𝐿𝐹𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 + 𝐿𝐵𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙       (4) 

 

IV. EXPERIMENTS 

In this section, we explain the experiment setup and 
compare the performance of the proposed network with the 
baseline using the nuScenes [39] dataset. 

A. Experiment Setup 

Datasets. 

The nuScenes dataset is a public large-scale dataset for 

autonomous driving [39]. The dataset contains 1000 scenes 

collected from an entire onboard sensor suite, including 

cameras, LiDAR, radar, GPS, and IMU, with bounding box 

annotations on the keyframes. Among the 1000 scenes with a  

duration of 20s, 150 of the scenes are originally used for 

testing and do not contain any annotations. Therefore, LiDAR 

point clouds in the rest 850 scenes that are sampled at 20Hz 

are used for training (500), validation (100) and testing (250) 

in this study. To create the input for the network, keyframes  



  

are sampled at 2Hz in the training dataset and 1Hz in the 

validation and testing dataset. And a total of five consecutive 

frames including the keyframe sampled at 5Hz are combined 

in one clip as input. The lower sampling frequency in the 

validation and testing dataset is to avoid repetitive clips in the 

input. To create the target of the three output heads in the 

network, the annotated bounding boxes are preprocessed so 

that the voxelized cells are classified and the future positions  

are calculated. The original nuScenes dataset contains ground 

truth labels for 23 object classes. We define five classes for 

the classification task, including background, vehicle, 

pedestrian, bicycle and others. Note that the vehicle class in 

this study contains both car and bus from the original class in 

nuScenes dataset, and the “others” class contains all the other 

classes not included in the previous four defined classes. In 

total, there are 17,065 training clips, 1,719 validation clips, 

and 4,309 testing clips. 

Metrics and Training Environment. 

For the classification measurement, we use the following 

three performance metrics: (1) prediction accuracy for each 

class; (2) the overall classification accuracy (OA) for all cells; 

and (3) the mean category accuracy (MCA), which is the 

average accuracy of each class. For the motion prediction 

measurement, we divide the speed into three groups based on 

the speed range, which is static (speed = 0), slow (speed <= 

5m/s), and fast (speed > 5m/s). The prediction error is 

calculated using the mean Euclidean distance of the predicted 

position between output and ground truth. Note that there are 

20 time-steps (1s total) of future positions predicted in the 

output, and we only show the error of the last time step for 

simplicity. 

 The network is developed using a desktop computer with 

Nvidia GTX 2080 Ti GPU, a Core i9-9900K CPU running at 

3.6 GHz, and 64 GB of RAM. The network is programmed 

using Python (version 3.7.0) with the PyTorch library 

(version 1.1.0).  

 

B. Comparison with SOTA 

The baseline used in this study is MotionNet [12], which 

has been proven to be effective in joint perception and motion 

prediction tasks. The backbone of MotionNet is a classic 

feature pyramid network, which consists of an up-sampling 

path and a down-sampling path, to extract multi-scale 

spatiotemporal features. The baseline and proposed model are  

Method 

Motion Prediction (m) Cell Classification (%) 

Static (speed = 0) Slow (speed <= 5m/s) Fast (speed > 5m/s) 
Background Vehicle Ped. Bike Others MCA OA 

Mean Median Mean Median Mean Median 

MotionNet 0.0230 0 0.2250 0.0957 0.8870 0.6120 95.6 90.5 79.1 15.1 71.4 70.3 94.5 

Ours 0.0214 0 0.2426 0.0957 1.0504 0.7247 96.7 90.5 79.0 21.1 67.6 71.0 95.5 

TABLE 1. Performance comparison between the baseline and the proposed spatiotemporal transformer network. The proposed network achieves better 

overall performance in the cell classification task and comparable performance in the motion prediction task. 

Figure 3. Sample motion prediction with cell classification network results. The arrow points to the predicted position of the cell with color representing its 

class. The predicted output (bottom row) shows accurate classification and precise motion prediction results compared to the ground truth (top row).  



  

trained in the same environment using the same dataset, and 

the result is shown in Table 1. As can be seen from the table, 

for the motion prediction task, the proposed method achieves  

better performance for static objects but performs slightly 

worse for moving objects. For the classification task, 95.5% 

overall accuracy and 71.0% mean category accuracy are 

achieved by the proposed method, both of which are higher 

than the baseline. Among all the listed classes, the cells  

labeled as background class are of the vast majority. The 

higher MCA shows that the transformer structure is capable 

of extracting the spatial features for the classification task. 

Note that the classification accuracy for the bike is small due 

to the rare occurrence of the class in the training dataset. The 

sample motion prediction with cell classification network 

results is shown in Figure 3. The predicted output shows 

accurate classification and precise motion prediction results 

compared to the ground truth. The inference time for the 

STAN is measured to be 0.154 sec, which is small enough for 

real-time performance. 

 

C. Ablation Study 

To validate the design of the spatiotemporal transformer 

attention network (STAN), especially the effectiveness of the 

spatial and temporal attention modules, we compare our 

design with two variants: (1) Temporal transformer attention 

network (TAN) only, which removes the spatial attention 

module and keeps everything else same; (2) Spatial 

transformer attention network (SAN) only, which removes all 

the temporal attention modules and keeps everything else 

same; (3) Redundant spatiotemporal transformer attention 

network (RSTAN), which appends temporal attention 

modules for all the vertical paths even when the temporal 

dimension is already decreased to 1, as shown in Figure 4. To 

save training time, the networks are trained on a subset of the 

original dataset, which contains ~20% training data. The 

validation and testing set remain the same. As shown in Table 

2, compared to the above three designs, STAN achieves the 

highest overall accuracy and smallest motion prediction error 

for static and fast-moving objects. The missing spatial 

attention module in the TAN makes the network harder to 

extract spatial information from different scales and causes an 

accuracy drop in the classification task. SAN performs the 

best in motion prediction tasks for slow objects, but performs 

worse than STAN in other metrics due to missing temporal 

attention modules. The redundant temporal attention modules 

in RSTAN make the performance overall the worst due to the 

unnecessary feature extractions in the additional temporal 

attention modules.  

V. CONCLUSIONS AND FUTURE WORK 

In this work, we proposed a novel spatiotemporal attention 

network based on a transformer self-attention mechanism for 

joint semantic segmentation and motion prediction in point 

cloud at the voxel level. The model has been extensively 

trained and evaluated on the open-source dataset.  The results 

show that the designed model can efficiently learn and extract 

both spatial and temporal information inherited in the 

voxelized point cloud representation and achieve an overall 

classification accuracy of 95.5%. It can be applied to onboard 

applications as well as roadside sensing systems. Our future 

work includes more evaluations of the model on different 

types of point cloud datasets including data collected by 

roadside sensors.  
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