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Figure 1.  Scenario based evaluiation workflow 

  

Abstract— One of the main challenges for the introduction of 

Automated Driving Systems (ADSs) is their verification and 

validation (V&V). Simulation based testing has been widely 

accepted as an essential aspect of the ADS V&V processes. 

Simulations are especially useful when exposing the ADS to 

challenging driving scenarios, as they offer a safe and efficient 

alternative to real world testing. It is thus suggested that 

evidence for the safety case for an ADS will include results 

from both simulation and real-world testing. However, for 

simulation results to be trusted as part of the safety case of an 

ADS for its safety assurance, it is essential to prove that the 

simulation results are representative of the real world, thus 

validating the simulation platform itself.  

In this paper, we propose a novel methodology for validating 

the simulation environments focusing on comparing point cloud 

data from real lidar sensor and a simulated lidar sensor model. 

A 3D object dissimilarity metric is proposed to compare 

between the two maps (real and simulated), to quantify how 

accurate the simulation is. This metric is tested on collected 

lidar point cloud data and the simulated point cloud generated 

in the simulated environment. 

I. INTRODUCTION 

The recent technological advancements in Automated 
Driving Systems (ADSs) are driven by several key benefits, 
such as increased road safety [1], increased traffic efficiency 
[2], reduced emission levels [3] and decreased driver 
workload [4]. Taking road safety as an example, it is reported 
that over half a million traffic accidents occurred in the UK 
between 2015-2020 alone [5], averaging a figure of over 
seventeen hundred on-road fatalities annually despite the 
current safety measures. While the potential benefits of ADSs 
could be immense, there is a significant challenge associated 
with their safe introduction in the society. From their 
conceptual design to deployment, a key and necessary stage 
within the development process of ADSs is their safety 
assurance. Ensuring safe introduction and public trust are 
essential requirements for their acceptance, scalable adoption 
and their correct use [6]. Traditionally, distance-based 
metrics have been used as safety arguments for vehicle 
safety. However, for CAVs, it is estimated that they need to 
be driven for over 11 billion miles to prove that they are 20% 
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safer  than human drivers due to the complexity associated 
with such systems, and the tasks they perform and the 
environments in which they operate  [7]. This has led to a 
hazard based testing approach been proposed [8], which 
focuses on the quality of miles rather than quantity, 
concentrating on how a system fails rather than how it works. 
Coupled with a scenario-based testing approach [9], which is 
widely accepted as a verification and validation (V&V) 
approach, simulation based testing has emerged as a key tool 
in the V&V processes [10]. While the number of scenarios 
used to test an ADS will be many, each scenario will describe 
a set of scenery, environmental, and dynamic conditions 
within which the ADS will be tested [11]. 

A scenario-based evaluation workflow as shown in Figure 
2, divides the whole process into scenario creation, scenario 
description format, database storage, plan and execution, 
safety evidence and validation [12]. The creation of scenarios 
can be both data driven (e.g. accident data analysis [13]) and 
knowledge driven (e.g. analytical hazard-based approach 
[14]). Upon creation, the scenario information will then be 
represented using an established format that is readable, 
executable, common and exchangeable [11], and 
consequently be stored in a scenario database, e.g. Safety 
PoolTM Scenario Database [15]. The execution of scenarios 
can be achieved in a virtual environment, real world, or a 
hybrid of the two such as hardware in the loop testing. As the 
quantity of scenarios increase, being able to decide how they 
are distributed across the available test environment settings 
for their execution becomes crucial. Real world execution 
ensures that the surrounding environment is consistent with 
the deployment environment, it can also ensure that identical 
system (i.e. hardware and software) is tested between testing 
and deployment. 

However, real world execution can be expensive, risky, 
and time-consuming. This has led to a simulation-based 
development and testing approach being used in the ADS 
industry. Simulation based testing can be used in conjunction 
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Figure 3.  Demonstration of cube to histogram conversion 

 

Figure 2.  Scenario based evaluiation workflow 

with the more 'expensive' hybrid or real world testing [12] to 
form a comprehensive testing strategy, as shown in Figure 2. 
In this case it acts as an initial phase of the testing to identify 
a small set of highly critical scenarios from a large number of 
input scenarios (which might be impossible to execute in real 
world). This small set of critical scenarios can then be 
executed in real world environment. However, to enable such 
a simulation-based workflow, or rather to utilize any 
simulation environment for testing, a fundamental 
assumption is that simulation and real-world environments 
are comparable or correlated, and that the simulation results 
are valid.  Without this validity, simulation-based activities 
carry little meaning in the ADS safety assurance process. 

Several simulations platforms are available for the 
development and testing of ADSs. They vary in their fidelity 
level and focus at different testing objectives [16]–[21]. From 
a fidelity perspective, they range from visually compelling 
photo realistic physics engine-based simulation to 
minimalistic rendering of the environment, to purely text-
based simulation. From a testing objective perspective, they 
range from microscopic traffic-based simulation to vehicle 
and pedestrian level simulation, to system level simulation, 
and sensor level simulation. At the sensor level simulation, 
the quality and accuracy of the simulation is dependent on the 
level of fidelity of the simulation environment (i.e., the 
world), the same is true when sensors are considered within 
the system and vehicle level simulation. However, if sensors 
are to be treated independently from the system and vehicle 
level simulations, the quality of such simulations becomes 
less restricted on the fidelity of the environment. Although 
vast amount of effort has been input into the development 
and testing techniques of ADSs within simulation 
environments, there is a lack of emphasis on the validation of 
the simulation environment up until recently. For the past 
year, there are ongoing discussion within the United Nations 
Economic Commission for Europe (UNECE) Validation 
Method for Automated Driving (VMAD) Sub-group 2 on 
developing a credibility assessment framework for simulation 
and virtual testing [22]. The credibility assessment 
framework being discussed is not only a function of the test 
objective (as discussed earlier), but also a function of the 
Operational Design Domain (ODD) of the ADS. The ODD of 
the ADS will influence the modelling requirements for the 
simulation platform in order to test the ADS both inside and 
outside its ODD conditions. For example, if the ODD of an 
ADS includes “light rainfall” but excludes “heavy rainfall”, 
the simulation environment and the sensor models should 
have appropriate fidelity to be able to distinguish between the 
rainfall intensities. 

The study captured in this paper aims to contribute further 
on the simulation validation approach, with the use of a lidar 
system to devise a similarity metric between maps generated 
through real world-based lidar scan and a virtual world 
generated through a lidar sensor model in a simulation 
environment, by comparing the 3D objects and mapped data. 
The end goal is to have the ability to quantify how similar a 
map created by a virtual lidar sensor model on a simulated 
vehicle travelling through a virtual map is to the map 
generated by a real lidar on a real-world vehicle travelling 
through the real-world area the virtual map was built from. 
Though the metric will also be able to generalize to all 3D 
objects to allow validation for other ADS components, such 
as conventional cameras and radar.  The proposed approach 
has three-stages: (i) collect the real-world data (ii) synthesize 
the virtual map and virtual testing environment, (iii) develop 
a method for comparing the virtual and real world lidar point 
clouds. 

II. REVIEW OF COMPARISON METHODS 

There are a variety of methods for 3D object comparison. 
The four main criteria in influencing the selection of method 
to use are as follows: 

• Suitability for the data type: The object is created 
from a lidar environment scan. This means that they 
are large in scale and complex, are unlikely to be 
convex and will be unable to be described through a 
single shape. This is generally different to the type of 
model created through using CAD systems. 

• Automated: The method should be able to function 
without manual interference or apriori knowledge of 
the model. This will allow for the comparison to be 
done on many pairs quickly and will allow validation 
to completed without human bias. 

• Shape preserving: Ideally the method should 
maintain the shapes’ original structure without 
deformation. This is to avoid loss of relevant 
information and fidelity with the comparison. 

• Practicality: This mainly includes complexity, 
runtime, and robustness. Meaning it will be able to 
handle large and complex objects quickly and 
without breaking even if the data is not exactly as 
expected. 

With lidar and point cloud data, the most direct 
comparison to make is a 1 to 1 comparison using the mean 
distance between corresponding points [23]. This was used 
on airborne lidar data which would make it suitable for this 
use case. The point comparison is either done on a point-by-
point basis, known as the chamfer distance, or by using a 



  

 

Figure 4: Methodology flowchart 

 

 

local model that takes a least squares average plane of all the 
points in the other cloud that are located within a fixed sphere 
around the original point and finds the shortest distance 
between this plane and the original point. This should avoid 
discrepancies caused by individual points being missing or 
slight differences in lidar calibration. The major disadvantage 
of this method is that it requires manual rotational alignment 
of the two clouds to allow corresponding points to be 
compared. 

Two methods described in [24] and [25]  allow for the 
objects to be aligned automatically through identifying key 
points using principal curvatures and through using the 
inertia tensor as a principal axis, respectively. Though these 
methods would need to be completely reliable to avoid 
discrepancies in the point cloud comparison, as a small 
discrepancy in alignment would have a large effect on the 
score.  

Another similar method to this uses an underlying surface 
created using a 3D Fisher vector known as DPDist [26].  
However, this uses a neural network which would require 
many sample models to train that are not necessarily 
available for our use case. It is also more suited to sparse 
point clouds. 

The method in [27] suggests turning a 3D object into 
many 2D silhouettes from different perspectives, the most 
similar silhouette pairs are identified between the two objects 
and the dissimilarity is calculated and summed over all pairs. 
The dissimilarity measure between two 2D silhouettes is 
given by measuring the distortion of a bijection between the 
two images. This method would work best with convex 
objects that have distinct silhouettes whilst the point cloud 
maps will have lots of detail that will be obscured by the 
silhouette process (obstructed by buildings etc.). 

A direct comparison between the curvature of 
corresponding points on the surface is demonstrated in [28]. 
This method however requires a spherical transformation of 
the object which deforms the shape. 

Another method includes the comparisons between 
skeletal Reeb graphs [29]. This method works by reducing 
the 3D object surface to a directed graph based on the 
distance from the centre of mass. Similarity is calculated by 
finding the number of edges in the largest common subgraph 
of both objects.  This method however is much more suited to 
CAD generated 3D objects instead of those generated by 
point cloud because of the use case the method was built 
around and the need for geometric attributes to be known 
about the object. 

The method described in [30] uses a comparison of the 
distribution of pairwise distances between a sample of points 
on the surface of the object. The distribution for each shape is 
found by taking a sample of points on the surface of the 
object, finding the pairwise distances between them and 
storing those in a histogram as shown in Figure 3. This 
method was used on objects created from voxels of point 
clouds, which is similar to our use case. It is also indifferent 
to the alignment of the object as the distribution is inherent to 
the shape and it is shape preserving. The method’s runtime 
can be controlled by the number of points sampled and is 
unaffected by the size of the object. Its main drawback is that 
due to the random nature of the point sampling the score is 
not always consistent. However, modifications to this method 
to improve the consistency of this approach are described in 
later sections. As this this method fits our four selection 
criteria, a modified version of the approach has been be 
implemented in our study for point cloud comparison. 

III. METHODOLOGY 

A. Data Collection 

The data was collected by mounting a 360-degree lidar 
upon an Aurrigo pod (i.e. a low speed automated driving 
system) [31]. This was driven on the route pictured in Figure 
5 on University of Warwick campus. It was then driven 
through this environment multiple times, at two different 
speeds and with three different lidar rotation rates which 
resulted in a total of six different lidar scans of the 
environment which are taken at: 2m/s 1200rpm, 2m/s 



  

 

Figure 5: Route of the pod data collection on University of Warwick 
campus 

 

 

Figure 6: (a) Real map (b) simulated map 

 

Figure 7: Conversion of simulated map into histogram 

600rpm, 2m/s 300rpm, 4m/s1200rpm, 4m/s 600rpm and 4m/s 
300rpm. The best quality scan is taken at the lower speed 
with the fastest lidar rotations as this allows the most data 
(points) to be collected as the vehicle moves through the 
environment. The raw Lidar data was then converted into a 
3D point cloud map of the environment. 

B. Creation of the Simulated Lidar Map 

Before the creation of the simulated lidar map, the point 
cloud data of the real environment was transformed into a 
voxel environment map. Voxelization was performed using a 

3D cubic grid of specified dimensions, which in our case was  
5 x 5 x 5 cm. For every cube in the grid if a point cloud point 
is present inside then it is filled in as a voxel, which is a solid 
cube that can be thought of as a three-dimensional pixel. 

Then a simulated lidar traversed the same route through 
the voxel environment as the vehicle did through the real 
world, which then produces a simulated lidar scan. Direct 
comparison is then possible between any two maps (real map 
and simulated map). It must be noted that the fidelity of the 
simulated map will depend on the virtual lidar model and the 
fidelity of the world in the simulation. Thus, the methodology 
enables us to validate the simulation platform (both the world 
and the sensor model). 

This was performed for all different configurations of the 
lidar sensor and vehicle speed. Pictured in Figure 6 is the real 
world and simulated point cloud maps for the highest quality 
lidar scan at 2 m/s and 1200 rpm. 

C. Comparison Method 

The method used to compare the real and simulated point 
cloud maps was adapted from [30]. This method takes a 
sample of points on the surface of each object. The pairwise 
Euclidean distances for all these points are then calculated 
and stored in a 2-dimensional matrix. These distances are 
then normalized with respect to the maximum distance of 
each object and converted into a histogram with a fixed 
number of evenly spaced bins. Instead of storing frequency in 
the histogram, probability density is used instead.  



  

 

Figure 8. Conversion of a real map into a histogram 

 2m1200rpmReal 2m600rpmReal 2m300rpmReal 4m1200rpmReal 4m600rpmReal 4m300rpmReal 2m1200rpmSim 2m600rpmSim 2m300rpmSim 4m1200rpmSim 4m600rpmSim 4m300rpmSim

2m1200rpmReal 0 0.080526269 0.095206612 0.092402035 0.083308364 0.106412976 3.882433871 2.944021753 4.207367287 3.547114094 3.642052618 3.645122681

2m600rpmReal 0.109460207 0 0.117081262 0.120155966 0.101936845 0.129430663 5.296095298 4.133714826 5.664813496 4.915337158 5.030261405 5.10414855

2m300rpmReal 0.096682509 0.086218862 0 0.094576732 0.096934846 0.095260926 4.202829551 3.17019134 4.540936389 3.822711182 3.913565144 3.946834143

4m1200rpmReal 0.087031709 0.082544167 0.08426542 0 0.090583429 0.086797512 3.953458839 2.954101535 4.281098162 3.571340671 3.649876187 3.716110311

4m600rpmReal 0.11753608 0.105492045 0.128542953 0.129933737 0 0.13240477 5.16379591 4.013988473 5.526939248 4.778843473 4.875304591 5.009880813

4m300rpmReal 0.106085438 0.094656978 0.089930809 0.090762567 0.095791606 0 3.896201624 2.941260731 4.209610567 3.539553933 3.635629506 3.677053094

2m1200rpmSim 0.189602236 0.194297528 0.196301199 0.213315545 0.174501656 0.221756353 0 0.068648645 0.095155517 0.074736942 0.116091094 0.129477773

2m600rpmSim 0.213851326 0.193656412 0.207669273 0.229217397 0.187902321 0.229706916 0.128021844 0 0.16320064 0.102649733 0.140985899 0.159392664

2m300rpmSim 0.20157027 0.192855055 0.183272994 0.211140641 0.177788992 0.211183895 0.068223832 0.067868592 0 0.072956045 0.121966217 0.100406415

4m1200rpmSim 0.196177186 0.190856715 0.190973531 0.190418782 0.170884187 0.19737086 0.091781348 0.073052819 0.113373415 0 0.122539027 0.108606586

4m600rpmSim 0.223294523 0.21779501 0.224070426 0.238355193 0.185506186 0.239555831 0.104562393 0.071425218 0.138016376 0.089649498 0 0.139722619

4m300rpmSim 0.208250979 0.1944454 0.19589428 0.200960181 0.174926119 0.190728353 0.122816147 0.089496088 0.130628875 0.083821317 0.156781135 0  

 

2m1200rpmReal 2m600rpmReal 2m300rpmReal 4m1200rpmReal 4m600rpmReal 4m300rpmReal 2m1200rpmSim 2m600rpmSim 2m300rpmSim 4m1200rpmSim 4m600rpmSim 4m300rpmSim

2m1200rpmReal 0.0189 0.0642 0.0214 0.0104 0.0650 0.0315 0.2399 0.2176 0.2414 0.2192 0.2252 0.2142

2m600rpmReal 0.0773 0.0180 0.0331 0.0973 0.0183 0.0714 0.2835 0.2749 0.2934 0.3042 0.2945 0.2697

2m300rpmReal 0.0222 0.0544 0.0178 0.0315 0.0287 0.0337 0.2430 0.2136 0.2587 0.2525 0.2519 0.2537

4m1200rpmReal 0.0115 0.0583 0.0147 0.0142 0.0366 0.0160 0.2456 0.2179 0.2372 0.2410 0.2385 0.2335

4m600rpmReal 0.0677 0.0309 0.0695 0.0931 0.0209 0.0584 0.2811 0.2578 0.2834 0.2696 0.2956 0.2624

4m300rpmReal 0.0264 0.0583 0.0236 0.0116 0.0643 0.0192 0.2156 0.2145 0.2258 0.2212 0.2243 0.2320

2m1200rpmSim 0.2376 0.2854 0.2481 0.2104 0.2987 0.2478 0.0157 0.0232 0.0128 0.0181 0.0133 0.0139

2m600rpmSim 0.2252 0.2547 0.2277 0.2065 0.2818 0.2178 0.0322 0.0218 0.0303 0.0198 0.0224 0.0189

2m300rpmSim 0.2314 0.2976 0.2618 0.2554 0.2798 0.2382 0.0174 0.0280 0.0166 0.0447 0.0218 0.0392

4m1200rpmSim 0.2286 0.2865 0.2500 0.2290 0.2530 0.2366 0.0164 0.0200 0.0221 0.0156 0.0276 0.0118

4m600rpmSim 0.2268 0.2706 0.2334 0.2276 0.2751 0.2414 0.0174 0.0295 0.0185 0.0146 0.0155 0.0191

4m300rpmSim 0.2297 0.2807 0.2562 0.2360 0.2925 0.2200 0.0165 0.0222 0.0205 0.0238 0.0174 0.0110  

Figure 10. Results tables for comparisons with Chamfer distance (top) and Histogram method (bottom), grading is green to red, with red meaning a higher 
score and therefore more dissimilar maps 

 

Figure 9. Different areas of real (left) and simulated (right) maps 

The two histograms are then created. These are discrete 
probability distributions that represent the shapes. These 
distributions are then compared using the Minkowski 
distance shown in Eqn 1. for two general distributions. The 
Minkowski distance is the sum of the absolute differences 
between the columns of the histograms. This metric was 
chosen because of its robust and clear nature; though there 
are many other options for this comparison e.g., Bhattacharya 
and Chi-Square Distances. 

𝐷 𝑋, 𝑌 =    𝑥𝑖 − 𝑦𝑖 
𝑛
𝑖=1                       (1) 

 

The original method would have normalized the distances 
for each object by dividing by the maximum distance found 
for that object, meaning that the total size of the map would 
be irrelevant. This is useful in the general case as it allows 
comparison between shapes without having to manually 
control the volume beforehand. It also allows the histogram 
bins to be aligned by simply picking the number of evenly 
spaced bins required. 

However, in our use case the transformation from real 
point cloud to simulated point cloud needs to be distance 
preserving. This means that the similarity metric should 
consider the objective distances instead of the distances 
relative to the size of the object.  

This was done by using the largest distance out of both 
objects to normalise the distances. The histogram was then 
created for the object with the larger distance. The same 
histogram bins were then used to create the second histogram 
for the other object to ensure that they aligned, and the 
Minkowski metric could be used on them appropriately. For 
instance, in Figure 8, the real point cloud has the larger 
distance which is why the histogram has normalised distances 
present up to one on the x-axis, whilst in the simulated point 
cloud in Figure 7, the histogram does not. This then allows 
the histograms to be directly comparable w.r.t distance.  



  

Outlier points that were far from the vehicle route were 
removed from the real point cloud as part of the pre-
processing.  

IV. RESULTS 

Firstly, every possible combination of the different lidar 
setting were compared with each other and a score was 
generated. The same was then done using the chamfer 
distance which is the mean distance between nearest points in 
the two clouds. The top table in Figure 10 shows the chamfer 
distance results. There is a large difference depending on 
whether the points of the simulated cloud were considered 
first and matched against the real-world points compared 
with considering the real-world points first. There are also 
several outliers while comparing between two simulated 
maps, for example, 2 m/s 300 rpm Sim compared with 2 m/s 
600 rpm Sim which has a score of 0.163, which is a similar 
score to most of the real and simulated scores in the lower 
left quadrant meaning that the metric can’t always 
differentiate between two clouds of different types. 

Comparatively, the histogram method results in the 
bottom of Figure 10 shows consistency within each quadrant 
and is much more symmetrical. The lidar configurations that 
gave consistently the worst results were when the 600 rpm 
real scans were compared with the simulated point cloud. The 
600 rpm real scans for both 2 m/s and 4 m/s configurations 
contained over 6 million points, whilst the rest of the point 
clouds had around 5 million. When the open3D statistical 
outlier removal function was used on these clouds the most 
points were removed from those with 600 rpm, indicating 
they are the noisiest. This also explains the higher score 
(poorer matching as compared to 300 rpm) between the point 
clouds at 600 rpm as intuitively they should have a better 
match due to higher number of points in the raw point cloud. 

The method was also used on various areas of the map. 
The average score between all configurations of the real point 
cloud and their simulated point clouds was 0.247. Whilst 
removing areas of the real point clouds which were not 
present in the simulated gave an average of 0.123. The 
method also showed that the best lidar configuration to use is 
4m/s 1200 rpm with an average dissimilarity score of 0.2275 
over comparisons with all simulated maps though 2 m/s 1200 
rpm was only marginally worse with an average score of 
0.2299 as shown in Table 1 

An area containing many trees was compared (illustrated 
in the top of Figure 9) and had an average of 0.259 whilst an 
area that contained no trees but did contain two vehicles and 
a complex building. However, the areas pictured in the 
bottom of Figure 9, had a lower average score of 0.184. This 
shows that the simulation method is currently more viable for 
vehicles and buildings than it is for trees. This also illustrated 
the influence of scene complexity and ODD attributes on the 
fidelity requirements for the simulation environment. 

V. DISCUSSION AND FUTURE WORK 

The main drawback of this method is the element of 
inconsistency created through the random sampling. This has 
been mitigated by taking a large enough sample of points 
which will give a more stable distribution of distances for the 

object.  Another factor that effects the consistency of the 
method is the number of bins created for the histograms, as 
having a greater number of smaller bins will allow for a 
higher fidelity comparison as smaller differences in distance 
will be accounted for, this however does also lead to a greater 
effect on the score from the random sampling. 

Since the algorithm has O(n2) complexity with respect to 
the number of sample points it is important to find the highest 
number of sampled points that still has an acceptable runtime. 
For our purposes 10000 sample points with 100 bins gives 
consistent scores to 2 decimal places and a good runtime of 
approximately 15 seconds. 

The other issue caused by the random sampling is that it 
means a comparison between two identical objects does not 
give a dissimilarity score of 0. This problem is easy to control 
however because it’s possible to find the similarity of two 
identical objects. This can then be used to benchmark what a 
perfect score is as well as quantifying the irregularity caused 
by the sampling. 

Future work would involve compared the solid voxels 
which are generated from the point clouds (both real and 
simulated) and to compare the results with the point cloud 
comparison results. Additionally, the methodology can also 
be applied to dynamic elements (both in real-world and 
simulation) and will be part of future work. This will provide 
further insight into the robustness of the comparison and the 
methodology. Potential future work could also include the 
development of metrics for point cloud/voxel comparison as 
a function of the ODD of the ADS. 

TABLE I.  AVERAGE SCORE OF REACH REAL MAP COMPARED WITH 

THE SIMULATED MAP 

Configuration Average score 

2 m/s 1200 rpm real 0.2299 

2 m/s 600 rpm real 0.2793 

2 m/s 300 rpm real 0.2462 

4 m/s 1200 rpm real 0.2275 

4 m/s 600 rpm real 0.2802 

4 m/s 300 rpm real 0.2336 

VI. CONCLUSION 

Simulation-based testing of ADSs is widely accepted as a 
key building block towards generating evidence for safety 
assurance of the ADSs. In order to trust the results of the 
simulation for use as safety evidence as part of the ADS 
safety case, it is essential that the simulation is validated, i.e., 
representative of the real-world. Up until now, there has been 
limited focus on validation of simulation used for ADS 
testing. In this paper, we propose a novel approach of 
validation simulation environment using 3D object mapping 
in a real-world point cloud map and simulated point cloud 
map. 

We propose a histogram comparison method for point 
cloud data which has tested using various configurations of 
the lidar sensor in real world and in simulation. Due to the 
generality of the method, it can be extended to other types of 



  

simulation data and is not restricted to use on lidar point 
clouds. As the histogram method can sample points off the 
surface of any 3D object, this means that comparison can be 
used on maps generated through combined means such as 
lidar, radar and camera. The method presented in this paper 
will allow simulation maps to be benchmarked against their 
real-world counterparts and validate whether they are a good 
approximation of the real world, to enable their use in 
generating safety evidence for ADSs. The results suggest that 
the best lidar configuration to use is 4m/s 1200 rpm with an 
average dissimilarity score of 0.2275 over comparisons with 
all simulated maps. However, the 2 m/s 1200 rpm 
configuration was marginally worse with an average score of 
0.2299. Results also suggested that rotations per second has a 
higher impact on simulation fidelity as compared to speed of 
the ADS. 
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