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Abstract—Event-based cameras can overpass frame-based
cameras limitations for important tasks such as high-speed
motion detection during self-driving cars navigation in low illumi-
nation conditions. The event cameras’ high temporal resolution
and high dynamic range, allow them to work in fast motion and
extreme light scenarios. However, conventional computer vision
methods, such as Deep Neural Networks, are not well adapted
to work with event data as they are asynchronous and discrete.
Moreover, the traditional 2D-encoding representation methods
for event data, sacrifice the time resolution. In this paper, we
first improve the 2D-encoding representation by expanding it into
three dimensions to better preserve the temporal distribution of
the events. We then propose 3D-FlowNet, a novel network archi-
tecture that can process the 3D input representation and output
optical flow estimations according to the new encoding methods.
A self-supervised training strategy is adopted to compensate the
lack of labeled datasets for the event-based camera. Finally, the
proposed network is trained and evaluated with the Multi-Vehicle
Stereo Event Camera (MVSEC) dataset. The results show that
our 3D-FlowNet outperforms state-of-the-art approaches with
less training epoch (30 compared to 100 of Spike-FlowNet).

Index Terms—event-based camera, optical flow, neural net-
work, self-supervised learning

I. INTRODUCTION

An Autonomous Vehicle (AV) requires an accurate per-
ception of its surrounding environment to reliably and safely
operate. The perception system of an AV can transform raw
sensory data into semantic information [1], and frame-based
monocular cameras are one of the most commonly used
sensors for this purpose. They synchronously transmit raw
images, frame by frame, at a fixed rate. This feature as
the major drawbacks of low temporal resolution, redundant
information and low dynamic range. Few years ago, event-
based cameras, a bio-inspired technology of silicon retinas,
have been proposed to overcome those limitations and to solve
both classical and new computer vision tasks [2], [3]. An
event-based camera can have a dynamic range of 130 dB and a
minimum of 3 µs latency. Those advantages allow the event-
based camera to work in extreme scenarios with low light
conditions and fast motions. Typically, event-based cameras
are used as sensing modalities on Unmanned aerial vehicle
(UAV) [4], mobile robots [5] or wearable electronics [6],
where operations are under unrealistic lighting conditions and
sensitive to the temporal resolution. The main applications for
event-based cameras are object stracking [5], surveillance and
monitoring [7], and optical flow estimation [8], [9]. Nowadays,

time

Fig. 1. Visualization of the event data between two gray scale image.

more and more researchers focus on using the event-based
cameras for autonomous driving. [10] proposed a method that
can predict the vehicle’s steering angle according to the event
data, and [11] proposed a dataset that contains event data along
with the vehicle state and CAN-bus data.

Event-based cameras are asynchronous devices that detect
changes in log brightness intensity. When the variation of
the brightness of a pixel reaches the threshold, the camera
generates an event. The event is usually in the format of a
tuple, e = (x, y, t, p), where (x, y) is the pixel’s position, t
is the precise timestamp of the event which is accurate up to
microseconds, and the polarity p of the change that indicates
whether the pixel became brighter or darker. Fig. 1 shows the
visualization of the event data between two frame-based gray-
scale images. The positive events are shown in red, and the
negative events are in blue. Between two consecutive images,
there is a quasi-continuous stream of events that represents
all the brightness change between the two images. The event-
based camera’s asynchronous nature and tracking in the log
image space offer several advantages over traditional frame-
based cameras, including extremely low latency for detecting
high-speed objects, a very high dynamic range for the poor
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light conditions, and significantly lower power consumption.
The cameras’ unique output, on the other hand, presents

new challenges in algorithm developments. Indeed, the events
are transmitted asynchronously and lacks the pixel’s absolute
value and spatial neighborhood. The algorithms for traditional
frame images such as optical flow or object detection are no
longer valid. As a result, a significant research effort has been
made to develop new algorithms for event-based cameras to
solve these traditional vision problems.

Within Deep Learning area, there exist several works that
train a neural networks to estimate the optical flow in a
self-supervised manner. Zhu et al. [9] accumulate the events
into the image-like frames and calculate the optical flow
using an encoder-decoder network. Their encoding method
loses the temporal information because they summarize the
events stream into a four-channel image. Lee et al. [12] try
to solve this problem by proposing a deep hybrid neural
network architecture called Spike-FlowNet. The use of the
Spiking Neural Network allows the approach to process the
data asynchronously. So it can best preserve the properties of
the event data. However, the training of the Spiking Neural
Network is quite slow and unstable. So, although the neural
networks avoid the complex problem of modeling and algo-
rithm developments, the encoding representation for the event
data and the neural network’s design still need to be improved.

The main contribution of this paper is to propose a new
encoding method and the corresponding neural network ar-
chitecture to process an event data stream. We proposed
a 3D encoding representation that can better preserve the
temporal nature of the event data. We also present the 3D-
FlowNet, a novel neural network architecture that can process
the 3D input and generate optical flow estimations. Finally,
We train and evaluate the proposed 3D-FlowNet using the
Multi-Vehicle Stereo Event Camera (MVSEC) dataset [13].
The results show that our approach outperforms current state-
of-the-art methods, we achieve 13% improvement compared
to the Spike-FlowNet[12], and 32% compared to the EV-
FlowNet[9].

The paper is structured as follows: In Section II, we discuss
the related work. In section III, we present the methodology,
covering the encoding method for the event data and the
corresponding neural network architecture. This section also
discusses the self-supervised training strategy. In section IV,
we present the experimental results, including training details
and the evaluation metrics. We also discuss the comparison
results with state-of-the-art approaches.

II. RELATED WORK

Due to the properties of the event-based camera, there
has been a lot of interest in developing algorithms that take
advantage of them, and optical flow estimation is one of
the addressed topics. Benosman et al. [14] fit a plane to
the events in spatial-temporal spaces and then estimate the
optical flow. Bardow et al. [15] formulate the flow estimation
as a convex optimization problem that solves for the image
intensity and flow jointly. Almatrafi et al. [8] calculate the

spatial and temporal gradients on the frame image and events
data, respectively, and then estimate the optical flow by solving
the classical optical flow equation.

Besides the traditional optical flow algorithms for the event
camera, there are also several model-free methods that use
a deep neural networks to predict the optical flow. Zhu et
al. [9] accumulate the event into the image like frames and
use an encoder-decoder network architecture to estimate the
optical flow. The event data are then encoded into a four-
channel image representing: Positive events counting, negative
events counting, latest timestamp of positive events, and latest
timestamp of negative events. This encoding method loses the
temporal information because the older timestamp are filtered
out. Lee et al. [12] try to solve this problem by proposing a
deep hybrid neural network architecture called Spike-FlowNet,
a hybrid structure between regular Neural Networks (NN)
and Spiking Neural Networks (SNN). Due to the use of the
SNN, the events are processed asynchronously to preserve
the temporal information of the event data. However, the
training of the Spike-FlowNet is relatively slow and unstable.
Because the activation function of SNN is not continuous, the
backpropagation algorithm can not be directly used to train
the SNN.

For the networks’ training, several works focuses on self-
supervised training for the optical flow prediction because of
the lack of labeled event-based datasets. Yu et al. [16] proposed
a network that can learn optical flow from brightness constancy
and motion smoothness. Based on that, Meister et al. [17]
improve the quality of the flow by applying a bidirectional
census loss to achieve better performance with less training
time. [9], [12] adopt this self-supervised strategy for event-
based camera and achieve similar performances.

III. PROPOSED APPROACH

In this section, we explain our approach in details. In III-A,
we describe our event encoding method, which encodes a
group of event measurements into an 3D temporal-spatial event
image. In III-B, we describe the architecture of our network,
which uses the 3D convolutions to process the spatial-temporal
measurements and output the pixel-wise optical flow. Finally,
in III-C, we describe the training strategy and the self-
supervised loss is also discussed.

A. Event Data Encoding Method

The event-based camera records the log intensity change
of each pixel of the artificial retina, and generates an event
whenever the log intensity changes over the threshold θ:

log(It+1)− log(It) ≥ θ (1)

The event measurement is in the format of tuple which consists
of location of the pixel, timestamp of the event and polarity
of the change:

e = (x, y, t, p) (2)

Because the events are transmitted asynchronously, they
cannot be immediately fed into standard convolutional neural



(a) Example of an event image and a gray scale image
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Fig. 2. Visualization of our event encoding representation. (a) is one slice of the event image Islice = (1, 1, H,W ), and the brighter represents the more
recent timestamp value. (b) is an example of the event representation where D = 8.

network layers. It is therefore important to keep the necessary
information while generate the encoding representation from
the event stream.

Several prior works have proposed different methods that
transform the event output into a synchronous image-like
representation. In EV-FlowNet [9], only the latest pixel-wise
timestamps and the event counts are used to encode the event
representation. However, fast motions and dense scenarios
can enormously overlap per-pixel timestamp information. In
[18], [19], the time domain is discretized to preserve the
temporal distributions. To improve the resolution and the
temporal domain beyond the number of bins, the authors insert
events into this volume using a linearly weighted accumulation
similar to bilinear interpolation. However, the number of input
channels increases significantly as the time dimensions are
finely discretized, further increasing the computation time for
encoding and forward propagation.

Considering all the methods discussed before, we propose in
this work, a novel input representation that can better exploit
the information in the event data with less computation com-
plexity. Given a set of N input events EN = (xi, yi, ti, pi), i ∈

[1, N ], and a time depth D to discretize the time dimension
of event data, we accumulate each group of event into images
as follows:

tnorm = (t− t0)/(tN − t1) ∗ (D − 1)

I(x, y, t, p) =
∑
i

δ(p− pi)kb(x− xi)kb(y − yi)kb(t− tnorm)

kb(a) = max(0, 1− |a|)
(3)

Here, (x, y) denotes the position of the event, p is the polarity
of the event, and δ is the Kronecker delta operator. kb(·)
denotes bi-linear sampling kernel. The generated event image
I is a (2, D,H,W ) matrix, where the number 2 represents
the positive and negative polarity, D is the discretized time
depth, and (H,W ) are respectively the height and width of
the image. Then we split the event image into former and
latter groups through the time dimension and obtained a new
event image with the shape of (4, D2 , H,W ). Here the number
4 represents the four channels: Former positive events, former
negative events, latter positive events, latter negative events.
Fig. 2 shows the proposed input representation. Fig. 2. (a) is



the visualization of the event image and the relative grayscale
image, left is one slice of the event image, and the brighter
represents the more recent timestamp value. Fig. 2. (b) is an
example of the event representation where D = 8.

B. Proposed Network Architecture

With the input representation I4,D/2,H,W discussed in sec-
tion III-A, we propose the 3D-FlowNet architecture to predict
the optical flow values. The 3D-FlowNet’s network adopts
an encoder-decoder architecture, containing four encoder lay-
ers, two residual blocks, and four decoder layers as shown
in Fig. 3. First, the input event image is passed through
two 3D-decoders. The 3D-decoders down-sample the time
dimension d/2 to 1, and compress the 3D input into 2D
((4, D/2, H,W ) → (4, 1, H,W ) → (4, H,W )). Then the
resulting activation are passed through two 2D-decoders, two
residual blocks, and four 2D-decoders. For each decoder, the
activation is up-sampled using the 2D transposed convolution
and then convolved, to obtain the final optical flow estimation.

There is a skip connection from each encoder to the
corresponding decoder. For the skip connection between 2D-
encoder and 2D-decoder, the activation of the encoder is
directly concatenated with the intermediate optical flow value
and the activation of decoder. For the skip connection between
3D-encoder and 2D-decoder, the 3D activation (C×D×W ×
H) is flattened into 2D tensor ((C ∗D)×W ×H) first, then it
can be concatenated with the activation of the decoder and the
intermediate optical flow. The predicted optical flows are then
used together with the grayscale image for the loss calculation.

C. Self-Supervised Loss

The event-based camera is a sensor that can produce
synchronous grayscale images and asynchronous event data
streams simultaneously. Compared to frame-based camera
datasets, the number of available event-based camera datasets
with annotated labels suitable for optical flow estimation is
relatively small. As a result, for training our Spike-FlowNet,
we used a self-supervised learning method that uses proxy
labels from the recorded grayscale images [16], [17].

The total loss consists of a smoothness loss (Lsmooth) and
a photometric reconstruction loss (Lphoto) [16]. The network
needs a pair of grayscale images (It, It+∆t) to calculate the
photometric loss, as well as the event data in the time window
(t, t + ∆t). The second grayscale image is warped to the
first grayscale image using the network’s predicted optical
flow. The photometric loss (Lphoto) is used to minimize the
difference between the first grayscale image and the inversely
warped second grayscale image. This loss is based on the
photometric consistency assumption, which states that a pixel
value from the first image will be similar to the second frame
warped by the predicted optical flow. The photometric loss can
be written as:

Lloss(u, v, It, It+∆t) =∑
x,y

ρ(It(x, y)− It+dt(x+ u(x, y), y + v(x, y))) (4)

Then, the smoothness loss is adopted to improve the spatial
consistency of neighboring optical flow. It is calculated as:

Lsmooth =
∑
i

∑
j

(||ui,j − ui+1,j ||+ ||(ui,j − ui,j+1||+

||(vi,j − vi+1,j ||+ ||(vi,j − vi,j+1||)
(5)

The total loss for the training is computed as the weighted
sum of the photometric and smoothness loss:

Ltotal = Lphoto + λLsmooth (6)

where λ is the weight factor.

IV. EXPERIMENTS

A. Dataset and Implementation Details

The MVSEC dataset [13] is used in this paper for training
and evaluating the optical flow predictions. The MVSEC
dataset contains stereo event-based camera data, including
flying, driving, and handheld scenes. Moreover, the dataset
provides ground truth poses and depths maps for each event-
based camera, and the ground truth optical flow can be
generated accordingly. To offer fair comparisons with prior
works [12], [9], only the outdoor day2 sequence is used for
training.

During the training, the input is centrally cropped to 256×
256 size. The ADAM optimizer is used, and the initial learning
rate of 1e-4. The model is trained for 30 epochs with a batch
size of 16, while [12] takes 100 epochs. This is because the
training of the ANN is faster and more stable than the SNN
one.

B. Results

Here, the Average End-point Error (AEE) is used to evaluate
the optical flow result, and it is defined as:

AEE =
1

n

∑
n

‖(u, v)pred − (u, v)gt‖2 (7)

Where n is the number of the active pixel in the event image.
We also count the outliers that corresponds to the percentage
of points with AEE exceeding three pixels. For each sequence,
the AEE is calculated in pixels, and the %Outlier is defined
as the percentage of points with AEE < 3 pix. During the
testing, the optical flow is also estimated on the centrally
cropped 256 × 256 event images. The sequences of indoor
flying 1,2,3 and outdoor day 1 are used. We use all events
from the indoor flying sequences and take events within 800
gray scale frames for the outdoor day1 sequence similar to
[12].

Table I show the results of the AEE evaluation in com-
parison to previous event-based camera-based optical flow
estimation approaches. Our approach achieves better perfor-
mances than the others in all the indoor flying sequences.
Our AEE performance is similar to the others in the out-
door day1 sequence, but we obtain fewer outliers. Fig. 4
shows the qualitative results of our approach. The grayscale,
event image, ground truth flow, and corresponding predicted
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Fig. 3. Network structure of the 3D-FlowNet.

TABLE I
QUANTITATIVE ASSESSMENT OF OUR APPROACH COMPARED TO EV-FLOWNET AND SPIKE-FLOWNET

outdoor day1 indoor flying1 indoor flying2 indoor flying3
AEE ↓ Outlier ↓ AEE ↓ Outlier ↓ AEE ↓ Outlier ↓ AEE ↓ Outlier ↓

EV-FlowNet [9] 0.49 0.2 1.03 2.2 1.72 15.1 1.53 11.9
Spike-FlowNet [12] 0.49 - 0.84 - 1.28 - 1.11 -

Ours 0.51 0.1 0.7 0.1 1.10 0.2 0.91 0.1

flow images are displayed in this figure. We mask out the
optical flow at points where the event data are absent. The
masked optical flow is used here because event-based cameras
detect the brightness change at pixels. Low texture regions,
such as flat surfaces, produce very few events due to fewer
brightness changes, resulting in few optical flow predictions
in the corresponding areas. Overall, the results show that 3D-
FlowNet can predict optical flow accurately in both indoor
and outdoor day1 sequences. This proves that the proposed
3D-FlowNet generalizes well to a variety of environments.

V. CONCLUSION

In this work, we propose 3D-FlowNet, a deep neural net-
work for optical flow estimations using event-based camera
data. We improved the encoding methods for the event data
and self-training strategy for the network. The results show
that our approach can generate more accurate (13% 32%)
optical flow estimations. For future work, we hope to combine
frame-based cameras with event-based cameras to achieve
better and more robust performance in various scenarios.
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