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Abstract— Visual recognition inside the vehicle cabin leads
to safer driving and more intuitive human-vehicle interaction
but such systems face substantial obstacles as they need to
capture different granularities of driver behaviour while dealing
with highly limited body visibility and changing illumination.
Multimodal recognition mitigates a number of such issues:
prediction outcomes of different sensors complement each other
due to different modality-specific strengths and weaknesses.
While several late fusion methods have been considered in pre-
viously published frameworks, they constantly feature different
architecture backbones and building blocks making it very hard
to isolate the role of the chosen late fusion strategy itself.

This paper presents an empirical evaluation of different
paradigms for decision-level late fusion in video-based driver
observation. We compare seven different mechanisms for join-
ing the results of single-modal classifiers which have been both
popular, (e.g. score averaging) and not yet considered (e.g. rank-
level fusion) in the context of driver observation evaluating
them based on different criteria and benchmark settings. This
is the first systematic study of strategies for fusing outcomes of
multimodal predictors inside the vehicles, conducted with the
goal to provide guidance for fusion scheme selection.

I. INTRODUCTION AND RELATED WORK

Multimodality increasingly gains attention in driver ob-
servation systems [1], [2], [3], [4]: prediction outcomes of
multiple sensors complement each other due to modality-
specific strengths and weaknesses as well as different visibil-
ity (examples in Figures 1 and 2). Rising levels of automation
increase human freedom, leading to drivers being engaged in
distractive behaviours more often while the type of activities
become increasingly diverse. This is very challenging for
unimodal driver observation systems, which need to capture
different complexities and granularities of situations inside
the cabin despite strongly restricted body visibility. For
example, frameworks developed for manual driving often
focus on the face view to capture the attentiveness regarding
the driving scene [3], [5], [6]. However, as the driver is
gradually relieved from actively steering the car, activities
such as working on laptop or reading magazine, which
were almost unthinkable until now, become more common.
Equipping the vehicle with multiple complementing sensors
enables recognition of very different behaviour types, but
how to link the information becomes an important question.

Fig. 1. A high-level overview of a multimodal driver observation
framework featuring three separate classification streams, with their fusion is
carried out after the single-modal predictions were obtained. We implement
and study different techniques for linking such single-modal outcomes.

The state-of-the-art of multimodal driver activity recogni-
tion constantly changes depending on different architecture
choices, losses and classifier components [7], [8], [9], [2],
[1], [10], but a large portion of such methods employ late
fusion via score averaging to link the information [2], [1], [9],
[4]. Multimodal fusion algorithms can be grouped depending
on the point of fusion, (e.g., early-, mid-, or late-fusion)
and based on the methodology (learning- and decision-based
approaches). The learning-based approaches learn to com-
bine the streams (and can therefore be applied at different
information processing stages). In decision-level fusion, on
the other hand, individual unimodal probability estimates for
each behaviour category are obtained a priori, after which a
transformation function, such as average, product, or voting
joins them into a common multimodal decision.

This work conducts the first systematic study of strategies
for fusing outcomes of multimodal predictors at decision-
level for visual recognition inside the vehicle cabin. De-
spite omitting intra-modality correlations at earlier stages,
decision-level operations bring important advantages. First,
in contrast to the learning-based methods, the multimodal
systems operating on decision-level are highly modular, as
the individual modalities with pretrained classifiers can be
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Fig. 2. Example of a multimodal driver activity recognition setting with highly distractive behaviours during automated driving. Different modalities
have their specific strengths and limitations depending on the visible portion of the cabin and sensor-specific characteristics. For example, both RGB and
NIR cameras might capture unnecessary textures constituting additional noise, while RGB sensors depend on the illumination. Depth data is less sensitive
to illumination changes and skips unnecessary texture details (e.g., clothing) but might also miss details important for the behaviours-of-interest.

flexibly plugged-in or removed without any additional re-
training. As a consequence, if one of the sensors is damaged,
a decision-level fusion system would simply exclude it from
contributing, whereas training of the fusion model would
need to be revisited in standard learning-based approaches,
as the feature vector appearance changes.

Among decision-level fusion techniques, averaging of the
obtained Softmax scores is presumably the most common
choice in driver activity recognition [2], [1], [9], [4]. In
the broader fields of general machine learning and computer
vision, this approach is also highly popular [11], [12], [13],
[14], [15], [16], [17], [18], but other strategies, which were
rather overlooked in the field of driver observation, such
as the max rule [19], [14], [17], [20] or the product rule
[12], [21], [19], [22], [23], [24], [25], [17], [20] also gained
attention. A theoretical study of such methods from the pre-
Deep Learning era is provided in [26]. Rank-level decision-
level fusion, such as Borda Count voting [27], [28], [29] and
Reciprocal Rank Voting [30] are less popular, but have been
successfully applied in the field of biometric identification
[31], [32]. There are several works targeting multimodal
fusion through learning-based methods, e.g., using SVM,
LSTM, or neural network fusion layers [33], [34], [35], [7],
[36], [37]. We, however, consider these out of the scope of
this work, as these require additional training and cannot be
directly used out-of-the-box for target fusion at the decision-
level. Nevertheless, recent computer vision research is rather
focused on the generation of high performing single-modal
classifiers while fusion strategies are considered of lesser
importance and few of them are systematically explored in
combination with novel CNN-based methods.

Summary and contributions In this work, our goal is to
implement and systematically evaluate different strategies
for decision-level fusion in the context of multimodal driver
behaviour assessment. We build upon recent advances in

driver observation and train a neural network often utilized
in this task separately for each of the eight modalities of a
standard multimodal driver activity recognition testbed [2].
We compare 10 different mechanisms for joining the results
of single-modal classifiers which have been both popular,
(e.g., score averaging) and not yet considered, (e.g., rank-
level fusion) in the context of driver observation and evaluate
them based on different criteria and benchmark settings.
Our results indicate that the choice of fusion mechanisms
impacts the model performance. Furthermore, the commonly
employed average-fusion being outperformed by several
other methods in all evaluation settings and metrics. Of the
considered methods, product-fusion and max-fusion yielded
the best recognition results. Interestingly, while max-fusion
oftentimes outperformed product-fusion by a small margin,
product-fusion is consistently more effective when it comes
to top-5 accuracy, indicating, that it might be useful in
coarser recognition. We further compare our multimodal
system to the best performing unimodal view. Overall,
multimodality is clearly beneficial for almost all behaviour
types, but the effect depends on visibility and recognition
difficulty: the largest benefits of multimodality were observed
in driver behaviours with medium recognition difficulty.
To the best of our knowledge, this is the first systematic
study of strategies for decision-level fusion inside the vehicle
cabin. Our experiments provide empirical evidence that the
commonly employed late fusion via averaging is not the most
effective way of linking unimodal driver observation results,
and we hope that our study will provide guidance for better
fusion scheme selection in the future.

II. REVISITING LATE FUSION FOR VIDEO-BASED
DRIVER OBSERVATION

In this paper, we analyze different approaches for fusing
the decision-level predictions of multiple visual driver ob-
servation models. That is, given N different modalities with



inputs xi, i ∈ 1...N (see examples in Figure 2) and N pre-
trained unimodal classifiers with predictions ci(xi), i ∈ 1...N
containing probability estimates for each category, our goal
is to correctly identify the potentially distractive behaviour
of the driver by linking the information of these different
modalities effectively. To this intent, we employ the I3D
architecture [16] as the unimodal classifiers backbone, which
has shown excellent results in driver activity recognition [2],
[38]. We train the models for each modality individually.
Afterwards, we utilize different variants of the decision-
level fusion module which takes multiple class probability
estimates produced by the individual classifiers as input and
joins them to reach the final multi-modal decision. Note, that
we specifically target decision-level approaches that do not
require any architecture training or changes in architecture.
While multiple introduced approaches address multimodal
fusion with learning-based methods [33], [34], [35], [7], such
approaches are out of the scope of this work. In total, we
implement seven different strategies for multimodal decision-
level fusion, which we now discuss in detail.

A. Score-level fusion

In score-level fusion, the goal is to combine the predictions
of N classifiers on a d-classification task based on their class
probability estimates c(xi), where i∈ {1...N}. We investigate
fusing the predictions c(xi) via summation or averaging,
maximum, and product of the probability vectors. For this,
we introduce the following notation in Table I:

N ∈ N Number of classifiers.
d ∈ N Number of classes.
c(xi) ∈ Rd Probability estimates of ith classifier.
c(xi) j ∈ R Probability estimate of ith classifier for jth class.
c(X) := {c(x1)...c(xN)} ∈ Rd×N Set of all probability estimates.
c(X) j := [c(x1) j...c(xN) j] ∈ RN Predictions for jth class from all classifiers.
ri j Rank of jth class in c(xi).

TABLE I
NOTATION FOR ALL THE LATE FUSION EQUATIONS.

Note that the fusion results from all the methods we
investigate can be used in combination with argmax(·) to
produce the final class prediction.

Sum-fusion and score averaging: The sum-fusion (often
referred to as average-fusion) fSUM(·) for N classifiers is
defined as:

fSUM(c(X)) =
1
N

N

∑
i=1

c(xi) (1)

Note that the division by N does not change the ranking of
the summed predictions, but serves to regularize the output
to sum up to 1. This fusion strategies has presumably been
the most popular choice for fusion at decision-level in driver
observation [2], [1], [9], [4].

Median-based fusion: The median-fusion fMED(·) for N
classifiers is defined as:

fMED(c(X)) = [med(c(X)1)...med(c(X)d)] (2)

where

med(x) =

{
x̂(d+1)/2, if d is odd
1
2 (x̂(d/2)+ x̂(d/2)+1), otherwise

(3)

Here x̂d is defined as the dth element of x̂ and x̂ is x sorted
in ascending order.

Max-fusion: The max-fusion fMAX (·) for N classifiers is
defined as:

fMAX (c(X)) = [max(c(X)1)...max(c(X)d)] (4)

.

Product-fusion: The product-fusion fPROD(·) for N classi-
fiers is defined as:

fPROD(c(X)) = γ

N

∏
i=1

c(xi) (5)

where γ ∈ R is used as a regularization of the output [39].

Weighted sum- and product-fusion: Inspired by recent
progress of weighted pooling functions [40], we further
implement variants of sum- and product-fusion, where the in-
dividual predictions are weighted via Softmax-normalization
amplifying the contribution of the most certain class pre-
dictions. The weighted sum-fusion fWSUM(·) and weighted
product-fusion fWPROD(·) for N classifiers are defined as:

fWSUM(c(X)) =
1
N

N

∑
i=1

wic(xi) fWPROD(c(X)) = γ

N

∏
i=1

wic(xi),

(6)
where wi =

ec(xi)

∑
N
j=1 ec(x j)

, i ∈ 1...N.

B. Rank-level fusion

In contrast to score-level fusion, rank-level fusion lever-
ages the class rankings of multiple classifiers. The magnitude
of each class score plays a role only in the ordering of the
classes into a ranking list for each classifier. We investigate
Majority Voting, the original and weighted Borda Count, as
well as Reciprocal Rank Fusion as strategies in this category.

Majority Voting: Majority voting first estimates the top-1
predicted behaviour for each individual modality, after which
the category, which was predicted by the most unimodal
classifiers is selected as the final decision. Let predi :=
argmax(c(xi)) ∈N be the predicted class from the ith classi-
fier. The number of the top-1 predictions from all classifiers
for class j would then be:

# j = #{predi == j|i ∈ {1...N}} (7)

where #{·} denotes the set cardinality. The majority voting
mv(·) for N classifiers is defined as:

mv(c(X)) = [{#1...#d}] (8)

Borda Count: Another way for combining predictions via
late fusion is utilizing a voting system, such as Borda
Count [27]. The Borda Count voting system is described
algorithmically in Algorithm 1. The class probabilities c(xi)



Fusion
Method

#Mod=2 #Mod=4 #Mod=8
Balanced Acc. Unbalanced Acc. Balanced Acc. Unbalanced Acc. Balanced Acc. Unbalanced Acc.

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
Sc

or
e-

le
ve

l Avg. w/o weight. (standard) 47.81 70.49 42.57 67.71 51.44 77.88 46.06 75.41 54.69 80.9 49.72 78.72
Average w. weight. 47.52 70.49 42.2 67.71 51.46 77.88 46.24 75.41 54.96 80.75 50.09 78.72

Median 47.81 70.49 42.57 67.71 51.87 80.07 46.79 78.35 54.01 84.62 49.54 81.83
Max 47.52 70.19 42.2 66.97 53.26 77.45 48.07 74.68 55.96 80.55 50.64 78.35

Product w/o weight. 49.32 74.98 44.4 72.66 51.76 83.41 46.97 80.92 53.99 85.47 49.36 82.75
Product w. weight. 49.57 74.84 44.77 72.48 51.76 83.41 46.97 80.92 53.85 85.47 49.17 82.75

R
an

k-
le

ve
l Majority 47.81 70.49 42.57 67.71 51.98 77.62 46.42 75.23 54.75 80.66 49.91 78.53

Borda count w/o. weight. 44.41 73.76 38.72 72.11 50.65 80.5 46.06 78.35 54.25 85.91 50.09 83.49
Borda count w. weight. 47.81 70.62 42.57 67.34 51.51 77.6 46.06 75.05 54.53 81.06 49.54 79.27

Reciprocal Rank 42.65 69.96 37.06 66.79 48.45 81.45 43.3 79.27 52.58 83.76 48.26 80.73

TABLE II
PERFORMANCE OF LATE-FUSION METHODS ON RARE CLASSES OF THE DRIVE&ACT TEST SET

from all the unimodal models are given as an input. The first
loop goes over each of the N classifiers. Their predictions
c(xi) are sorted in descending order so that a ranking list I is
created with their indices. In the second loop, the best class
prediction for each classifier is given k points, the second-
best k−1 points, etc., where k is a hyperparameter. This is
done for all classifiers, and in the end, these points are added
up for the final scoring ŷ.

The Borda Count voting resembles a preferential voting
system, in contrast to a majoritarian one. This incorporates
the uncertainty of each of the separate models’ predictions. In
other words, if a model is uncertain about the correct class
and ranks it as a second alternative, its prediction would
contribute with k−1 points for the correct class, instead of
0 points in the case of using a majority vote. However, this
relies on the assumption that the classifiers are able to rank
the ground truth in their top k predictions, i.e. are not weak.

Data: Probability Estimates: c(xi) ∈ Rd , i ∈ {1...N},
where N = #classifiers

Result: Fused Class Scores: ŷ ∈ Nd

ŷ← [0...0];
for i ∈ {1...N} do

I← descending argsort(c(xi));
for j ∈ {k...1} do

ŷ[I[k− j]] += j;
end

end
return ŷ;

Algorithm 1: Borda Count Voting Strategy

Reciprocal Rank Fusion (RRF): The RRF[30] for N
classifiers is defined as:

RRF(c(X)) = [rr f (1)...rr f (d)] (9)

where

rr f ( j) =
N

∑
i=1

1
m+ ri j

(10)

Cormack et al. [30] introduce the hyperparameter m∈N and
claim that it mitigates the impact of high rankings by outlier
systems.

Weighted Borda Count: The WBC is an extension of the
original algorithm, where the score of each voter is weighted
by the corresponding weighting vector w∈Rd . The WBC for
N classifiers is defined as:

WBC(c(X)) = w�BC(c(X)) = w� ŷ (11)

where � is the element-wise multiplication operator. The
vector w can be computed by an arbitrary weighting function.
In our experiments we use the mean softmax outputs, i.e. w=
fSUM(c(X)). We also considered computing the weights via
Softmax-normalization over the modalities (as done in the
weighted sum- and product-fusion) but observed a significant
performance decline. The reasoning behind w is to enhance
the contribution of the most certain class predictions in the
fusion stage [41].

III. EXPERIMENTAL RESULTS

A. Testbed

We chose the multimodal Drive&Act dataset [2] as our
evaluation testbed as it provides a diverse set of driver
behaviours recorded with eight synchronized sensors, there-
fore enabling a comprehensive study of fusion techniques
with a large set of modalities. Drive&Act modalities include
one RGB-, one depth-, and six Near-Infrared (NIR) views
with 12 hours recorded in total. The videos are labeled
with a hierarchical annotation scheme, where 34 fine-grained
activities constitute the main evaluation level. We follow
the original evaluation protocol comprising three splits into
training, validation and test with no intersection of drivers
(10, 2 and 3 people respectively).

The 34 fine-grained activity classes of Drive&Act are un-
balanced: the number of examples per behaviour type ranges
from 19 (taking laptop from backpack ) to 2797 (sitting still ).
Since machine learning models rely strongly on the amount
of training data, we report the performance separately for
common, rare, and all categories, as suggested in [38].
We report the top-1 and top-5 accuracies under balanced
and unbalanced conditions. For the balanced accuracy, the
metric is computed individually for each class and the
average over all 34 behaviours is reported. The unbalanced
accuracy is the percentage of correctly recognized examples



Fusion
Method

#Mod=2 #Mod=4 #Mod=8
Balanced Acc. Unbalanced Acc. Balanced Acc. Unbalanced Acc. Balanced Acc. Unbalanced Acc.

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
Sc

or
e-

le
ve

l Avg. w/o weight. (standard) 72.68 92.23 77.41 94.59 80.12 95.13 84.9 96.70 82.01 96.60 86.27 97.54
Average w. weight. 72.18 92.22 76.87 94.59 80.00 95.14 84.67 96.70 81.96 96.64 86.20 97.56

Median 72.68 92.23 77.41 94.59 79.66 95.64 84.69 97.24 81.22 96.84 85.98 97.71
Max 71.88 92.18 76.55 94.51 79.28 95.06 83.70 96.58 82.76 96.47 85.84 97.36

Product w/o weight. 74.51 94.60 80.06 96.34 80.67 96.54 85.59 97.67 82.44 97.01 86.86 97.92
Product w. weight. 74.47 94.60 80.05 96.34 80.71 96.54 85.62 97.67 82.44 96.99 86.86 97.90

R
an

k-
le

ve
l Majority 72.64 92.23 77.32 94.59 79.70 95.13 84.62 96.70 81.51 96.51 86.05 97.44

Borda count w/o. weight. 65.76 92.88 73.95 95.03 77.83 96.18 83.85 97.44 80.18 97.17 85.64 98.08
Borda count w. weight. 72.48 92.43 77.23 94.66 80.11 95.14 84.92 96.68 81.99 96.56 86.30 97.51

Reciprocal Rank 65.88 92.37 74.08 95.29 75.36 95.37 82.32 97.31 79.26 96.33 85.32 97.56

TABLE III
PERFORMANCE OF LATE-FUSION METHODS ON COMMON CLASSES OF THE DRIVE&ACT TEST SET

Fusion
Method

#Mod=2 #Mod=4 #Mod=8
Balanced Acc. Unbalanced Acc. Balanced Acc. Unbalanced Acc. Balanced Acc. Unbalanced Acc.

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Sc
or

e-
le

ve
l Avg. w/o. weight. (standard) 60.25 81.36 74.31 92.19 65.78 86.50 81.45 94.81 68.35 88.75 83.01 95.87

Average w. weight. 59.85 81.36 73.79 92.19 65.73 86.51 81.25 94.81 68.46 88.7 82.98 95.88
Median 60.25 81.36 74.31 92.19 65.76 87.86 81.32 95.56 67.62 90.73 82.74 96.29

Max 59.70 81.18 73.49 92.06 66.27 86.26 80.53 94.63 69.36 88.51 82.70 95.67
Product w/o weight. 61.91 84.79 76.89 94.23 66.21 89.97 82.15 96.18 68.22 91.24 83.52 96.57
Product w. weight. 62.02 84.72 76.91 94.22 66.23 89.97 82.18 96.18 68.14 91.23 83.50 96.55

R
an

k-
le

ve
l Majority 60.23 81.36 74.23 92.19 65.84 86.37 81.22 94.79 68.13 88.59 82.84 95.75

Borda count w/o weight. 55.08 83.32 70.81 92.99 64.24 88.34 80.48 95.74 67.22 91.54 82.48 96.78
Borda count w. weight. 60.15 81.53 74.15 92.23 65.81 86.37 81.46 94.76 68.26 88.81 83.03 95.88

Reciprocal Rank 54.26 81.17 70.78 92.75 61.91 88.41 78.85 95.70 65.92 90.04 82.02 96.06

TABLE IV
PERFORMANCE OF LATE-FUSION METHODS ON ALL CLASSES OF THE DRIVE&ACT TEST SET

over the complete dataset, (i.e. , in unbalanced settings
the underrepresented classes acquire a smaller weight). The
additional top-5 accuracy is especially useful on Drive&Act
since we might be interested in coarser recognition and
dismiss mistakes caused by highly similar classes (such as
opening and closing bottle).

We use k = 5, m = 60 and γ = 1 for Borda Count and
Reciprocal Rank Fusion and product fusion according to
the previous literature [30], [39]. For training the eight
unimodal classifiers, the initial I3D weights are initialized
using the Kinetics dataset [16], as done in the original
Drive&Act work [2] and then optimized for driver behaviour
classification with stochastic gradient descent using the initial
learning of 0.01 (decreased by a factor of 10 after 50 and 100
epochs), momentum of 0.9, weight decay of 1e-7 and mini-
batch size of 8. During training, temporal data augmentation
samples clips of 64 frames and spacial data augmentation
computes random crops of size 224 × 224.

B. Results

The main objective of our experiments is to determine the
impact of fusion strategies for the probability estimates of
multimodal predictors in the context of driver observation,
where averaging has presumably been the most common
choice for fusion at decision-level [2], [1], [9], [4]. Tables
II, III and IV display balanced and unbalanced top-1 and
top-5 accuracies for different fusion schemes and rare,

common and all driver behaviour categories respectively.
In all settings, we consider 2, 4 and all 8 Drive&Act
modalities (the 2 and 4 modalities were chosen by selecting
the first 2/4 modalities from a random permutation of all
available views). In Table II (underrepresented behaviours),
product-fusion and max-fusion yielded the best outcome
(for example, 1.82%, 5.53%, 2.01% and 5.51% gain in
performance compared to the conventional score averaging
for the different metrics and four modalities). Interestingly,
the models with best results in terms of the top-1 accuracy
are not necessarily the best as it comes to the top-5 results.
This hints that some models are better at coarser recognition,
since the top-5 metrics often omits fine-grained confusions,
such as preparing food vs. eating. For instance, Borda Count
is the best performing fusion method for 8 modalities in
terms of the top-5 accuracy, while it usually yields similar
or slightly worse results compared to averaging looking at
the top-1 metrics. While additional weighting does not have
a significant influence on product- and average-fusion, it
positively impacts the Borda Count results.

These results are confirmed through our experiments on
common and all categories (Tables III and IV): product- and
max-fusion alternate in being the frontrunner, while aver-
aging is not the most effective choice in all settings. Inter-
estingly, while max-fusion oftentimes outperformed product-
fusion by a small margin, product-fusion is consistently more
effective as it comes to top-5 accuracy, indicating, that it



Fig. 3. Per-category accuracy for the best unimodal classifier (blue bar) and a multimodal model with eight views and product-fusion (green dot).

Modality Balanced Acc. Unbalanced Acc.
Top-1 Top-5 Top-1 Top-5

Center mirror, NIR 63.09 88.60 77.80 94.63
A-Column driver, NIR 59.92 87.19 73.69 94.09
Face view, NIR 42.32 70.23 55.74 84.84
Ceiling (back view), NIR 61.87 84.18 76.84 93.03
A-Column co-driver, NIR 65.05 87.52 78.59 94.38
A-Column co-driver, RGB 62.70 84.52 74.80 92.91
A-Column co-driver, Depth 59.83 84.41 71.73 92.47

Multimodal (product) 68.22 91.24 83.52 96.57

TABLE V
UNIMODAL PERFORMANCE FOR ALL CLASSES IN DRIVE&ACT

might be useful in coarser recognition. Overall, score-level
approaches suit better than ranking-based strategies (with
very few exceptions, where Borda Count is effective in terms
of the top-5 accuracy).

As expected, utilizing more modalities positively impacts
the recognition rates (for example, we achieve the top-1
balanced accuracy of 61.91%, 66.21% and 68.22% for 2,
4, and 8 modalities and all categories, see Table IV). As
previously mentioned, the modality choice was conducted via
a random permutation of all Drive&Act data sources. Since
the first modality in the resulting sequence was A column
co-driver, depth, adding 1, 3 and 7 additional modalities
improves the unimodal performance by 2.1%, 6.38% and
8.39% accordingly (see Table V for the unimodal results).
Lastly, in Figure 3 we compare our multimodal system
(eight modalities with product-fusion) to the best performing
unimodal view, which is A column co-driver, NIR accord-
ing to Table V. The individual categories in Figure 3 are
sorted by their accuracy in the unimodal setting, giving
insight on how hard-to-recognize these behaviour types are.
Overall, multimodality leads to performance improvement
in almost all behaviour types, but the effect is different
depending on the visibility and recognition difficulty: the
largest benefits of multimodality were observed in driver
behaviours with medium recognition difficulty. For instance,
classification of examples with the driver writing, taking off
sunglasses or talking on phone was improved by 24.86%,

12.5% and 20.81%. For “easier” driver behaviours, using
more modalities positively influenced the performance but
the effect is rather small (for example, only 2.24% im-
provement for sitting still). This is not surprising, as one
effective modality might be already sufficient to recognize
such activities. Interestingly, the results were rather mixed
for very “hard to recognize” driver states, as the performance
is improved in some cases (10% increase for putting laptop
into backpack but 4% and 7% decline for opening backpack
and preparing food, which is often confused with eating).
Since we considered the best performing unimodal classifier,
we believe that for certain difficult categories this modality
was overwhelmingly better than other sensors, which rather
constituted additional noise. The choice of modalities should
therefore depend on the recognition use-case and behaviours-
of-interest, but if a broad range of diverse secondary driver
behaviours is required, multimodality is a powerful tool as
it complements the advantages and unique characteristics of
the individual sensors.

IV. CONCLUSION

In this work, we revisit the paradigm of decision-level
fusion in the context of multimodal driver observation, where
the predictions of the individual unimodal classifiers were
predominantly joined via score averaging in the past [2],
[1], [9], [4]. We operationalize and study different variants
of seven decision-level fusion paradigms used in general
machine learning literature in the context of driver behaviour
understanding. We train eight unimodal classifiers on data
provided by eight different cameras placed inside the vehicle
cabin using a standard backbone neural network for driver
activity categorization and equip them with different types
of decision-level fusion modules for linking the probability
estimates in a final decision. We found that late fusion based
on the product-rule and max-rule lead to the best recognition
results, but the effect depends on the task difficulty and
number of modalities. This suggests that while the selection
of the fusion scheme impacts the driver activity recognition
performance noticeably, the conventional strategy of averag-
ing the prediction scores is usually not the best choice.
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