
Discovering Interpretable Machine Learning Models
in Parallel Coordinates

Boris Kovalerchuk
Dept. of Computer Science

Central Washington University,
USA

BorisK@cwu.edu

Dustin Hayes
Dept. of Computer Science

Central Washington University
USA

Dustin.Hayes@cwu.edu

Abstract—This paper contributes to interpretable machine
learning via visual knowledge discovery in parallel coordinates.
The concepts of hypercubes and hyper-blocks are used as easily
understandable by end-users in the visual form in parallel
coordinates. The Hyper algorithm for classification with mixed
and pure hyper-blocks (HBs) is proposed to discover hyper-blocks
interactively and automatically in individual, multiple,
overlapping, and non-overlapping setting. The combination of
hyper-blocks with linguistic description of visual patterns is
presented too. It is shown that Hyper models generalize decision
trees. The Hyper algorithm was tested on the benchmark data
from UCI ML repository. It allowed discovering pure and mixed
HBs with all data and then with 10-fold cross validation. The links
between hyper-blocks, dimension reduction and visualization are
established. Major benefits of hyper-block technology and the
Hyper algorithm are in their ability to discover and observe hyper-
blocks by end-users including side by side visualizations making
patterns visible for all classes. Another advantage of sets of HBs
relative to the decision trees is the ability to avoid both data
overgeneralization and overfitting.

Keywords—Interpretable machine learning, parallel
coordinates, hypercube, hyper-block, decision tree.

I. INTRODUCTION
 Further progress in Machine Learning (ML) heavily
depends on acceptance and interpretability of produced models.
Visual knowledge discovery is a promising avenue to deal with
this challenge [Kovalerchuk et al., 2018-2020]. Below we
present a visual knowledge discovery approach based on
parallel coordinates [Inselberg, 2009] that include pattern
discovery, data and model visualization, dimensionality
reduction, and model simplification. This paper is focused on
supervised classification models.
 Building interpretable ML models often requires putting the
end-user in the driver seat of development of a trusted model.
The end-users often are not experts in machine learning, but
domain experts. The formal ML models often are not
comprehensible for them, serving as black boxes. The visual
knowledge discovery approach allows uncovering ML models,
making them interpretable for the end-users and putting them
in the driver seat of model development.
 Parallel coordinates are very well suited to visual knowledge
discovery [Inselberg, 1998, 2009; Estivill-Castro et al., 2020;
Sansen et al, 2017; Xu et al, 2007]. They visualize
multidimensional data in two dimensions without loss of any

multidimensional information. In addition, parallel coordinates
support interpretability, because they use the original attributes
which have direct domain meaning for the domain end-users.
 The proposed approach is based on the concepts of
hypercubes (HCs) and hyper-blocks (HBs) that are naturally
visualized in parallel coordinates with clear interpretation.
They provided the end-users the ability to be active in
interactive constructing and improving such models not only
using models. Decision tree models with parallel coordinates
have been proposed in [Estivill-Castro et al., 2020; Tam et al,
2016]. We show that the hyper-block approach produces
models that are more general than decision trees (DTs).
 Section II defines: (1) hypercubes and hyper-blocks along
with their visualization in parallel coordinates and (2)
algorithms to discover them in interactive and automatic ways.
We first focus on individual HCs and HBs, then on multiple
HBs. With multiple HBs we focus on discovering and
visualizing pairs of non-overlapping HBs and combination of
HBs. Linguistic description of visual patterns is presented next.
 Section III presents supervised learning in parallel
coordinates. First, we describe challenges of this learning, then
we introduce a classification algorithm Hyper for pure and
mixed/impure hyper-blocks. The comparison with decision
strees and Hyper models as generalized decision trees follow.
To test the approach, we used a benchmark Wisconsin Breast
Cancer (WBC) data [Dua, Graff, 2019]. Next, we established a
link between hyper-blocks, dimension reduction and
visualization of lower dimensional hyper-blocks. Section IV
presents conclusion and future studies in machine learning in
parallel coordinates. The proposed approach was implemented
in VisCanvas 2.0 software, which is based on the previous
version VisCanvas [2018].

II. VISUAL DISCOVERY OF HYPER-BLOCKS

A. Hypercubes and hyper-blocks

Hypercubes (HCs) and hyper-blocks (HBs) are interpretable
concepts that naturally present in parallel coordinates.

 Definition. A hypercube (n-cube) is a set of n-D points
{x=(x1,x2,…,xn)} with center in n-D point c=(c1,c2,…,cn) and
side length L such that

 ∀i || xi-ci || ≤ L/2 (1)

 A hypercube is an n-dimensional generalization of ordinary
square (n=2) and cube (n=3). A unit hypercube has L=1. A
binary hypercube is an n-cube in the binary n-D space En.
 Definition. A hyper-block (hyperrectangle, n-orthotope)
is a set of n-D points {x=(x1,x2,…,xn)} with center in n-D point
c=(c1,c2,…,cn) and side lengths L=(L1, L 2,…, Ln) such that

 ∀i || xi-ci || ≤ Li /2 (2)

(a) hypercube A with equal
coordinates

(b) zigzag hypercube B

Fig. 1. Examples of hypercubes.

Fig. 2. Hypercubes in adjustable parallel coordinates shifted up and down

to simplify hypercube patterns.
Thus, the n-cube is the special case of a hyper-block. The
concept of a hypercube is illustrated in Figs. 1 and 2 in 20-D
parallel coordinates. The middle lines show 20-D centers of
these HCs. Fig. 2 shows hypercubes in adjustable parallel
coordinates (APC), where coordinates are shifted up and down
to make hypercube patterns simpler for human perception
[Kovalerchuk, Grishin, 2019]. Fig.3 shows all Wisconsin
Breast Cancer (WBC) data in parallel coordinates

Fig. 3. All cases of two classes of WBC data.

B. Algorithm to generate hyper-blocks

Hyper-blocks can be composed of hypercubes that share some
dimensions and have their centers within the range of each
other. However, not all combinations of HCs are hyper-blocks.

(a) (b) (c) (d) (e)

Fig. 4. Adjacency options for 2-D hypercubes.
 Fig. 4 shows different alternatives how HCs can be
combined. In Fig. 4a, two adjacent “2-D hypercubes” (squares)
share n-1 dimensions (1-D line for the squares) and can form a
single hyper-block. In Fig. 4b, two adjacent “2-D hypercubes”
(squares) share only n-2 dimensions (a single point) and do not
form a single hyper-block. Figs. 4cd show more adjacent HCs
for the square in the center, while Fig. 4e shows overlapping
HCs that do not from a single hyper-block. Due to these
complex relations between HCs and HBs, in this work, we start

with small pure HCs seeded in the individual n-D points as
centers and grow them to HBs keeping them pure.
 Below we present the steps of the Merger Hyper-blocks
(MHyper) algorithm for pure and dominant hyper-blocks.
Step M1: Seed an initial set of pure HBs with a single n-D point
in each of them (HBs with length equal to 0).
Step M2: Select a HB x from the set of all HBs.
Step M3: Start iterating over the remaining HBs. If HBi has the
same class as x then attempt to combine HBi with x to get a pure
HB.

Step M3.1: Create a joint HB from HBi and x that is an
envelope around HBi and x using the minimum and
maximum of each dimension for HBi and x.
Step M3.2: Check if any other n-D point y belongs to the
envelop of HBi and x. If y belongs to this envelope add y
to the joint HB.
Step M3.3: If all points y in the joint HB are of the same
class then remove x and HBi from the set of HBs that need
to be changed.

Step M4: Repeat step 3 for all remaining HBs that need to be
changed. The result is a full pure HB that cannot be extended
with other n-D points and continue to eb pure,
Step M5: Repeat step 2 for n-D points do not belong to already
constructed full pure HBs.
Step M6: Define an impurity threshold that limits the percen-
tage of n-D points from opposite classes allowed in a domi-
nant HB.
Step M7: Select a HB x from the set of all HBs.
Step M8: Attempt to combine x with remaining HBs.

Step M8.1. Create a joint HB from HBi and x that is an
envelope around HBi and x.
Step M8.2: Check if any other n-D point y belongs to the
envelop of HBi and x. If y belongs to this envelope add y
to the joint HB.
Step M8.3: Compute impurity of the HBi (the percentage
of n-D points from opposite classes introduced by the
combination of x with HBi.)
Step M8.3 Find HBi with lowest impurity. If this lowest
impurity is below predefined impurity threshold create
a joint HB.

Step M9: Repeat step 7 until all combinations are made.

C. Individual hyper-blocks

As was illustrated above a major challenge for discovering
patterns is in the overlapping of lines (polylines) that represent
individual cases (n-D points). Hundreds of lines can follow
exactly the same path under a given visualization resolution
even when the values differ. A user cannot distinguish such
lines and cannot see how many lines are in the hypercube and
which line segments belong to which n-D points.
 Histograms for individual hyper-blocks. Histograms help
to address this issue. Fig. 5 visualizes a distribution of n-D
points (pink lines) within a hyper-block as white rectangles and
black lines of the same length. Each white rectangle and black
line correspond to a data quantile. The width of the pink lines
indicates their frequencies similar to [15]. Fig. 5 clearly shows
where these 9-D points are distributed in the 9-D WBC space.

Fig. 5. Distribution of 9-D points in parallel coordinates with white rectangles
to show quantiles for two WBC HBs.

 Figs. 6 and 7 show a way to represent visually a distribution
of polylines in each hyper-block side-by-side with quantiles in
a separate window.

(a) HB A with white background (b) Frequency of cases for HB A.

 Fig. 6: Hyper-block A and its distribution using quantiles.

Fig. 7: Hyper-block B and its distribution using quantiles.

Fig. 8. Normal visualization of a
hyper-block.

Fig. 9. Visualization of a hyper-
block with line frequencies enbeded.

Fig. 10. View of the hyper-block’s
lines with their frequencies.

Fig. 11. Mixed hyper-blocks.

Also Figs. 6 and 7 clearly show the differences between HBs A
and B especially in coordinate X6 where their distributions do
not overlap. Figs. 8 and 9 show another example of HBs. The
width of lines indicates their frequencies in Fig. 9. Thus, here
we have frequencies embedded to parallel coordinates. These
examples show that discovering such distinct HBs leads to
interpretable classification rules. Figs. 10-11 show more HB
with embedded frequency by the line width. Fig. 10 shows a
pure HB with a black line that represents the mean of frequency
withing the HB. Fig.11 shows a mixed HB.

D. Multiple hyper-blocks
Side-by-side view of hyper-blocks. Below we consider a
challenging task of visualizing hyper-blocks that do not overlap

in n-D space to also not overlap in 2-D space when drawn in
parallel coordinates. This is possible in very simple situations,
Figs. 6 and 7 show HBs that do not overlap in 9-D space, but
overlap in parallel coordinates in 2-D. To avoid drawing such
HBs one on the top of another one, we presented them in
separate Figs. 6 and 7, i.e., side-by-side. Fig. 12 shows how this
side-by-side option is implemented. Another approach is
representing the HBs in a 3-D space. First, the camera is placed
to only view two dimensions normally. Then the user can tilt
the camera to reveal the 3-D space where each hyper-block is
visible in a separate plane in the z-coordinate
.

Fig. 12. All WBC discovered pure HBs of two classes side by side.

 Non-overlapping areas. The next approach is showing the
differences in distribution of HBs in n-D space of parallel
coordinates. First, all unique pairings of hyper-blocks are made.
Then a rectangle is drawn on the dimensions where a given pair
do not overlap. This was visualized in several ways. Fig. 13
shows one of these ways. The more pairs that do not overlap in
a coordinate, the darker the rectangle is in Fig. 13. It is clear
from Fig. 13 that HBs less overlap in X6 coordinate.

Figure 13. Locations where pairs of hyper-blocks do not overlap.

E. Discovering and visualizing pairs of non-overlapping HBs

 The difficulties to recognize visually patterns of different
classes increase significantly when polylines of opposing
classes heavily overlap requiring computational, and interactive
tools to make the difference clearer.
 One of the approaches is finding subsets of coordinates
where the difference is quite clear. The challenge of the search
for such subsets is in multiplicity of HBs that represent each
class. An individual pair of HBs from opposing classes can be

(a) Hyper-block B highlighted by
white background

(b) Frequency of cases for this
hyper-block

quite distinct in some parallel coordinates. However, as the
number of HBs that represent classes increases, the likelihood
of overlap of pairs in each coordinate goes up. It means that the
likelihood for gaining valuable insights goes down past just
comparing two HBs. Therefore, we search for distinctive pairs
of HBs and visualize each such pairs individually.
 Below we demonstrate results of the successful search in
WBC data that is implemented in VisCanvas 2.0. A sequence
of automatic and interactive steps to reach this point taken in
VisCanvas are as follows:

1. Auto-generate hyper-blocks for opposing classes,
2. Chose hyper-blocks which contain the most of data

n-D points for each class,
3. Auto-reduce dimensions of these hyper-blocks to

dimensions where there these HBs do not overlap,
4. Visualize these HBs in reduced dimensions,
5. Ascertain a classification rule based on these HBs

and evaluate its accuracy.
These steps resulted in 93.7% accuracy for these WBC data.
Fig. 14 shows two such discovered HBs.

F. Exploration and combination of hyper-blocks
 Exploration of hyper-blocks in VisCanvas 2.0 starts with
selecting a line that corresponds to an n-D point of interest and
constructing a hypercube with this line as its center line and a
specific distance from this line, e.g., 0.2. The borders of HCs
that can be toggled on and off. Fig. 15 shows hypercubes with
and without their lines.
 Combination Modes. We explored three different modes
to combine hypercubes together. The first mode (M1) checks
whether all dimensions of each center are within range of each
other, i.e., overlap of these hypercubes. The second mode (M2)
checks if at least a single point exists within both hypercubes.
Both modes to be successful require additional check of
presence of cases from other classes that can be in the joint
hyper-block. The third mode (M3) checks if n–1 dimensions of
both hypercubes are the same and one dimension of each center

is within range of the other. This condition rarely happens, and
Fig. 16 illustrates it.

Fig. 15. Hypercubes without lines. Fig. 16. Hypercubes with lines.

 In addition, a threshold display allows showing hypercubes
that have a certain number of elements within them. Some
hypercubes and hyper-blocks overlap since several n-D points
exist in many of them. Finding and removing overlaps and
defining joined new hypercubes or hyper-blocks will minimize
the number of them. Hyper-blocks that have a low purity ratio
are not good candidates to combine with other hyper-blocks.
Therefore, it is better to refuse these HBs, e.g., by holding them
in their own list of refused HBs. These blocks can then be drawn
in a different color, toggled on/off, etc. Below we present
algorithms and results of computational experiments for
combining HBs and VisCanvas 2.0 features that support it.
 VisCanvas 2.0 checks that different n-D points produce the
same HBs and eliminates duplicates. It combines adjacent
hypercubes by checking every dimension of the current HC
against every dimension of every other HC. If all differences
divided by 2 are less than or equal to the threshold value, then
they are adjacent. This is beneficial, because it can potentially
combine a neighborhood consisting of dozens of cubes into a
single hypercube. On the other hand, the hypercubes in this
neighborhood may have provided insight into an area of that
space that must be discovered manually. Finally, VisCanvas 2.0
counts the total number of unique hypercubes and the number
of them that have cases of multiple classes. This is displayed
for the user to analyze and to check for overfitting.
 A user can view the ratio of HCs that have cases of multiple
classes compared to the total number of unique cubes. For
WBC data it shows a HC that contains 93 cases from class 1,
and two cases from class 2 that are visualized in different
colors. Multiple algorithms can be designed to combine HBs.
One of them is presented below.

G. Linguistic description of visual patterns
 Linguistic descriptions of hyper-blocks combined with
distribution visualization. A linguistic pattern description is
designed to simplify capturing the visual patterns by users.
Often such descriptions are more concise and “natural” for
humans. It takes into consideration the entire n-dimensional
space and not just the sub-space that a given hyper-block
occupies. A user can activate a linguistic description by using a
simple UI. It produces a pop-up window that shows a short
paragraph describing the current visualization in a linguistic
form. In this way a plainer English explanation is available.
Currently, these descriptions identify data concentration in the
lower, middle, and upper thirds of the coordinates, while more
detailed splits are under development. The current
implementation allows merging descriptions of dimensions that
are concentrated in the same thirds of them into a compact
single description as Fig. 17a shows.

(a) Two non-overlapping hypercubes.

(b HCs from (a) in most informative coordinates X2 and X6 with
ffrequency visualization of yellow HB.
Fig. 14. Parallel coordinates with two hyper-blocks that contain the most

amount of data for their respective classes.

(a) A hyper-block with frequency pattern and annotation.

(b) All WBC data of both classes with linguistic annotation.

Fig. 17. WBC data visualized with linguistically annotated patterns.

 Due to occlusion, the distribution of n-D points can be
corrupted in visualization as it is the case in Fig. 17b. A
linguistic description avoids such corruption because it is based
on the statistical data analysis. It shows advantages of
combining visualization, frequencies, and linguistic
description. Fig 17a shows all three aspects of the hyper-block:
n-D points, their frequency distribution and linguistic
description. While linguistic description in Fig. 17 is well

structured relative to three areas of data concentration (lower,
middle, upper) in the respective coordinates, it is not in the form
of traditional natural language (NL) sentences. Fig. 18 shows
modified linguistic descriptions as traditional NL sentences. It
is also more concise and allows the user to see the differences
between classes in a linguistic form. See Fig. 18.

III. SUPERVISED LEARNING IN PARALLEL COORDINATES

A. Hyper-block-based classification algorithm (HYPER)
A.1. Mixed and pure hyper-blocks
 A hyper-block-based classification (Hyper) algorithm is
a supervised learning algorithm that learns and visualize
interpretable rules in parallel coordinates that is implemented
in VisCanvas 2.0 software. The main idea of Hyper algorithm
is using n-D hyper-blocks for classification of n-D points
(cases/samples). First it searches for dominant hyper-blocks
where most of n-D points belong to a single class. Say, HB1 is
dominant for class 1, HB2 is dominant for class 2 and so on. If
a new n-D point x belongs to a respective HB where class Ci
dominates then x is classified to class Ci. If x does not belong
to any dominant HB, then x is classified to the nearest HB. If
there are several competing HBs nearby, then the those nearest
k HBs vote and x is classified to the class with majority votes.
If there is not enough HBs to vote in the vicinity, the Hyper
algorithm refuses to classify this n-D point x.
 The novelty and benefits of Hyper algorithm are in
integration with visualization in parallel coordinates and
respective visual knowledge discovery. Its basic algorithmic
ideas can be traced back to k-NN first developed in 1951 and
the algorithm of computation of estimates [Zhuravlev,
Nukiforov, 1971]. There are also recent works on hypercubes
relevant to k-NN [Qin et al, 2020; Ohmaind et al, 2020].
Below we introduce the notation and describe the Hyper
algorithm in more details. Let HBi be a hyper-block where n-D
points of class Ci dominate. Also let {HB}k be a set of k nearest
HBs for n-D point x, which vote for class Ci, i.e., most of these
hyper-blocks are class Ci dominant HBs.
 The Hyper algorithm learns rules in the following forms:
Rule 1: If n-D point x belongs to any dominant hyper-block
HBi, for class Ci, then x belongs to class Ci.
Rule 2: If HBi is a nearest hyper-block for n-D point x, then x
belongs to class Ci.
Rule 3: If {HB}k is a set of k nearest hyper-blocks for n-D point
x and the majority of {HB}k vote for class Ci, then x belongs to
class Ci.
More formally these rules are:
 R1: ∃ HBi (x ∈ HBi) ⇒ x ∈ Ci. (1)

R2: (HBi is a nearest HB for x) ⇒ x ∈ Ci (2)
R3: ({HB}k is k-NN HBs for x)&(Vote({HB}k)=Ci)⇒x∈Ci (3)
The major steps of Hyper algorithm to learn R1-R3 are:
Step H1: Split data to training data Tr and validation data Vd
(e.g., by 10-fold cross validation) and split Tr to Trh for learning
HBs and Trk learning the number of nearest neighbors HBs.
Step H2. Learn dominant HBs.
Step H3. Learn the number k of nearest neighbors HBs.
Step H4. Generate rules R1-R3.
Step H5. Validate rules R1-R3 using validation data Vd.
 Below we present Steps H2 and H3 in more details.
Step H2. Learn dominant HBs.

Step H2.1. Construct all pure HB on training data Tr by the
algorithm presented in Section II.B.

Fig. 18. Linguistic description of all WBC data.

Step H2.2. Collect all n-D points {bj} that belong to single-
point HBs (HBs without other n-D points).
 Step H2.3. For each bj find a nearest HB. If the class of bj
and the nearest pure HB is the same, record it as a positive
classification, else record it as negative classification.

 Step H2.4. Attempt to combine HBs to larger dominant
HBs by adding small HBs of other classes to adjacent large HBs
keeping HB purity above in a predefines threshold T.
Step H3. Learn the number of nearest neighbors HBs k.

 Step H3.1. Set up limits for the number k of nearest HBs.
 Step H3.2. Loop through k is this interval to find k with

most accurate voting classification for all n-D points in Trk. If
predefined accuracy threshold Q is reached, finish learning
process, else leave n-D points in Trk unclassified and exit.

A.2. Sets of hyper-blocks as generalized decision trees

 Below we discuss learning simple dominant HBs such as
common in decision trees. According to the HB definition it
satisfies inequalities || xi-ci || ≤ Li /2 for respective center n-D
point c=(c1,c2,…,cn) and lengths L=(L1, L 2,…, Ln).
 Consider an example of a hyper-blocks || xi-ci || ≤ ci in
parallel coordinates that are in [0,10] interval. This inequality
is true for all non-negative xi ≤ 2ci, in other words, xi ∈[0,2ci].
Such simple HB needs only ci values that identify its center.
Similarly, consider a complimentary HB where xi∈(2ci,10], i.e.,
xi > 2ci. Its center h = (h1,h2,…,hn) is defined by hi=(10-2ci)/2.
As we see these HBs are defined by a simple set of inequalities.
 The Hyper algorithm allows discovering and visualizing
hyper-blocks of the type of branches of decision trees (DTs). It
is based on a direct link between DTs and hyper-blocks.
Consider, a branch of DT: x1>5 & x2< 6 & x3> 2 that is labeled,
say, by class 1. Assume that all coordinates Xi are in [0.10]
interval, then HB for this branch is defined by three intervals:

x1∈ (5,10], x2∈ [0,6) and x3∈ (2,10].
 Alternatively, instead of staring from a DT, we can start
from a hyper-block. Let HB be given by three intervals x1∈
(5,7), x2∈ (3,6), and x3∈ (2,4) within interval [0,10]. It is
equivalent to the DT branch:

x1>5 & x1<7 & x2< 6 & x2> 3 & x3> 2 & x3< 4 (4)
These examples show a 1:1 mapping between a DT branch and
a hyper-block without loss of generality.
 A user can create a DT outside of VisCanvas 2.0 and then
convert each DT branch to a respective HB to be visualized in
VisCanvas 2.0. Alternatively, a set of HBs produced in
VisCanvas 2.0 can be viewed as a set of DTs as follows.
 Assume that each discovered HB is represented by a DT
branch like (4). Can we combine these branches to a single tree?
It is possible only in a special situation when branches have a
common root, like in the following example. Say, branch A
contains inequality xi≤T, and branch B contains the opposite
inequality xi>T, then coordinate Xi can serve as a common root
for A and B. This analysis shows that outside of special cases,
a set of HBs (HB “forest”) is a more general model than a DT
model. A set of HBs removes a limitation of a single DT
requiring a common root.

B. WBC case study
B.1. Learning of hyper-blocks with all data

 WBC data have been used for exploration of the Hyper
algorithm in comparison with ID3 decision tree algorithm
implemented in VisCanvas 2.0 and Scikit-learns, respectively.
First, we attempt to discover a hyper-block HBi that is dominant
for class Ci and then to build a rule on all WBC data:

If x∈ HBi ⇒ x ∈ class Ci dominant in HBi (5)
 The use of all WBC data for training (discovering HBs)
without setting aside a subset for validation allows getting the
best-case accuracy estimate possible on WBC data with HBs.
 Table 1 presents the HBs generated by the Hyper algorithm
when using a 0.2 distance from the center of HB in WBC data
normalized to [0,1]. Total 22 HBs have been produced: 20 pure
and 2 mixed. Out of 20 pure HBs 7 belong to the class B
(benign) and 13 to class M (malignant). Two mixed HBs are
very different. One is almost pure class M dominant, 92/1, but
the second HB is not dominant at all with 2 cases and ratio 1/1.
In this situation when HBi is not dominant for any class, all n-
D points of this HB are classified to class M (malignant) to
avoid more dangerous misclassification to the benign class.
Table 1. Hyper-blocks with using a 0.2 center distance with the WBC dataset.

Type of HCs Number of HCs Number of n-D points in HCs
Pure 20 588

Mixed 2 95
Total 22 683

 The number of n-D points in each HB also varies very
significantly from 404 n-D points to a single n-D point for class
B, and from 76 n-D points to single n-D point for class M (see
Table 2). The produced HBs overlap due to the version of the
algorithm used. A more elaborated version allows removing
overlaps. Having only two mixed HBs with ratios 92/1 and 1/1
the Hyper algorithm misclassified only two benign cases with
total accuracy 681/683, i.e., 99.70%.

Table 2. Number of n-D points in pure overlapped HBs for WBC dataset.
class Number of n-D points in hyper-block

B 404 392 92 34 16 5 4 1
M 76 44 42 39 34 25 18 18 12 9 7 1

 This rule relies on several small HB, where 7 HBs contain
9 or less n-D points, which can be interpreted as overfitting.
One of the ways to avoid it is refusing to classify n-D points
that are in these HBs, i.e., removing them from the rule. These
HBs contain 29 cases. It decreases the number of cases covered
by the rule to 683-29=654 (recall 95,75%) with precision
99.85% (653/654) that is slightly greater than the accuracy
99.7%. The HB threshold increase to 25 cases removes 11 HBs
with 91 n-D points, resulted in recall of 86.68% and precision
of 99.83. These precisions set up two other best-case
benchmarks for HB-based algorithms on WBC data.

B.2. Supervised learning with training and validation data

 10-fold cross validation was performed on the WBC
dataset using the VisCanvas 2.0 and Scikit-learns ID3 decision
tree implementation. The Hyper algorithm in VisCanvas 2.0
automatically created hyper-blocks for each 10-fold split, then
rules (1)-(3) formed from these HBs have been tested on the

validation folds. This includes using a k-NN approach for n-D
points that do not belong to any HB. Three versions of k-nearest
neighbors were explored for each n-D point x with k=1,3, 5:

(N1) the distance from x to the center n-D points of
discovered hyper-blocks,

(N2) the distance from x to the mean n-D point of
discovered hyper-blocks,
(N3) the distance from x to the nearest n-D point

For N1-N3 with pure HBs, Table 3 presents the results that are
similar to each other with average accuracy above 95% and
reaching 97.61%. N3 produced the lowest results indicating that
it is more sensitive to the distribution of closest points, while
N1 and N3 based on means and centers are more robust. The
average accuracy for the ID3 decision tree is 92.85%, with min
equal to 89.86% and max equal to 94.58% that are below the
averages for N1-N3 showing the advantages of HBs for this
dataset. The DT has depth 8 and 23 branches which is greater
than the average number of HBs which is 18.1 in the worst case.
 Likewise, for N1-N3 with mixed HBs, Table 3 presents the
results with similar accuracy scores. This could be because the
number of HBs has been reduced to approximately 6 in
comparison with the pure HBs average of 18. These HBs cover
more space and it is easier to place n-D points within them for
classification. This means that the k-NN version of the
algorithms will be rarely needed, and so accuracies would be
consistent and there would be no need for N1, N2, or N3. It also
stayed above the averages of the decision tree except in the case
of minimum accuracies where they were lower than the
decision tree. Table 5 demonstrates the comparable ID3
decision tree on training data. Table 6 shows a confusion matrix
of this in ID3 decision trees on the representative validation fold
where the number of errors is greater for the cancer class than
produced by the Hyper algorithm.
 Table 3. Summary of experiments with WBC data using pure and mixed HBs.

Model
type

10-fold accuracy average
of HB average min max

k=1
N1 pure 95.52 91.04 100 16.9
N2 pure 95.22 89.55 100 16.9
N3 pure 93.58 86.57 100 16.9
N1 mix 93.43 86.57 97.01 5.4
N2 mix 93.58 86.57 97.01 5.4
N3 mix 93.28 86.57 98.51 5.4

k=3
N1 pure 96.57 92.54 98.51 17.3
N2 pure 97.61 94.03 100 17.3
N3 pure 94.78 91.04 97.01 17.3
N1 mix 93.88 88.06 98.51 7.1
N2 mix 93.88 88.06 98.51 7.1
N3 mix 93.73 88.06 97.01 7.1

k=5
N1 pure 96.42 92.54 100 18.1
N2 pure 96.42 92.54 100 18.1
N3 pure 94.78 89.55 100 18.1
N1 mix 96.12 91.04 98.51 6.4
N2 mix 96.12 91.04 98.51 6.4
N3 mix 95.82 91.04 98.51 6.4

 Table 4 shows confusion matrixes for the fold that is closest
to the average accuracy in 10-fold cross validation for pure and
mixed hyper-blocks used in the Hyper algorithm for k=1,3,5.

Table 4. Confusion matrixes for the fold that is closest to the average accuracy.
 Pure hyper-blocks

k=1

N1 B M
B 44 0
M 3 20

N2 B M
B 44 0
M 3 20

N3 B M
B 44 0
M 4 19

k=3

N1 B M
B 43 1
M 1 22

N2 B M
B 43 1
M 1 22

N3 B M
B 44 0
M 3 20

k=5

N1 B M
B 42 2
M 0 23

N2 B M
B 43 1
M 2 21

N3 B M
B 44 0
M 3 20

 Mixed dominant hyper-blocks
k=1

N1 B M
B 44 0
M 3 20

N2 B M
B 42 2
M 2 21

N3 B M
B 42 2
M 3 20

k=3

N1 B M
B 43 1
M 1 22

N2 B M
B 43 1
M 1 22

N3 B M
B 44 0
M 3 20

k=5

N1 B M
B 41 3
M 0 23

N2 B M
B 43 1
M 2 21

N3 B M
B 43 1
M 3 21

 Table 5. Number of n-D points in nodes of ID3 for WBC dataset.

 Cases Number of n-D points of two classes in the node
Node 1 2 3 4 5 6 7 8 9

 Class B 397 364 33 363 1 15 18 363 0
 Class M 217 9 208 2 7 3 205 1 1

Node 10 11 12 13 14 15 16 17 18
 Class B 1 0 15 0 15 3 362 1 9
 Class M 0 7 0 3 149 156 0 1 4

Node 19 20 21 22 23 24 25 26 27
 Class B 6 2 1 1 0 8 1 5 1
 Class M 45 9 147 0 1 0 4 16 29

Node 28 29 30 31 32 33 34 35 36
 Class B 2 0 1 0 0 1 4 1 0
 Class M 2 7 24 123 4 0 16 0 22

Node 37 38 39 40 41 42 43 44 45
 Class B 1 2 0 0 1 3 1 1 0
 Class M 7 0 2 20 4 4 12 1 6

Node 46 47 48 49 50 51 52 53 54
 Class B 1 0 3 0 1 0 0 1 0
 Class M 0 4 1 3 1 11 1 0 1

Node 55 56 57

 Class B 3 0 1
 Class M 0 1 0

Table 6. ID3 Confusion matrix.

ID3 2 4
B 45 2
M 5 17

We compared the complexity of HBs vs. DT by estimating the
amount of numbers needed to store HBs and DT. It had shown
that this DT needs more numbers with ratio above 1.5.

B.3. Merger

The steps of the Merger Hyper-blocks (MHyper) algorithm
(see section II.B) were performed on the WBC dataset in
conjunction with 10-fold cross validation. The average number
of HBs created for each fold was 17.3. Four of the folds contain
HBs that include only a single n-D point. Three folds had one
HB with only a single n-D point and another fold had two HBs
with only a single n-D point. To help this approach gain more
generality it was adapted to also consider dominant HBs. After
performing the previously outlined steps, we attempted to

reduce the number of single points HBs including impure
combinations. All steps of MHyper algorithm were performed
with a threshold of 10% impurity. It produced 5 HBs in average
for each fold without any single n-D point HB. This approach
of defining a threshold for the percentage of n-D points from an
opposite class allowed a balance between generalization and
accuracy to be made. Table 7 shows the resulting 5 HBs in a
representative fold. The merger algorithm allows overlap of
merged HBs which is seen in Table 7. The average number of
HBs decreases about 3 times from the initial number of pure
HBs. All these HBs have impurity less than 10% (see Table 7).
Table 7. Results of MHyper for impure HBs for a representative fold.

 Number of n-D points of two classes in HBs
Hyper-block 1 2 3 4 5

Cases of Class B 25 0 439 432 12
Cases of Class M 226 53 47 30 137

impurity 9.9% 0 9% 6.5% 8%

 We also compared complexity of HBs vs. the decision tree
by using the number of cases in the smallest merged HB. This
merged HB contains 53 cases, which is 7.76% of the overall
data. The DT’s minimum number of n-D points within its nodes
is 1. This is 0.15% of the overall data. It has 10 of these nodes
with a single element within it. It also has 46 nodes that contain
less than 53 cases. So, 80.7% of the DT’s nodes are less
generalized than the HB’s least generalized block. The merger
of HBs and pruning of DTs leads to higher generalization and
higher error rate that is controlled by the impurity threshold.

B.4. Simple hyper-boxes and dimension reduction

 Below we present experiments for rule discovery by the
Hyper algorithm with simple HBs of the type of decision tree
branches. A simplest discovered rule in WBC data is a one-
dimensional rule

if x6 < 3 then class benign else class malignant (6)
This rule has accuracy 91.22% with correctly classified 623
cases out of 683 total cases. A two-dimensional rule is

if x6<3 & x8<4 then class B (benign) else class M (7)
This rule has accuracy 93.85% with correctly classified 641
cases out of 683 total cases. A three-dimensional rule is
if x6<3 & x8<4 & x5 < 6 then class 2 (benign) else class M (8)
This rule has accuracy 94.58% with correctly classified 646
cases out of 683 total cases. The rules have been discovered in
a dimension reduction process in VisCanvas 2.0 where a user
can toggle coordinates on and off in the “Coordinate” tab of the
settings to reduce data dimension. This is resulted in reduction
of WBC dataset from 9-D down to the 3-D where patterns were
perceived previously visually. Fig. 14 displays two clearly
separated HBs of opposite classes where the violet HB contains
95 malignant cases, and the yellow HB contains 404 benign
cases. This is a large majority of the cases and the mirror like
difference of them makes the pattern easier to distinguish.

V. CONCLUSION
 This paper contributes to interpretable machine learning
via visual knowledge discovery in parallel coordinates by visual

pattern discovery, data and classification model visualization,
dimensionality reduction, and model simplification. It allows
putting the end-user in the driver seat of model development.
 The concepts of hypercubes and hyper-blocks are used as
the major concepts in this study to allow end-users to easily
understand patterns. The proposed Hyper algorithm was tested
on WBC data. It is shown that Hyper models generalize
decision trees.
 Major benefits of the Hyper algorithm are the abilities to
discover and observe HBs by end-users including observing all
HBs together side-by-side like in Fig. 12. It allows detailed
visual analysis of individual HBs of each class. HBs are well
understood by the end-users being directly presented in the
original attributes with the ability to cut down unimportant
attributes. Another advantage relative to the decision trees is
extended abilities to avoid data overgeneralization.
 The paper also outlined VisCanvas 2.0 software that
implements the HB approach. Future studies will include
maturing the Hyper algorithm and software to larger datasets
with GPU and multithreading.

REFERENCES
[1] Estivill-Castro V, Gilmore E, Hexel R. Constructing interpretable

decision trees using parallel coordinates. In: International Conference on
Artificial Intelligence and Soft Computing 2020, pp. 152-164. Springer.

[2] Inselberg A. Visual Data Mining with Parallel Coordinates,
Computational Statistics, Vol. 13, No. 1, 1998.

[3] Inselberg A. Parallel coordinates: visual multidimensional geometry and
its applications. Springer Science & Business Media; 2009 Aug 15.

[4] Dua, D. and Graff, C. UCI Machine Learning Repository, Irvine, CA:
University of California, 2019. http://archive.ics.uci.edu/ml.

[5] Kovalerchuk, B., Ahmad, M.A., Teredesai A., Survey of Explainable
Machine Learning with Visual and Granular Methods beyond Quasi-
explanations, In: Interpretable Artificial Intelligence: A Perspective of
Granular Computing (Eds.W. Pedrycz, S.Chen), Springer, 2021, 217-267.

[6] Kovalerchuk B. Visual knowledge discovery and machine learning,
Springer; 2018.

[7] Kovalerchuk B, Grishin V. Adjustable general line coordinates for visual
knowledge discovery in n-D data. Information Visualization. 2019,
18(1):3-2.

[8] Ohmaid H, Eddarouich S, Bourouhou A, Timouya M. Comparison
between SVM and KNN classifiers for iris recognition using a new
unsupervised neural approach in segmentation. IAES International
Journal of Artificial Intelligence. 2020 Sep 1;9(3):429.

[9] Qin Y, Cheng X, Li X, Leng Q. An Effective Multi-label Classification
Algorithm Based on Hypercube. In: Intern. Conf.on Intelligent
Computing 2020, pp. 476-483, Springer.

[10] Sansen J, Richer G, Jourde T, Lalanne F, Auber D, Bourqui R. Visual
exploration of large multidimensional data using parallel coordinates on
big data infrastructure. InInformatics, Vol. 4, No. 3, 2017, p. 21. MDPI.

[11] Tam GK, Kothari V, Chen M. An analysis of machine-and human-
analytics in classification. IEEE transactions on visualization and
computer graphics. 2016; 23(1):71-80.

[12] VisCanvas, 2018, https://github.com/BrennanBarni/VisCanvas
[13] Xu Y, Hong W, Chen N, Li X, Liu W, Zhang T. Parallel filter: a visual

classifier based on parallel coordinates and multivariate data analysis. In:
Intern. Conference on Intelligent Computing 2007, 1172-1183. Springer.

[14] Zhuravlev, Yu., Nikiforov,V., Recognition algorithms, based on the
computation of estimates, Kibernetika, No. 3 (1971), pp. 1-11.

[15] Artero AO, de Oliveira MC, Levkowitz H. Uncovering clusters in
crowded parallel coordinates visualizations. In: IEEE Symposium on
Information Visualization 2004 Oct 10 (pp. 81-88). IEEE.

	I. Introduction
	II. visual discovery of hyper-blocks
	A. Hypercubes and hyper-blocks
	B. Algorithm to generate hyper-blocks
	C. Individual hyper-blocks
	D. Multiple hyper-blocks
	E. Discovering and visualizing pairs of non-overlapping HBs
	F. Exploration and combination of hyper-blocks
	G. Linguistic description of visual patterns

	III. Supervised Learning in Parallel Coordinates
	A. Hyper-block-based classification algorithm (HYPER)
	A.1. Mixed and pure hyper-blocks
	A.2. Sets of hyper-blocks as generalized decision trees

	B. WBC case study
	B.1. Learning of hyper-blocks with all data
	B.2. Supervised learning with training and validation data
	B.3. Merger
	B.4. Simple hyper-boxes and dimension reduction

	V. Conclusion
	References

