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Abstract—Low-resolution point clouds are challenging for
object detection methods due to their sparsity. Densifying the
present point cloud by concatenating it with its predecessors is a
popular solution to this challenge. Such concatenation is possible
thanks to the removal of ego vehicle motion using its odometry.
This method is called Ego Motion Compensation (EMC). Thanks
to the added points, EMC significantly improves the performance
of single-frame detectors. However, it suffers from the shadow
effect that manifests in dynamic objects’ points scattering along
their trajectories. This effect results in a misalignment between
feature maps and objects’ locations, thus limiting performance
improvement to stationary and slow-moving objects only. Scene
flow allows aligning point clouds in 3D space, thus naturally
resolving the misalignment in feature spaces. By observing that
scene flow computation shares several components with 3D object
detection pipelines, we develop a plug-in module that enables
single-frame detectors to compute scene flow to rectify their
Bird-Eye View representation. Experiments on the NuScenes
dataset show that our module leads to a significant increase
(up to 16%) in the Average Precision of large vehicles, which
interestingly demonstrates the most severe shadow effect. The
code is published at https://github.com/quan-dao/pc-corrector.

Index Terms—object detection, deep learning, scene flow,
perception, LiDAR

I. INTRODUCTION

Object detection is a fundamental module of any au-
tonomous driving software stack. While tremendous advance-
ment has been made in camera-based 3D object detec-
tion, LiDAR-based methods still dominate public benchmarks
thanks to the accurate depth of point clouds. The accuracy of
LiDAR-based object detection models essentially correlates to
the number of points on each object, which depends on a
LiDAR’s resolution and distance from objects to the LiDAR.
Since these two factors are extrinsic to single-frame methods,
their performances are inevitably capped.

Methods operating on point cloud sequences (i.e., multi-
frame models) are an appealing alternative. Besides temporal
information, a point cloud sequence offers a higher number
of points compared to individual sweeps, thus increasing
the coverage of objects, especially those at distances. The
challenge in developing multi-frame detectors is devising the
optimal use of point cloud sequences.

A popular approach, called Ego Motion Compensation
(EMC), is to concatenate a sequence of point clouds in the
ego vehicle frame in the present (i.e., the most recent time

step). EMC removes ego-motion by transforming past sweeps
to the ego vehicle frame in the present using its odometry.
First introduced in [1], EMC has become the standard for
object detection on low-resolution point clouds [2]–[6]. The
best advantage of EMC is that it enables single-frame methods
to enjoy a performance boost thanks to denser point clouds
without changing their architecture. It is worth noticing that
using EMC on any single-frame method effectively converts
it to a multi-frame one.

The major drawback of EMC is the shadow effect [7] that
manifests in dynamic objects’ points scattering along their
trajectories (Fig. 1a). This misalignment in 3D space results
in a misalignment in the feature space, shown in Fig. 1b,
which limits the performance gain brought by adding past
point clouds using EMC to stationary and slow-moving objects
only [8]. As a result, we seek to improve the performance of
EMC-boosted single-frame methods by resolving the feature
misalignment.

Prior object detection methods that explicitly address the
feature misalignment issue can be divided into two categories
that align either (i) BEV representation or (ii) object proposals’
features. The former evolves from concatenating BEV feature
maps [7] to sequentially mapping Range-view representation
from one time step to another using a warp function made of
the rigid transformation [9]. Its current state is using temporal
layers such as Long Short-Term Memory (LSTM) [10] to fuse
multi-frame features. 3D-MAN [8] is an exemplar of the latter
category. It generates object proposals independently for each
point cloud and stores them in a memory bank. Features of
proposals at the target time step get refined by querying the
memory bank.

A shortcoming of the methods mentioned above is the lack
of explicit supervision of the alignment operation because the
notion of ”well-aligned” is challenging to establish in the
feature space. On the other hand, how well two point clouds
align in 3D space can be straightforwardly measured using
scene flow metrics. For this reason, we devise our feature
alignment strategy based on rectifying EMC-concatenated
point clouds using scene flow. In details,

1) Points in an EMC-concatenated point cloud are rectified
according to their scene flow (Fig. 1c).

2) The rectified point cloud is used to scatter points’
features to the BEV plane to make a rectified BEV
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(a) Object’s points by EMC (b) EMC BEV representation

(c) Rectified object’s points (d) Rectified BEV representation

(e) Fused BEV representation

Fig. 1: Comparison between BEV representation of a dynamic object before and after rectification. The ground truth object is
denoted by the red cuboid in 3D and red rectangle in the BEV plane. Foreground points are color coded such that the hotter
their color, the more recent they are.

representation (Fig. 1d).
3) The rectified BEV representation is fused with the BEV

representation of the EMC-concatenated point cloud
to obtain the fused BEV representation where feature
misalignment is resolved (Fig. 1e).

In this paper, we make the following contributions:
• We develop a plug-in module that enables single-frame

object detection methods to rectify their BEV represen-
tations of EMC-concatenated point clouds using scene
flow.

• We conduct experiments on the NuScenes dataset, where
it is standard to use EMC on single-frame methods due
to its low-resolution LiDAR (32 beams). Adding our
feature alignment method to PointPillars results in an
improvement of up to 16% in Average Precision (AP).
Despite being a multi-task method, our estimation of
scene flow on the NuScenes dataset reaches 0.506 average
End-Point Error (EPE), which is on par with strong scene
flow baselines.

II. RELATED WORKS

The pioneering work [7] takes the mid-fusion approach to
resolving the feature misalignment by processing the con-
catenation of BEV feature maps with a Convolutional Neural
Network (CNN). On the other hand, its following works [11]–
[13] take the early-fusion approach by concatenating voxelized
point clouds,

(
H

∆H , W
∆W , L

∆L

)
, along the height dimension,

then feeding the result to a CNN. Here, L and W denote the

longitudinal and traversal direction, respectively. Their only
difference compared to EMC is that the concatenation occurs
after the voxelization instead of before. Moreover, the absence
of modules dedicated to feature alignment in their architectures
raises the question of how effectively the shadow effect is
handled. MVFuseNet [9], a more recent work of this category,
performs the alignment sequentially by mapping the Range-
View representation at each time step to its successor using
a warp function based on ego-motion, then refining the result
with a CNN. Reference [10] takes a similar approach by fusing
features of two consecutive point clouds using the so-called
”3D sparse conv LSTM”.

3D-MAN [8] solves the feature misalignment issue using
object proposals. It first generates object proposals and their
associated features independently for each point cloud and
stores them in a memory bank. Then, object proposals in
the target point cloud (e.g., the most recent one) refine their
features by querying the memory bank via the cross-attention
mechanism [14]. While showing strong performance, [8] relies
on a single-frame detector for per-frame proposals generation,
thus requiring sufficiently dense point clouds.

Taking a different approach, we strive to align point clouds
of a sequence in 3D space using computing scene flow of
dynamic points, which naturally results in well-aligned feature
maps. The motivation of our alignment strategy has two folds:

• Scene flow pipelines require points’ features which can be
computed by first converting input point clouds to BEV
representation, then interpolating using points’ projection



on the BEV plane. The BEV representation is also needed
for object detections, thus the possibility of combining
them.

• Using scene flow enables explicitly supervising the fea-
ture alignment with a physically meaningful signal.

Our method for computation of scene flow takes inspiration
from [15]. We share their method for obtaining point features
by interpolating from the BEV representation of point clouds.
However, we exploit the availability of ego vehicle localization
to concatenate input point clouds before generating the BEV
representation. As a result, we obtain the BEV representation
for the entire sequence in one shot.

Since motion only makes sense in the context of objects,
many motion estimation and segmentation methods [15]–[18]
require instance segmentation by computationally expensive
clustering. Therefore, we predict per-point flow directly from
their features to achieve high inference speed. Since this flow
is unconstrained, we risk our prediction containing physically
infeasible motions (e.g., objects having different parts under-
going different motions). This risk is reduced by adding a sim-
plified version of the ”Object motion modeling” of [15], which
we refer to as the Object Head, to our architecture. The role of
this module is to predict a single rigid transformation for each
instance. During training, we use the Object Head to guide
the learning of per-point scene flow by forcing a consistency
between their prediction (more details in Section. IV-D2). The
correspondence between points and objects is available during
training as ground truth, and the Object Head is deactivated
during testing. As a result, instance segmentation is no longer
necessary. This critical difference compared to [15] enables
our short runtime shown in Tab. I.

III. ALIGNING POINT CLOUD SEQUENCES

The first step toward aligning point clouds is removing the
effect of the ego vehicle motion on LiDAR measurements
using Ego Motion Compensation (EMC).

A. Ego Motion Compensation

Let X t = {pti = [x, y, z] | i = 1, . . . , N} denote a point
cloud of size N collected at time t and having points expressed
the ego vehicle frame E(t). A sequence of point clouds
S =

{
X t−K ,X t−K+1, . . . ,X t

}
spanning from the previous

K steps to the current time t is merged according to EMC
by transforming every point in each point cloud to a common
world frame W using the ego vehicle pose WTE(t−k).

Wpt−ki =W TE(t−k) · pt−ki (1)

Here, k ∈ {0, . . . ,K}. Notice that the world frame W can be
the map frame or the ego vehicle frame at any time step (e.g.,
Et as for NuScenes common practice).

B. Rectifying EMC Point Clouds

Since EMC does not account for objects’ motions, points
belong to dynamic objects are scattered along their trajectories.
Let O denote an object and WTO(t) represent O’s pose in the
world frame W at time t. At time step t − k, a laser beam

emitted from the LiDAR hitting O produces a 3D point pt−k.
The image of pt−k computed by EMC (1) can be rectified by
a two-step transformation as following

W p̂t−k =W TO(t) ·O(t−k) TW ·W pt−k (2)

The first transformation in (2), O(t−k)TW , returns the coordi-
nate of pt−k in O’s body frame, which is constant under the
rigid body assumption. The second transformation maps the
point from the body frame to the world frame W using the
object pose at time t,W TO(t). In the rest of this paper, we
refer toWTO(t)·O(t−k)TW as the rectification transformation.

IV. JOINT OBJECTS DETECTION AND MOTION
ESTIMATION

The pipeline for estimating objects’ motion shares several
components with object detection models, specifically the
computation of the BEV representation, which takes the form
of a multi-channel image. Therefore, we propose to combine
these two tasks in a unified architecture shown in Fig. 2.

In our pipeline, an EMC point cloud is voxelized and then
processed by the CNN-based backbone to produce a BEV
image I0. This image is consumed by the Object Motion
Estimation branch, made of Point Head and Object Head,
to estimate both scene flow and rectification transformation
(2). To demonstrate our method, we choose two backbones:
SECOND [19] and PointPillars [20].

A. Object Motion Estimation

Points’ features are bilinearly interpolated from backbone-
made BEV image I0 based on their projection to the BEV
plane. Given points’ features, the Point Head first segments
the input point cloud into three classes: background, static
foreground, and dynamic foreground. The definition of these
classes is as follows:
• Background points are those on background objects (e.g.,

ground, building, traffic lights).
• Dynamic foreground points are those on foreground ob-

jects that exhibit a translation greater than 0.5 meters
during the period of interest (e.g., 0.5 seconds).

• Static foreground points are neither background nor dy-
namic foreground.

For a dynamic foreground point pt−k, whose timestamp is
t − k, the Point Head predicts a scene flow vector ot−k ∈
R3 which is defined as the difference between its location
computed by EMC (1) and by using object trajectory (2).

ot−k,∗ =W p̂t−k −W pt−k (3)

Here, ∗ in the superscript denotes the ground truth.
In the Object Head, predicted foreground points are seg-

mented into instances (i.e., objects) which we refer to as global
groups. Each global group is further divided into local groups
based on foreground points’ timestamps.

Let fi ∈ RC denote the features of a foreground point pi.
The features fL of a local group L is computed as following

fL = Max (cat (fi,MLP (pi − p̄L)) |pi ∈ L) (4)



Fig. 2: Overview. Our model takes a sequence of point clouds preprocessed by EMC {pi} as input. It first voxelizes the
point cloud and converts the resulting voxel grid to a BEV image I0 using a CNN backbone. Second, points’ features {fi}
are obtained by bilinearly interpolating I0 using their projection on the BEV plane. Third, points’ features are decoded into
objects’ rectification transformation and scene flow {oi} respectively by Object Head and Point Head. The rectified BEV image
I1 is the result of scattering {fi} back to the BEV using the corrected point cloud {pi + oi}. Then, I0 and I1 are fused by
a weighted sum before being consumed by the RPN to produce 3D bounding boxes.

Here, p̄L is the mean coordinate of points in L and cat(·) refers
to the channel-wise concatenation operation. The features fG
of a global group G is the result of max pooling, Max (·), of
its local groups’ features.

fG = Max
(
fLj
|Lj ∈ G

)
(5)

The rectification transformation in (2) is encoded as a 7-
vector, which is the concatenation of the translation vector
t ∈ R3 and the quaternion q ∈ R4 representing the rotation
matrix. This transformation is predicted for each local group
Lt−k(k = 0, . . . ,K) by an MLP shared among all local
groups of all objects.

(t,q)Lt−k
= MLP

[
cat
(
fLt−k

, fG , p̄Lt−k
, p̄Lt

)]
(6)

At test time, the input EMC point cloud is rectified by
translating dynamic foreground points p using their scene flow
o, instead of local groups’ rectification transformation. As a
result, the computationally expensive instance segmentation
using DBSCAN can be bypassed, thus improving the model’s
inference speed.

B. BEV Image Rectification

The rectified point cloud, obtained by translating points
in EMC according to their scene flow, is used to scatter
points’ features {fi} back to the BEV, resulting in the rectified
BEV image I1. Then, I1 is fused with backbone-made BEV
image I0 via a weighted average. The weights are computed
by stacking two BEV images along the channel dimension,
then passing the result to a stack of two 2D Convolution
layers with 3-by-3 kernels. The rationale of fusing I1 with
I0 is as following. I1 is fully sparse because it is created by

scattering points’ features in BEV. While not possessing the
shadow effect, its sparsity harms the detection accuracy [21].
On the other hand, I0, which shows the shadow effect, are not
sparse thanks to the occupancy leaking caused by regular 2D
convolution layers of the backbone. The fusion is to reduce
the sparsity and prevent the shadow effect.

C. Region Proposal Network

The fused BEV image is consumed by a Region Proposal
Network (RPN) to produce object detections as 3D bounding
boxes. We use the anchor-based [19] and the center-based [4]
RPN for SECOND and PointPillars, respectively.

The anchor-based RPN places two anchors in two orthog-
onal directions for each class of objects at each location of
the BEV image and estimates the objectness of each anchor.
For each positive anchor, the RPN also predicts a refinement
vector to make the anchor fit tighter to its ground truth.

On the other hand, the center-based RPN encodes each
ground truth object as a Gaussian on the BEV plane. The
mean and covariance of each Gaussian are defined by its
corresponding object’s center and size, respectively. Then, it
uses a series of Convolution layers to decode the input BEV
image into pixel-wise center probability and box attributes
(e.g., size and orientation).

D. Loss Function

Our model is trained end-to-end with a loss function L made
of 3 terms corresponding to the loss of the two heads of the
Object Motion Estimation branch and the RPN.

L = Lobjects + Lpoints + LRPN (7)



1) Object Loss: Let (t,q) and (t∗,q∗) respectively be the
prediction and ground truth of the rectification transformation
of a local group L. The object loss of this local group is

Lobjects,L = smoothL1
(t− t∗)+‖Rot (q)− Rot (q∗)‖F+Lrecon

(8)
Here, ‖·‖F denotes the Frobenius norm. Rot (·) represents
the function that converts a quaternion to a rotation matrix.
Lrecon is the difference between points of L transformed by the
prediction and ground truth of the rectification transformation

Lrecon =
1

NLp

∑
p∈L

smoothL1 (T (t,q) · p− T (t∗,q∗) · p)

(9)
In (9), NLp is the number of points in the local group L. T(t,q)
denotes the function that converts a translation vector t and a
quaternion q to a homogenous transformation matrix.
Lobjects in (7) is the sum of applying (8) to every local group
L of every global group G

Lobjects =
1

NL

∑
G

∑
L∈G

Lobjects,L (10)

where, NL is the total number of local groups.
2) Point Loss: The loss of Object Motion Estimation’s

Point Head is made of classification loss, offset loss and
consistent loss.

Lpoints = Lcls + Loffset + Lconsistent (11)

Following [15], we use the sum of weighted binary cross
entropy loss Lbce and Lovasz-Softmax loss Lls [22] as the
classification loss Lcls.

Lcls =
1

Np

∑
p

Lbce (c, c
∗) + Lls (c, c

∗) (12)

In (12), c and c∗ are the prediction and ground truth of the
class probability of a point p. Np is the number of points in
the inputted EMC point cloud.

Loffset measures the difference between dynamic foreground
points p+ translated by predicted offset vectors o and their
position after undergone the ground truth rectification trans-
formation (t∗,q∗).

Loffset =
1

Np+

smoothL1
(p+ + o− T (t∗,q∗) · p+) (13)

Np+
is the number of dynamic foreground points in the input

point cloud.
The Object Head groups points to local groups before

predicting a rectification transformation for each group, which
is then applied to every point inside a group. For this reason,
it enforces the rigid motion among dynamic objects which is
a realistic assumption in the context of autonomous driving.
On the other hand, the Point Head predicts an unconstrained
offset vector for each dynamic point, thus risking rectified
point clouds containing physically infeasible objects (e.g.,

deformed cars due to different parts undergoing different trans-
formations). We reduce this risk by enforcing the consistency
between predictions made by the two heads using Lconsistent.

Lconsistent =
1

Np+

smoothL1
(p+ + o− T (t,q) · p+) (14)

3) RPN: The loss function LRPN of the anchor-based and
center-based RPN are respectively defined in [19] and [23].

V. EXPERIMENTS

A. Dataset and Evaluation Setting

1) NuScenes: The NuScenes dataset [1] contains 700
scenes for training and 150 scenes for validation. Each
comprises data collected by a multimodal sensor suite of
an autonomous vehicle over approximately 20 seconds. The
sensor suite has one 32-beam LiDAR that operates at 20 Hz.
Once all sensors are in sync, a keyframe is established. The
frequency of sensor synchronization is 2 Hz. Objects’ ID and
location, in the form of bounding boxes, are annotated for
every keyframe.

2) Metrics: The object detection task is primarily evaluated
by the Average Precision (AP) implemented by NuScenes,
which defines a match based on the 2D distance on the BEV
plane instead of the intersection over union (IoU). To have a
more complete evaluation that also takes bounding boxes’ size
and orientation, we use AP calculated by matching prediction
and ground truth using 3D IoU as a secondary metric. Follow-
ing prior works [9], [13], we set the IoU matching threshold
to 0.7, 0.1, and 0.3 for cars, pedestrians, and bicyclists. Since
the detection of other classes is not addressed in prior works,
we set the threshold for trucks, construction vehicles, buses,
trailers, barriers, motorcycles, and traffic cones to 0.7, 0.7, 0.7,
0.7, 0.5, 0.5, 0.5, respectively.

The Object Motion Estimation is evaluated by standard
scene flow metrics [24] including 3D End-Point Error (EPE),
strict/ relaxed accuracy (AccS/ AccR), and outlier (ROutliers).
The EPE is the mean of the 3D distance between rectified
points and their ground truth. The AccS/ AccR is the percent-
age of points having either EPE < 0.05/ 0.10 meters or relative
error < 0.05/ 0.10. The ROutliers is the percentage of points
with EPE > 0.30 meters and relative error > 0.30.

B. Implementation Details

We follow the common approach to handle the sparsity of
NuScenes point clouds that concatenating a keyframe point
cloud with all non keyframe point clouds between itself and
its predecessor using EMC [1]–[6]. Let t denote the time step
of the keyframe. The world frameW is set at the LiDAR frame
at time step t. The point cloud of a non keyframe collected at
timestamp t− k (k = 1, . . . , 9) are mapped from the LiDAR
frame at this time step to the world frameW using ego vehicle
poses and LiDAR calibration.

The ground truth of rectification transformation in (2)
requires knowing objects’ poses in the world frame W at the
keyframe timestamp WTO(t) and non keyframe timestamp
WTO(t−k). Since NuScenes only provides objects’ poses



in keyframes, we obtain their poses in non keyframes by
linearly interpolating annotations of two keyframes that are
respectively prior and successor to each non keyframe.

To improve the generalization of our model, the following
geometric transformations are applied to point clouds and
ground truth: random flip along the x- and y-axis of the
world frame W , global scaling with a factor sampled from
U[0.95,1.05], and global rotation by an angle sampled from
U[−π/8,π/8] around the z-axis of the world frame W . Here, U
denotes the uniform distribution. Furthermore, we adopt the
ground truth sampling strategy of [2] which randomly takes
boxes and their points from a database and places them in
the input point cloud. Notably, we introduce a modification to
this sampling strategy by complementing each sampled ground
truth with points in its trajectory spanning from the current
time step to 10 steps in the past. This modification is similar to
the ”Sequence GtAug” of [25]. Its motivation is to increase the
number of moving objects in each point cloud, thus increasing
the amount of supervision on the Object Motion Estimation.
A comparison between the regular ground truth sampling and
our modified version is shown in Fig. 3.

In our experiments, input point clouds are limited to the
range of [−51.2, 51.2] × [−51.2, 51.2] × [−5.0, 3.0] meters
along X-, Y-, and Z-axis of the world frame W and the voxel
size is set to (0.1, 0.1, 0.2). We use OpenPCDet [26] for our
implementation. Further details on the model’s hyperparame-
ters can be found in our code release.

Due to the large size of the NuScenes dataset, we only train
our model on a quarter of the training set. This mini partition
of the training set is obtained by sorting keyframes by their
point clouds’ timestamp, then taking one every four keyframes.
Our model is trained for 25 epochs with a total batch size of 16
distributed over 8 GPUs with sync batch norm. The optimizer
is set to AdamW [27]. The learning rate is regulated by the
One Cycle scheduler [28] with the maximum value of 0.003
for SECOND and 0.001 for PointPillars. It is worth noticing
that the evaluation takes place on the entire validation set.

C. Results

The comparison of our model against methods specialized in
estimating scene flow is shown in Tab. I. Since we only predict
scene flow for dynamic foreground points, the comparison
in Tab. I only accounts for these points. More importantly,
we evaluate scene flow predicted by the Point Head of the
Object Motion Estimation branch because the Object Head is
deactivated at test time to avoid the computationally expensive
instance segmentation using DBSCAN. In Tab. I and following
tables, the best and second-best performances are marked by
bold and underscore font, respectively

While being trained on fewer data (a quarter of NuScenes
training set) and not having an architecture optimized solely
for scene flow, our model outperforms PPWC-Net and FLOT
and is on par with WsRSF and NSFPrior. Notably, our model
is the second best in the metric EPE.

In addition, we report the runtime of our models measured
in seconds on an NVIDIA A6000 GPU. The five baselines

TABLE I: Performance of our model on scene flow metrics

Method EPE ↓ AccS ↑ AccR ↑ ROutliers ↓ Runtime ↓

FLOT [29] 1.216 3.0 10.3 63.9 2.01
NSFPrior [30] 0.707 19.3 37.8 32.0 63.46
PPWC-Net [31] 0.661 7.6 24.2 31.9 0.99
WsRSF [16] 0.539 17.9 37.4 22.9 1.46
PCAccumulation [15] 0.301 26.6 53.4 12.1 0.25

Our PointPillars 0.547 14.5 26.2 36.9 0.06
Our SECOND 0.506 16.8 30.2 33.8 0.09

presented in Tab. I have their runtime measured on an NVIDIA
RTX 3090 GPU (as reported by [15]), which has a similar
computing capability. Compared to them, our models achieve
significantly better runtimes.

To verify the impact of aligning BEV representation using
scene flow on the object detection performance, we modify
SECOND and PointPillars to resemble the architecture shown
in Fig. 2 and train them end-to-end. Tab. II shows an improve-
ment brought by our module for most classes. Notably, trucks,
construction vehicles, and buses, which exhibit severe shadow
effects during motion due to their large size, enjoy significant
performance gain (up to 7.8 AP or 16%). Furthermore, the
detection improvement is higher on PointPillars since its
BEV images have double the size of SECOND’s, thus more
severe feature misalignment. This highlights the importance
of handling the misalignment between features and objects’
locations. Interestingly, pedestrians also experience 0.8 AP
improvement even though their motions violate the rigid body
assumption made in (2).

The comparison of our models against other multi-frame
methods on NuScenes is shown in Tab. III. Here, the matching
between predictions and ground truth is based on the IoU. Our
models exhibit strong performance in the class Pedestrians.
As can be seen, our PointPillars 1

2 exceeds the 66.1 AP of
MultiXNet by 2.7 AP to be the second-best model despite
being trained on only half of the data used for the baselines.
We hypothesize that the removal of the shadow effect on
pedestrians helps improve our models’ generalization, thus
getting high performance from fewer training data.

On the other hand, we explain the gap between our models
and baselines in class Cars and Bicyclists by the small-size
training set. Due to limited computational resources, we only
use up to half of the NuScenes training set to keep our
experiments affordable. Tab. IV shows that scaling from one-
eight to half of NuScenes training leads to a 17.8 and 19.3
increase in the AP of Cars and Bicyclists. Therefore, we
believe our performance can greatly improve if more resources
are available. Furthermore, the three baselines employ HDMap
as an additional input, which provides a strong inductive bias
for estimating cars’ orientation and eliminating False Positive
detections. Last but not least, our models are trained with a
smaller mini-batch size, which is 16 compared to 32 and 64 of
MultiXNet and MVFuseNet. As pointed out by [32], a small
mini-batch size can hurt detection performance by (i) failing
to provide accurate statistics for the Batch Normalization
layer and (ii) possessing an imbalance number of positive and



(a) Ground truth sampling (b) Ground truth sampling and points on object’s trajectory (ours)

Fig. 3: The comparison between scene augmented by the ground truth sampling strategy and by our strategy. Points belong to
the added object are colored coded according to their timestamp. The hotter the color, the more recent timestamp.

TABLE II: Object detection results on NuScenes dataset evaluated by matching based on distance on BEV/ IoU. All models
are trained on a quarter of the training set and evaluated on the entire validation set

Car Truck Const. Bus Trailer Barrier Motor. Bicyc. Pedes. Traff. mAP

SECOND 73.8/ 32.8 28.5/ 14.6 12.4/ 2.1 43.7/ 22.6 32.2/ 12.2 48.3/ 4.5 21.0/ 20.3 5.0/ 11.2 69.5/ 61.8 40.4/ 4.2 37.5/ 18.6
+ our module +0.8/ +1.1 +2.8/ +0.6 +1.6/ +0.4 +5.1/ 0.6 -1.2/ -2.0 +2.1/ +1.0 +3.0/ +2.2 -0.2/ -0.3 +0.8/ +1.0 +0.6 +0.3 +1.5/ +0.5

PointPillars 78.9/ 27.0 37.9/ 13.2 4.2/ 0.3 48.9/ 20.8 21.4/ 4.0 48.4/ 3.8 28.1/24.9 7.3/ 15.8 73.3/ 65.4 41.5/ 2.5 39.0/ 17.8
+ our module +1.8/ +5.0 +7.3/ +3.7 +2.7/ -0.2 +7.8/ +6.1 +6.3/ +2.7 -1.2/ +0.3 +5.1/ +3.1 +0.3/ -0.7 +0.8/ +0.7 +3.5/ +1.0 +3.4/ +2.2

TABLE III: Object detection results on NuScenes dataset com-
pared to other multi-frame methods. The numbers following
models’ name denote the fraction of NuScenes training set
used for training.

Pedestrians Cars Bicyclists

IntentNet [11] 63.4 60.3 31.8
MultiXNet [13] 66.1 60.6 32.6
MVFuseNet [9] 76.4 67.8 44.5

Our SECOND 1
4

62.8 33.9 10.9
Our PointPillars 1

2
68.8 40.5 29.3

TABLE IV: Evolution of the performance of our PointPillars
with respect to the portion of the NuScenes training set that
is actually used for training.

Size of actual Pedestrians Cars Bicyclists Training Time
training set (hours)

1/8 59.4 22.7 10.0 15
1/4 66.1 32.0 15.1 30
1/2 68.8 40.5 29.3 60

negative examples (e.g., the dominant of negative proposals at
the early stage).

Fig. 4 compares the prediction made by the original SEC-
OND and SECOND with BEV representation alignment.
Fig. 4a shows that SECOND made a false-positive car de-
tection due to the shadow effect of a moving bicyclist. This
mistake is avoided as points of the bicyclist are rectified in
Fig. 4b. The dashed rectangles in Fig. 4c mark the region
where SECOND made false-negative pedestrian detections.
Most false-negative predictions occur when several pedestrians
stand in a cluster, thus resembling the scenario where fewer

pedestrians walk near each other. In addition, the dashed circle
in Fig.4c indicates a false-positive pedestrian detection which
is, in fact, a pole. On the other hand, the rectified BEV images
help SECOND successfully detect all pedestrians in the cluster
and avoid mistaking the pole for a pedestrian (Fig. 4d). This
observation supports the hypothesis that rectifying the shadow
effect improves our models’ generalization.
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