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Abstract— This work presents a novel hierarchical approach
to increase Battery Electric Buses (BEBs) utilization in transit
fleets. The proposed approach relies on three key components.
A learning-based BEB digital twin cloud platform is used to
accurately predict BEB charge consumption on a per vehicle,
per driver, and per route basis, and accurately predict the time-
to-charge BEB batteries to any level. These predictions are then
used by a Predictive Block Assignment module to maximize the
BEB fleet utilization. This module computes the optimal BEB
daily assignment and charge management strategy. A Depot
Parking and Charging Queue Management module is used to
autonomously park and charge the vehicles based on their
charging demands. The paper discusses the technical approach
and benefits of each level in the architecture and concludes
with a realistic simulations study. The study shows that if our
approach is employed BEB fleet utilization can increase by a
50% compared to state-of-the-art methods.

I. INTRODUCTION

Transportation has become the largest polluter of Green-
house Gas Emissions (GHG) in the US since 2016. Elec-
trification is the primary solution to the decarbonization of
transportation. Governments around the world are encourag-
ing electric mobility by enacting regulations and providing
funds to road transit agencies to transition their fleets to zero-
emission vehicles (ZEV).

Transit agencies started deploying relatively small num-
bers of ZEVs in their fleets in the last few years; as they
transition to ZEVs a growing percentage of their fleets,
they are increasingly focusing on strategies to efficiently and
cost-effectively meet service requirements designed around
conventional vehicles, using zero-emission technology. In
transit agencies with a fixed schedule, a trip covers a certain
sequence of stops at pre-defined times, along a specific route.
Trips that are adjacent in space and time are organized into
blocks, units of work to be performed by a single bus.
Normally, blocks are designed with diesel buses in mind,
and they may be unfeasible for the driving range Battery
Electric Buses (BEBs), particularly in challenging conditions
such as winter operation in cold regions. Diesel buses that
have completed a block can be quickly refueled and used
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on subsequent blocks. BEBs take longer to recharge than
diesel buses to refuel, and the charging time also depends
on factors including the battery State of Charge (SOC), on
the ambient and battery temperature; the charging cost also
depends non-linearly on the power demand. In general, ZEV
includes BEB as well as other clean fuel vehicles such as
hydrogen vehicles; this paper is focused on BEBs and the
terms ZEV and BEB are used interchangeably.

Uncertainty and variability of driving range and charging
time are major hurdles for transit agencies in planning for
and operating BEBs. Driving range can vary by a factor of 5
depending on a host of conditions, including temperature and
weather, traffic, route profile, driving behavior, occupancy,
and the configuration and condition of the vehicle and its
components (such as battery aging). Transit agencies need
reliable service and are currently unable to accurately predict
the energy and charging time required for each piece of work;
instead, they rely on simplistic plans and nominal estimates
of miles-per-gallon-equivalent (MPGe) and miles-per-charge.
In practice, transit agencies trade off BEBs utilization and
the reliability and cost-effectiveness of operating service;
ultimately, they err conservatively and approach the ZEV
transition anticipating the need for expanded fleets, oversized
charging infrastructure, large onboard battery packs, and
high electricity cost. Reducing range and charging time
uncertainty will reduce the above needs, and consequently
the operating costs and capital expenditures of BEB fleets.

This paper presents a hierarchical approach to increasing
BEB utilization in transit fleets using three key components.

ZEV Digital Twin. This module accurately predicts BEB
charge consumption on a per-vehicle, per-driver, and per-
route basis, and accurately predicts BEB charging time on
a per-vehicle and per-charger basis. Learning is employed
to build high-accuracy prediction models of BEB energy
consumption and charging time, which are a fundamental
building block of energy-aware algorithms [1]–[12].

Predictive Block Assignment. The learned digital twins
accurately predict the BEBs charge consumption on each
block and and time-to-charge their batteries. These predic-
tions are used to maximize BEB fleet utilization through
predictive optimal block assignment, which computes the
optimal assignment of blocks to BEBs and scheduling of
BEB charging sessions. In the recent literature, variations
of this problem have been formulated, e.g. to minimize the
overall energy consumption of the fleet [13]–[15], assuming
the availability of battery swapping or fast charging [16],
decoupling the vehicle assignment and charge management
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problems [17], [18]; related but different problems have also
been studied, such as the optimization of the fleet mix [19],
optimization of the charging infrastructure [20], schedule
optimization for electric buses [21], [22] vehicle routing
problems with energy constraints and/or mixed fleets [23].

Depot Parking and Charging Queue Management. We
propose a scheme to park the vehicles based on their charging
demands. This module pre-computes trajectories for BEBs
to maneuver inside the depot efficiently, get to a charging
dispenser in time, and charge according to the charge strategy
assigned by the predictive block assignment. If autonomous
driving and autonomous charging are not available, the
output of this module can be used as a reference for human
drivers and operators.

The implementation of the proposed approach coupled
with funding support by federal, state, and local governments
can accelerate the transition of the US transit fleet to ZEVs;
which in turn can provide massive reductions of GHG emis-
sions providing cleaner air quality and less noise pollution
to communities.

The paper is structured as follows: in Section II we
provide some background on ZEV transit fleets and on
electric mobility on demand services; Section III describes
the proposed architecture; Section IV the ZEV Digital Twin
module; Section V describes the Predictive Block Assign-
ment module; Section VI discusses the Depot Parking and
Charging Queue Management. The paper concludes with an
example in Section VII which highlights the benefits of the
proposed approach compared to the current approach.

II. ZEV FLEETS IN FIXED SCHEDULE TRANSIT

In this section, we provide a short background on transit
fleets and the challenges of introducing BEBs. In general,
transit agencies strive to avoid BEB stranding due to lack
of charge (which causes service interruption and the need to
send a replacement bus and to tow the standed bus), reducing
the cost of service (due to nonlinear increases of electricity
cost asSOCiated with high power and peak hour demand),
and maximizing BEB usage and longevity. Next, we describe
some of the transit operations for which the introduction of
BEBs is most challenging.

A. Block Assignment

In the context of transit agencies, a (fixed) schedule defines
the routes, each visiting a set of stop locations, that will be
served each day of the week for a certain period of time
(e.g a few months). In this context, a service trip refers to
a route driven at a certain time of the day and day of the
week, so that the corresponding bus stop locations are visited
at pre-defined arrival and departure times. A good schedule
identifies the stops and trips necessary to satisfy public
demand, maximizes service, minimizes operator cost, and
meets the fleet size and operator headcount. Trips are bundled
into blocks, units of work to be performed by a certain bus
and driver. Blocks generally start and end in one or a few
locations (parking lots and depots with maintenance, fueling,
and charging infrastructure). A good block minimizes the

non-service miles that need to be driven between trips that
start and end at different locations (also known as deadhead
trips); at the same time, a block should normally be feasible
for the driving range of a single bus.

Vehicle assignment is the problem of assigning blocks to
buses on a daily basis, depending on their availability. In
traditional bus operations, buses of the same type (e.g. occu-
pancy and geometry) are interchangeable between blocks.
In contrast, BEBs assignment to certain blocks must be
considered carefully, due to the limited driving range which
depends on battery capacity, current SOC level, and the
varying energy demand of each BEB on different blocks.
Currently, transit agencies cannot accurately predict the
feasibility of a block for a certain BEB, nor its SOC when it
will return to the depot, nor how long it will take to charge
it to a certain SOC such that it can run another block later
in the day. Depot operators make such predictions based on
simplistic models such as MPGe and miles-per-charge, and
on empirical rules on which blocks can or should be assigned
to BEBs. These models only capture the block distance and
neglect other critical factors for energy consumption (such as
traffic, weather, topography, driver behavior, and passenger
occupancy); the resulting predictions have high uncertainty,
which in turn leads to over-conservatism and poor utilization
of BEBs. In this paper, we assume that both the schedule
and the bundling of trips into blocks are given, and focus on
automating the assignment of BEBs to blocks.

B. Off-route or depot charging

Off-route or depot charging refers to charging the BEB
battery outside of its service trips, typically at a depot
equipped with charging infrastructure. BEBs may be charged
both overnight (after their daily assignments have been
completed) and during the day (between different blocks).
Often, vehicles are assigned to blocks only up to 1-2 hours
before pull-out; thus, even if the energy required by each
BEB on each possible block is predicted with high accuracy,
the decision to charge a BEB has to be made, in most
cases, before the next block is known. In other words,
scheduling depot charging sessions is tightly coupled with
the assignment of vehicles to blocks. The current practice
utilizes the depot chargers suboptimally; a simple approach
is to charge BEBs as soon as they get back to the depot
and until they reach a sufficiently high SOC. Finally, a
certain amount of “opportunistic” charging is desirable, as
it potentially allows BEBs to be used as relief vehicles, and
not just for their assigned blocks.

Variable utility rates and charging infrastructure costs
provide a set of incentives and constraints. It is desirable
to maximize the amount of charging during off-peak hours
when the cost per kWh is lower, while completing the charge
prior to the next pull-out time; BEBs plugged in at the end of
a shift may cost more to charge than if they delayed charging
until the off-peak hours. It is also desirable to minimize the
peak charging power used, as the utility rate also depends on
the maximum power needed from the grid. Charging power
is a nonlinear function of the vehicle SOC: it is normally



highest in the central SOC range (between 20% and 60%-
80%) and lowest at the SOC bounds.

Finally, we note that it is more cost-effective to operate
on a lower “charger to bus” ratio (i.e., not having a charger
dedicated to each BEB); this, however, makes it impossible to
simultaneously charge all the BEBs in the fleet, and enhances
the need for accurate modeling of energy demand and of
charging time, as well as of depot charging queues.

III. SYSTEM ARCHITECTURE

Fig. 1 shows the proposed architecture for automated
ZEV fleet operation. The first component is an IoT platform
which automatically learns ZEV digital twins based on
physics principles (vehicle motion, components efficiency)
and data-driven approaches (human factors, control policies,
uncertainty modeling). The key aspects of this platform are
scalability, ease of deployment, and the ability to operate re-
liably with minimal expert supervision. The resulting models
predict vehicle performance on a per-vehicle, per-driver, per-
mission basis, and feed model-based control and decision-
making algorithms with predictions of provable accuracy.

Predictive Block Assignment
Planning & 
CAD/AVL 
Systems

Depot Parking and Charging Queue 
Management

ZEV

Fig. 1: Automated ZEV fleet operation architecture.

The second component is an automated and optimal block
assignment and charging scheduling module. The goal of the
optimization problem is to assign blocks to buses as well
as decide when and for how long to charge. The optimal
control problem uses the digital twin model and the state
of charge of each BEB in order to ensure that the resulting
block assignment and charging schedule are feasible from
an energy and time point of view. The cost function is
formulated so as to maximize the total BEB utilization.

The last component is a parking and charging module
which manages the motion of the BEBs inside the depot
and pre-computes trajectories for BEBs to maneuver inside
the depot efficiently, get to a charging dispenser in time, and
charge according to the optimal charging schedule.

Note that the bidirectional arrows are used to represent
feedback mechanisms between the modules of the architec-
ture. For instance, if a BEB cannot be charged to the desired
level in time, the low-level module will ask the Predictive

Block Assignment module for a new assignment based on the
current unplanned state.

IV. AUTOMATED LEARNING OF ZEV DIGITAL TWINS

Obtaining high-precision predictive models of vehicle en-
ergy consumption is challenging as energy consumption is
greatly affected by a long list of factors that depend on
the specific vehicle, driver, and driving environment. These
factors include speed profile, vehicle load, road gradient and
curvature, ambient temperature, wind speed, state, and aging
of the vehicle components.

We have developed and deployed a platform which deliv-
ers high-precision energy consumption prediction for EVs
and is tailored for real-time optimization. The platform
leverages real-time vehicle telematics data streams, as well as
third party maps, traffic and weather forecasts, and delivers
tailored route and charging recommendations. The platform
consists of (i) models capturing the energy consumption
and charging time on a per-vehicle, per-driver, per-road-
segment, per-charger basis, and (ii) data-driven learning
algorithms that estimate from data the model parameters to
deliver high precision charge consumption estimation and
charge depletion trajectories on routes for electrified vehicles.
The learned models combine physics based and data driven
modeling principles and are amenable for automated learning
from data over time, such as to adjust to degradation of
vehicle components, including the drivetrain, battery, and
motor.

As an example, the physics-based model below can de-
scribe the traction power demand of a two-wheel drive EV:

Pt,k =
Fm,kvk

ηm(Fm,k, vk, θm,k)
,

Fm,k = Fk − ψb(Fk, vk, ak),

Fk =Mτg (sinα(sk) + Cr(sk, vk, pk) cosα(sk))

+ Ca(στ , vk, vw,k, ϕk, ϕw,k)v
2
k

+ M̃τak +
M2

τ

4Csρ2(sk)
v3k,

where k is a time index, τ is a trip or route leg index,
Fm and Fb are the forces from electric motor and friction
brakes (defined at the wheel), Pt is the electrical motor
power used for traction, v, a and ϕ are the vehicle speed,
acceleration, and bearing, s is a curvilinear abscissa along the
vehicle’s path, α and ρ are the road gradient and curvature
radius, M is the mass of the vehicle and its occupants, M̃
is M plus the rolling inertias, vw and ϕw is the wind speed
and bearing, Cs is the wheel cornering stiffness. Cr is a
rolling resistance coefficient, defined as a nonlinear function
of the road segment, vehicle speed, and tire pressure p. Ca is
an aerodynamic coefficient, defined as a nonlinear function
of the vehicle and the wind’s speed and bearing; σ takes
discrete values corresponding to different configurations of
the vehicle and its trailers and roof boxes. ψb is the function
that allocates braking force to the hydraulic brakes, defined
as a nonlinear function of speed and acceleration. ηm is the
efficiency map of the electric motor, defined as a nonlinear
function of the motor torque, speed, and temperature. All



Fig. 2: EV charge consumption prediction error (average and
worst case) using the proposed approach.

the above parameters and mappings are learned from data.
Similar models are derived for the auxiliaries, the battery,
the driver, and are here omitted for brevity.

Accurate prediction of the trip charge consumption has
been demonstrated to be greater than 90% in 87% of trips
on 50,000 miles of road trials (see Fig. 2).

V. ZEV OPTIMAL BLOCK ASSIGNMENT AND CHARGING
STRATEGY FOR FIXED SCHEDULE TRANSIT

This section presents the optimal block assignment and
charging strategy for a mixed ZEV fleet, enabled by accurate
predictions of block charge consumption and battery time-
to-charge. The objectives are to optimize the assignment of
vehicles to blocks for maximum BEB utilization, and the
charging schedule across a transit fleet, defining when and
how much each BEB should be charged, while ensuring
that BEBs are safely operated within their minimum and
maximum SOC, that physical constraints (such as the number
and displacement of available electric chargers) and bus-to-
block constraints (certain blocks can only be completed by
certain bus types, for instance, due to the bus size and the
route geometry) are respected.

First, we introduce some notation and definitions. Let B
be the set of available buses and each bus b ∈ B belong
to a certain bus type bt ∈ Bt capturing the manufacturer,
model, trim, powertrain (internal combustion, hybrid electric,
battery electric, fuel cell), capacity of energy storage (such
as fuel tank capacity or battery capacity), rated driving
range, maximum occupancy, weight, and payload. We also
asSOCiate each bus to a digital twin model bm ∈ Bm that
can predict energy usage and charging time. The buses in
B serve a set of blocks J . Each block j ∈ J includes
both service trips and deadhead trips, and has an origin and
destination (which in the single depot case is the same), and
a start and end time. An assignment plan defines, on a given
day, the blocks that each bus will serve.

Since we are focusing on fleets that include some BEBs,
a feasible assignment plan must ensure that BEBs are
only assigned to blocks that can be completed without
getting stranded. Such feasibility depends on the SOC at
the beginning and at the end of the day, on the minimum
and maximum SOC allowed for the BEB, on the charge

consumption incurred on the assigned blocks, and on the
feasibility of charging the BEB up to the SOC required
for the next block while it is at the depot. Similar to the
assignment plan, the charging strategy defines, on a given
day, the charging sessions for each BEB; each charging
session is asSOCiated with a charging location in the depot,
and a start and end time.

We can now formulate the fixed time optimization problem
for the optimal block assignment and charging strategy for
the BEBs in a fixed schedule transit fleet. The decision
variables for the optimization problem include the binary
variables bi,j indicating whether a bus i ∈ B is serving
a block j ∈ J , and the binary variables ci(t) indicating
whether a bus i ∈ B is charging at time t. The optimization
problem has the form:

min
bi,j ,ci(:)

J = −
∑
i∈B

∑
j∈J

bi,jdj (1a)

s.t. SOC dynamics with bm, (1b)
vehicle initial and final state constraints, (1c)
vehicle safety constraints, (1d)
depot charging constraints, (1e)
bus-to-block constraints, (1f)

where dj is the distance (utilization) of block j ∈ J , and
the SOC dynamics represent, for each bus b ∈ B, the
predictions by model bm of the energy used to service a
block and added in a charging session. The vehicle initial and
final state constraints enforce initial and final states, such as
battery SOC and location, for each BEB. The vehicle safety
constraints ensure that the buses operate within the safe
SOC levels. The depot charging constraints model constraints
imposed by the charging infrastructure in the depot; these can
include the maximum number of parallel or serial charging,
bus queue orders, the maximum number of buses being
charged at a time, as well as (soft or hard) constraints dictated
by utility rates and the need to limit peak power demand.
Finally, the bus-to-block constraints ensure that some blocks
are only served by certain bus types bt.

VI. DEPOT PARKING AND CHARGING

This section presents the module to manage the motion of
ZEVs inside the depot according to the charging schedule.
The vehicles can be notified through dashboard messages or
phone app, or autonomously controlled if equipped with a
level 4 self-driving stack.

A. Parking and Charging Management

As illustrated in Fig. 3, when a fleet of ZEV enters the
depot, they can report to the system the necessary parameters,
such as their current state of charge (SOC), blocks data,
ZEV digital twins, and charger models. By observing and
predicting the parking and charging demand, the cloud
server can solve the optimal block assignment and charging
strategy (1) and notify the vehicles of their assigned time and
location of the parking spot, their planned charging schedule,
and the path to reach the spots.
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Fig. 3: The system diagram of the parking and charging
management module

A ZEV can be either assigned immediately to spots with
chargers (e.g., buses A, B, and C in Fig. 3) or tentatively
assigned to parking-only spots on a waitlist (e.g., vehicle D).
For the latter case, the system can coordinate the interchange
of vehicles on a charger. When one of the buses finishes
charging (e.g., vehicle C), it can be asked to leave the
charging spot as soon as possible to serve a block. When
it leaves, the vehicle on a waitlist (e.g., vehicle D) can be
notified to move in and use the now-open charger.

B. Autonomous Control of Vehicles

If any of the ZEVs is autonomous with level 4 self-
driving stack, it can self-drive along a designated trajectory
to maneuver in and out of the charging spot [24].

Given the initial state z0, target state zF, and vehicle
dynamics ż = f(z, u) of a ZEV, we can solve the trajectory
planning problem with the formulation:

min
z,u,T

J =

∫ T

t=0

c (z(t), u(t)) dt

s.t. ż(t) = f(z(t), u(t)), (2a)
z(t) ∈ Z, u(t) ∈ U , (2b)
z(0) = z0, z(T ) = zF, (2c)

dist
(
B(z(t)),O[m]

)
≥ dmin,∀m (2d)

where the state z and input u are constrained under operation
limits Z and U . We denote by B(z(t)) the vehicle body
at time t and ask it to maintain a safety distance dmin

away from all obstacles O[m]. The stage cost c(·, ·) can
encode the amount of actuation, energy consumption, and
time consumption.

Problem (2) can be solved efficiently by reformulating [25]
the collision avoidance constraints (2d) and discretizing with
orthogonal collocation on finite elements [26]. Fig. 4 shows
the kinematically feasible, collision-free trajectories for buses
A and C in Fig. 3 to enter and leave their charging spots. Note
that since the structure of the depot is known, and the transit

Fig. 4: ZEV maneuver in tightly constrained depot

ZEVs will always drive along dedicated lanes repetitively,
we can enumerate all possible maneuvers and generate the
trajectories in advance as a library [27], and send them to
buses according to the specific real-time scenario.

VII. SIMULATION RESULTS AND DISCUSSION

In this section, we present simulation results of the ZEV
block assignment and charging strategy (1).

We used samples of block data and bus block and charging
models obtained from a US transit agency. A total of 8 BEBs
are initially at 85% SOC and ready for pull out at 5 am
EST, and have 8 electric chargers available at the depot.
The minimum SOC is set to 35% throughout the plan for
each BEB. To favor BEB utilization around the time of the
day with the most active blocks (4 pm EST), an additional
constraint is imposed to have at least 4 BEBs serving blocks
at 4 pm EST. As for the depot charging constraints, in
addition to the physical constraints due to the chargers power
and displacement in the depot, it is imposed that there are at
most 3 charging sessions active at the same time during peak
hours (6 am and 10 pm EST), so that peak power demand and
the corresponding utility rates are limited. We also allocate at
least 15 minutes of setup time before any charging or service
block begins. Finally, every bus ends the day at 85% SOC
or above to be ready for service the next day.

Fig. 5 and Fig. 6 show the simulation results of the daily
schedules and the simulated SOC trajectories of each bus.
Fig. 5 is the result when the SOC consumption of the service
blocks and charging are the same as the SOC dynamics
predicted by bm, and Fig. 6 is the result when the actual SOC
consumption of the service blocks is only half the predicted
while the charging is accurate. Each row corresponds to a
BEB, the blue rectangles represent the blocks served by each
BEB, the green rectangles indicate that the bus is charging,
and the black rectangles indicate the preparation time prior to
charging. The colored solid lines represent the corresponding
SOC trajectories.

In both scenarios, every constraint stated in the problem
details is satisfied, including the minimum SOC above 35%,
the final SOC above 85%, the maximum number of charging
session active during peak hours under 3, etc. With accurate
block energy consumption predictions, the assignment plan
includes more and longer blocks, and the total distance
traveled is 1648.4 miles. When the block energy consumption
is overestimated, the assignment plan includes fewer smaller
blocks, covering a total distance of 747.2 miles (less than
half of the perfect prediction scenario). It is also seen that
one of the buses does not serve any blocks.



Fig. 5: Block and charging assignments with perfect predic-
tion; x- and y-axis are UTC time and bus IDs.

Fig. 6: Block and charging assignments with imperfect
predictions; x- and y-axis are UTC time and bus IDs. Actual
block energy consumption is half of predicted consumption.
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