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Abstract—LIDAR and RADAR are two commonly used sensors
in autonomous driving systems. The extrinsic calibration between
the two is crucial for effective sensor fusion. The challenge arises
due to the low accuracy and sparse information in RADAR
measurements. This paper presents a novel solution for 3D
RADAR-LIDAR calibration in autonomous systems. The method
employs simple targets to generate data, including correspon-
dence registration and a one-step optimization algorithm. The op-
timization aims to minimize the reprojection error while utilizing
a small multi-layer perception (MLP) to perform regression on
the return energy of the sensor around the targets. The proposed
approach uses a deep learning framework such as PyTorch
and can be optimized through gradient descent. The experiment
uses a 360-degree Ouster-128 LIDAR and a 360-degree Navtech
RADAR, providing raw measurements. The results validate the
effectiveness of the proposed method in achieving improved
estimates of extrinsic calibration parameters.

Index Terms—RADAR, LIDAR, Calibration, Neural Network,
NeRF

I. INTRODUCTION

With the advancement of autonomous vehicle technology,
there is an increasing need for effective solutions in adverse
weather conditions, such as rain and snow. While CAMERA
and LIDAR sensors have proven successful under normal
conditions, inclement weather can significantly affect their per-
formance. RADAR sensors, like those produced by Navtech
[1], offer a promising alternative. With a longer wavelength,
RADAR sensors are less impacted by small particles like
dust, fog, rain, or snow that can impair the performance of
CAMERA and LIDAR. Additionally, RADAR has a longer
detection range and the ability to penetrate materials, enabling
the detection of objects that are beyond the line of sight of
LIDAR sensors. These features make RADAR ideal for use
in adverse weather conditions.

The publication of the Oxford RADAR RobotCar Dataset
[1] in 2020 has provided a valuable resource for researchers,
containing a rich collection of LIDAR, CAMERA, and
RADAR data. This dataset has been instrumental in advancing
autonomous vehicle research and has led to notable progress in
fields such as odometry [1]–[4], place recognition [5], [6], and
semantic segmentation [7]–[10]. Other datasets like [11]–[14]
have also been made accessible to researchers, further fueling
the development of RADAR research. We expect RADAR and
its integration with other sensors to become a growing area of

research and application in the future, with great advancements
driven by the availability of large amounts of public data.

While RADAR sensors have the potential to provide robust
performance in inclement weather, they also have a coarser
spatial resolution and higher noise compared to LIDAR sen-
sors, making the task of calibrating them challenging. Extrinsic
calibration between RADAR and other sensors has received
relatively less attention compared to the calibration between
LIDAR and CAMERA sensors [11], [15]–[18].

The extrinsic 6-DoF calibration between LIDAR and
RADAR sensors can be difficult due to the limited resolution
and information loss in the third dimension of RADAR mea-
surements. Previous methods, such as [19], utilized curve mod-
els to model the relationship between elevation and RADAR
cross-section (RCS). However, these models have limitations
as they only consider a subset of data and do not account for
various factors that impact the RADAR return signal, such
as shape, material, direction, and the RADAR’s power and
frequency. Recent advancements in neural networks, such as
the Neural Radiance Field (NeRF) model [20], demonstrate
the ability to model complex relationships between sensors,
poses, and scenes, including scene geometry. These models
can learn to represent a scene using images from various views
and estimate the pose during the training process [21]. In this
paper, we present a method to calibrate LIDAR and RADAR
by using a small Multi-Layer Perceptron (MLP) to model the
target as a collection of RADAR return energy. The model is
trained to learn the correlation between the RADAR sensor
pose relative to the target and the return energy, allowing it to
be used for calibration. This is treated as a regression problem.
Along with the regression loss, we also use reprojection loss
and a ray pass loss to achieve calibration. The details of these
losses will be described in III-C.

II. RELATED WORKS

A. Multisensor Calibration

In the calibration of RADAR and other sensors, two primary
challenges exist: (1) recovering the missing third-dimension
information from RADAR and other sensors, and (2) ensuring
that reflectors are visible to all sensors. Traditional methods
have addressed these issues in various ways. For example,
[22] proposed a 3D reconstruction method based on sensor
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(a) Side view (b) Front view

Fig. 1. Aluminum cctahedral RADAR reflector front with two side covered
by two polystyrene foams

geometry and a calibration facility using a Luneburg lens and
differently-colored corner reflectors. [23] designed a compact
target and proposed two-step optimizations for 6-DOF calibra-
tion between RADAR and LIDAR. Subsequently, [19] added
chequerboard patterns to enable calibration between RADAR,
LIDAR, and CAMERA. [24] utilized a styrofoam board with
four circular holes and a corner reflector for sparse LIDAR
beam detection. More recent tools like radar to lidar calib
[25] and OpenCalib [26] have also emerged, offering cali-
bration capabilities for multiple sensor types without targets.
Our novel approach distinguishes itself from these existing
methods by utilizing a more comprehensive representation of
the target, rather than only considering data with the strongest
return energy. We achieve this by training a small neural
network to represent the target, which allows our method
to account for both the detected target center, characterized
by high return energy, and the data from the surrounding
neighborhood. This innovative approach leads to a more
accurate and nuanced calibration process, ensuring enhanced
performance in multi-sensor systems.

B. RADAR and Neural Network

Deep learning has demonstrated its effectiveness in various
applications, including autonomous driving. While CAMERA
and LIDAR have benefited from extensive research, the appli-
cation of deep learning to RADAR remains under-explored,
as evidenced by the limited literature [11]. Notable works
on CAMERA and LIDAR calibration using deep learning,
such as [15]–[18], have employed supervised or unsuper-
vised approaches, but similar studies for RADAR and other
sensor calibrations are still lacking. These methods leverage
neural networks to identify correlations between modalities
and learn common features, either guided by ground truth
or an unsupervised loss. A promising future direction could
involve unsupervised metric feature learning techniques, such
as [2], [3], for discovering shared features between RADAR
and other modalities, as demonstrated in [27]. Implicit neural
representations have recently gained popularity in representing
scenes for images and 3D point clouds. Gradient descent al-
lows neural networks to learn color and geometry information
from image data [20] or point cloud data [28], with or without
pose information. However, to the best of our knowledge, this
approach has not yet been applied to RADAR data. Our work
stands out by exploring the untapped potential of deep learning

Fig. 2. Registered LIDAR Point Cloud (blue), Filtered RADAR measure-
ments(Purple), Extracted Target Point Cloud(green)

in RADAR calibration, addressing the gap in existing research
and offering a novel contribution to the field.

III. METHOD

A. Calibration Target Design

Calibrating both LIDAR and RADAR requires a target that
is visible to both sensors. For RADAR, it is desirable to have
a target with a high RADAR Cross-Section (RCS) to improve
the detection rates. Marine aluminum RADAR reflectors (see
Fig. 1 (a)), which are cheap and readily available, can be used
for this purpose, but they can affect the LIDAR measurements.
Furthermore, their small size makes them difficult to detect
by LIDAR. To overcome this, we use two polystyrene foams
to cover two sides of the reflector and construct a non-
symmetrical shape as see Fig. 1 (b), which has a larger visible
area for LIDAR, making it easier to register and determine
the reflector’s position in the scene, which will be used for
calibration.

B. Data Collection

To guarantee accurate and undistorted data from both LI-
DAR and RADAR sensors, we leverage velocity information
obtained from the Inertial Measurement Unit (IMU) sensor to
identify static frames in LIDAR and RADAR data. We used
the FPFH feature [29] and RANSAC global registration to
register all the static LIDAR frames together, resulting in an
initial pose of all the LIDAR data in the scene. We then refined
the pose of each LIDAR frame using the Iterative Closest Point
(ICP) algorithm to generate a dense LIDAR point cloud, which
was then utilized for target detection to prevent any incomplete
frames. By collecting data from multiple robot movements, we
obtained each LIDAR frame’s position within the registered
point cloud, thus eliminating the need for target extraction
for each frame. For the RADAR target extraction, we first
filtered out most of the raw RADAR by setting a threshold.
Then we used raw LIDAR and RADAR transformation to
get the raw data target measurement, which was obtained by
manually measuring. We defined the target center as the first
measurement in the RADAR data. The data collection and
pre-processing results is shown in Fig.2.
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Fig. 3. Sample the RADAR measurement data (rxi,
rdi, ei) around the

target centers; Compute the data distance d between the LIDAR target center
and the RADAR target center

C. Optimization

We develop our calibration method using a gradient descent
optimization framework implemented with PyTorch. Our ob-
jectives for the calibration are three-fold: 1) minimizing the
reprojection error, 2) reducing the regression error of an MLP,
and 3) minimizing the ray pass loss, which considers whether
a ray passes through the target or not. The transformation
matrix T between the LIDAR and RADAR sensors can be
represented in many ways. While optimizing, the rotation
matrix R(w) was represented as axis-angle representation
w (so(3) → SO(3)). While evaluation, we represent the
rotation using Euler angles θ = [θx, θy, θz]. The translation
is represented by three variables t = [tx, ty, tz].

1) Reprojection Loss: To compute reprojection loss, we
first convert the LIDAR target center point lxl,i from the
LIDAR sensor coordinate to the RADAR sensor coordinate
using the following equation:

rxl,i =
r
lR · lxl,i + r

l t (1)

Where r
lR is the rotation matrix and r

l t is the translation
vector. Next, the point rxl,i is converted to spherical coor-
dinate rsl,i = [rrl,i,

rθl,i,
rzl,i]. The RADAR measurement

rsr,i = [rrr,i,
rθr,i,−] is assumed to be the ground truth. The

absolute differences loss (L1) is applied to the azimuth angle
and radial distance between the transformed LIDAR target
center data and the RADAR measurement.

lrep = wrL1(
rrr,

rrl) + wθL1(
rθr,

rθl) (2)

where wθ and wr are two weights that can be set manually
to adjust the optimization direction and balance the relative
importance of radial distance and azimuth angle, due to their
differing value scales.

2) Regression Loss: Getting a 6 DoF calibration between
LIDAR and RADAR is challenging due to the missing 3D
information in RADAR measurement. However, as shown
in [19], the RCS is correlated with the target’s 3D position
in the RADAR coordinate, leading to the modeling of the
relationship between RCS and target position as a curve model
in the paper. Inspired by this work and recent advancements in
NeRF, we use a small Multi-Layer Perceptron (MLP) to model

(a) Side view (b) Front view

Fig. 4. Clearpath Warthog with one Ouster OS1 128 Channel LIDAR and
one Navtech CIR-DEV RADAR

the relationship between the RADAR sensor pose relative to
the target and the return energy. Rather than solely relying on
the target center to model the relationship, we also incorporate
the neighborhood data surrounding the target centers for a
more comprehensive representation. See. Fig.3, we sample
the RADAR measurement data around the target centers and
represent the data as (rxr,i,

rdr,i, ei), where rxr,i denote the
position of the RADAR data in RADAR coordinate, rdr,i
represent the ray direction from the RADAR sensor origin
to the measurement, and ei represent the return energy, which
is raw data value of the Navtech RADAR.

In the optimization process, we transform the RADAR
measurement (rxr,i,

rdr,i, ei) from the RADAR coordinate
to the local target coordinate based on the current estimated
RADAR-LIDAR extrinsic calibration w

r T and the target pose
w
t T in the scene which can be obtained during the data collec-
tion steps described in III-B. After the transformation ,we got
data (txr,i,

tdr,i, ei) in the target local coordinate. Based on
[20] and experiment, we use Eq.3 to apply position encoding
to each of the three coordinate values in the direction tdr,i
and position txr,i separately. Eq.3 is a mapping from R into a
higher dimensional space R2L. Positional encoding facilitates
the network to optimize parameters by easily mapping input
to higher-dimensional space. [20] showed that using a high-
frequency function for mapping original input enables better
fitting of data that contains high-frequency variation.

P (x, 2i) = sin
(
2iπx

)
P (x, 2i+ 1) = cos

(
2iπx

) (3)

We use the encoded direction P (tdr,i) and position P (txr,i)
as the input of the MLP and predict the corresponding return
energy êi.

êi =MLP (P (txr,i), P (
tdr,i)) (4)

During optimization, we minimize the absolute difference (L1

loss) between the ground truth value ei and the predictions êi

lmlp = L1(êi, ei) (5)

3) Ray-pass Loss: To ensure that our optimization results
align with the properties of the sensors, we added a ray pass
loss to optimization objectives. The high return energy of
RADAR target measurement should be the result of a ray
passing through the target from the RADAR sensor origin.



(a) Sensors and Targets Setup for Data Collection

(b) Raw LIDAR data (c) Raw RADAR data

Fig. 5. Experiment settings: Three targets with fixed positions form a scene,
and the robot drives around the targets.

To simplify, we modeled the target as a ball rather than an
octahedron. The loss is defined as in Equation 6, where d
is the distance between the ray and the center of the target
in the target coordinate system, and r is the radius of the
circumscribed sphere. If the distance is greater than the radius,
it indicates that the ray does not pass through the target, and
the difference between the distance and radius is used as the
penalty. If the distance is smaller than the radius, the penalty
is set to zero.

lray = max (0, di − r) (6)

4) Total Losses: The overall optimization objective is:

l = wreplrep + wmlplmlp + wraylray (7)

where the wrep, wmlp and wray are weights for each loss.

IV. EXPERIMENTS

A. Sensors and Experiment Setting

The experiment involved a Clearpath Warthog mobile robot
equipped with an Ouster OS1 3D LIDAR and a Navtech CIR-
DE RADAR, as depicted in Fig. 5. The LIDAR has 128 chan-
nels and 2048 points per channel, with an 45 degrees vertical
field of view (FoV) and operates at 10 Hz. The RADAR has
a range resolution of 0.044m and azimuth resolution of 0.9
degrees, with an 1.8 degrees vertical field of view (FoV) and
works a 4 Hz. Both sensors have 360 degrees horizontal field
of view (FoV). The sensor setup is shown in Figure 4. A 3D-
printed wedge was attached to the bottom of the RADAR with
an incline of around three degrees.

The experiment used three targets, and the robot was
positioned at different locations to collect data, as shown
in Fig. 5. The experiment was conducted outdoors, and five
different target settings were used. After the data processing

Fig. 6. Histogram of reprojection errors for RADAR-LIDAR calibration using
different loss configuration

steps described in III-B, 104 paired RADAR-LIDAR data were
collected.

B. Implementation

Our extrinsic calibration algorithm was implemented using
the PyTorch framework and optimized using the Adam opti-
mizer [30]. The MLP consisted of four linear layers, each with
a hidden size of 128 and using the ReLU activation function.
A learning rate of 0.005 was applied to the network, while the
learning rates for the rotation and translation parameters were
set to 0.005 and 0.001, respectively. During the experiment,
the weights for the reprojection error, regression, and ray-
pass losses were set to 1000, 1000, and 100, respectively.
To compute the regression loss, we sampled data around the
estimated RADAR target center within a radius of 0.6 meters.

C. Results

To evaluate the quality of the calibration results, we con-
ducted experiments on a real-world dataset with different
loss function configurations: including only the reprojection
error loss (rep), the reprojection error loss and regression
loss (mlp), the reprojection error loss, regression loss, and
ray-pass loss (mlp+ray) and the reprojection error loss and
ray-pass loss (rep+ray). Table I presents the initial calibration
parameters obtained manually and the results of calibrations

TABLE I
RADAR-LIDAR CALIBRATION RESULTS

Loss θx θy θz tx ty tz

initial 0.00 0.00 0.00 0.50 -0.25 0.05
rep 0.97 6.97 1.17 0.57 -0.26 0.04
mlp 0.26 2.04 1.01 0.57 -0.25 0.05

mlp+ray -0.14 2.63 1.05 0.56 -0.26 -0.03
rep+ray 0.08 3.35 1.07 0.57 -0.26 0.01



Fig. 7. LIDAR target centers distribution in the RADAR coordinate. The x-
axis represents the radial distance between the target center and the RADAR
origin, the y-axis represents the angle between the RADAR x-y plane and the
target centers.

using different optimization objectives. The results demon-
strate differences, particularly in θx and θy , and tz , due to
the limitations of the RADAR measurement. However, as
previously mentioned, we intentionally introduced a three-
degree wedge while installing RADAR sensors. As shown
in Table I, all calibration results reflect this. We used the
reprojection error in the RADAR coordinate as the evaluation
metric, and Fig. 6 shows the distribution of the reprojection
error. Despite the differences, all four settings have similar
reprojection error distributions, which does not necessarily
indicate which calibration results are better.

To further evaluate the quality of the calibration results, we
examine the relationship between the target and RADAR ray.
The RADAR ray from the sensor origin to the RADAR target
center must hit the target and return the energy, as indicated
by the high return energy. Fig. 7 displays the distribution
of the LIDAR target centers in the RADAR coordinate after
projection using the calibration results. The x-axis represents
the radial distance between the LIDAR target center and the
RADAR origin. In contrast, the y-axis represents the angle
between the RADAR x-y plane and the LIDAR target centers.
The two red dashed lines indicate the boundaries where the
RADAR ray can hit the target at different distances based on
the physical size of the target. From Fig.7, we observe that
the calibration results that only use the reprojection error loss
have many points outside the boundary, which is not physically
correct. On the other hand, the calibration results of mlp+ray
and rep+ray have most of the projected points within the
boundaries. The mlp also has most of the points within or close
to the boundary, which implies that the objective function is
effective. In order to evaluate the robustness of our method, we
conducted a Monte Carlo analysis by randomly subsampling
our dataset to 50% of its original size and ran 100 iterations
of optimization on different subsampled datasets. The results
are presented as boxplots in Fig. 8. As predicted and in line
with previous studies [19], [23], the parameters tx, ty , and
θz that are well-represented by the RADAR measurements

Fig. 8. Monte Carlo analysis results for RADAR–LIDAR calibration using
different loss configurations

exhibit lower variance compared to the other parameters. In
contrast, the parameters tz , θx, and θy show larger variance.
The results from the rep+ray experiment display the highest
variance in z, indicating that the ray-pass loss function is
highly sensitive to the amount of data. By incorporating the
regression loss, which utilizes both reprojection error and the
relationship between the return energy and the position of the
target center’s surroundings, the variance is reduced compared
to only using reprojection error and ray-pass, even with
fewer data points. Finally, Fig.10 demonstrates that the use
of positional encoding results in smaller errors in regression.
Several examples of the regression are illustrated in Fig.9.

V. CONCLUSION

In this study, we presented a novel extrinsic 6-DoF calibra-
tion method for a RADAR-LIDAR system. Our method used a
specially designed calibration target that allowed both sensors
to accurately detect and locate the target within their respective
operating parameters. The calibration process involved three
optimization objectives: reprojection error, regression error,
and ray-pass loss. The proposed method was implemented



Fig. 9. Regression results from MLP

Fig. 10. Histogram of regression errors of MLP with/without positional
encoding

using a popular deep-learning framework and optimized via
gradient descent. The experiments conducted on real-world
data validated the effectiveness of the proposed method and
showed significant improvements in the estimation of extrinsic
calibration parameters.
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[7] A. Ouaknine, A. Newson, P. Pérez, F. Tupin, and J. Rebut, “Multi-view
radar semantic segmentation,” pp. 15 671–15 680.

[8] R. Prophet, G. Li, C. Sturm, and M. Vossiek, “Semantic segmentation on
automotive radar maps,” in 2019 IEEE Intelligent Vehicles Symposium
(IV), pp. 756–763, ISSN: 2642-7214.

[9] J. Rebut, A. Ouaknine, W. Malik, and P. Pérez, “Raw high-definition
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