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Abstract—Autonomous driving systems present promising
methods for congestion mitigation in mixed autonomy traffic
control settings. In particular, when coupled with even modest
traffic state estimates, such systems can plan and coordinate the
behaviors of automated vehicles (AVs) in response to observed
downstream events, thereby inhibiting the continued propagation
of congestion. In this paper, we present a two-layer control
strategy in which the upper layer proposes the desired speeds
that predictively react to the downstream state of traffic, and the
lower layer maintains safe and reasonable headways with leading
vehicles. This method is demonstrated to achieve an average of
over 15% energy savings within simulations of congested events
observed in Interstate 24 with only 4% AV penetration, while
restricting negative externalities imposed on traveling times and
mobility. The proposed strategy that served as part of the “speed
planner” was deployed on 100 AVs in a massive traffic experiment
conducted on Nashville’s I-24 in November 2022.

Index Terms—Mixed-autonomy traffic, Traffic control, Speed
harmonization, Field experiment

I. INTRODUCTION

Vehicle autonomy is rapidly becoming a viable feature of
many road networks. Early demonstrations in vehicle platoon-
ing [1]–[3] and similar successes spurred on by ambitious driv-
ing challenges [4], [5] have motivated equally ambitious efforts
in the industrial sector, with companies including Tesla [6],
Google [7], GM [8], and others all attempting to push the
limitations and scope of vehicle autonomy. This trajectory
is expected to continue as well, with studies projecting and
discussing the implications of autonomy in the vicinity of 20-
40% by 2050 [9].

In this paper, we are interested primarily in the role of
longitudinal driving behaviors on the energy-efficiency of
a given network. To improve energy-efficiency, we need to
dampen traffic oscillation, and one well-known approach for
this is speed harmonization which aims to reduce temporal
and spatial variations of traffic speed by applying certain
control approaches [10]. This is a topic that has formerly
been heavily explored in the context of platoons of connected
and automated vehicles(CAVs), whereby platoons of fully-
automated vehicles have successfully maintained string-stable
driving responses in tight platoons, thereby providing notable
benefits to both energy-efficiency and throughput. More rele-
vant to the present paper, however, AVs in mixed-autonomy
settings may provide significant benefits in mitigating string-
instabilities among human drivers as well. In the work [11],
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a mixed traffic speed harmonization algorithm that is based
on trajectory prediction from sensor data and probe data was
proposed to control CAVS so that they smoothly hedge against
the backward deceleration waves and gradually merge into
the downstream traffic with a reasonable speed. It was also
demonstrated empirically in the seminal work of [12], whereby
a single AV within a circular track stably operating near the
effectively uniform driving speed of the network manages to
dampen stop-and-go oscillations existing prior to actuation.

The above empirical study provides a useful insight that is
frequently mentioned [13], [14]: significant gains to energy-
efficiency may be achieved by harmonizing the speeds of
subsets of vehicles near a desirable target. This deduction,
however, introduces new challenges to autonomous driving
systems. In particular, under the ever-evolving dynamics of
a particular network as demand waxes and wanes, AVs must
reactively identify desirable speeds that match current spatio-
temporal trends while not inhibiting the safety or mobility
of the vehicle. To this, traffic state estimates may offer a
helping hand. Estimates of flow, density, and speed produced
either from fixed sensors or probe vehicles [15] may elucidate
spatio-temporal patterns that may be exploited by AVs in a
largely decentralized manner. This is in part demonstrated
in the work of [16], for instance, an optimal speed profile
for vehicles can be generated with devices to provide speed
measurements forward in space and time. Solutions such as
these, however, are often studied in the context of a fully-
observable macroscopic environment, and as such become
brittle and unsafe in the presence of inaccurate traffic state
estimates and microscopic fluctuations in speed and spacing.

In this paper, we present a two-layer control strategy that
exploits both macroscopic traffic state estimates(TSE) and mi-
croscopic observations to produce a reasonable car-following
response while also attempting to harmonize driving speeds
across a desirable spatio-temporal target. The key contributions
of this paper are as follows:

• We construct a two-layer longitudinal feedback control
strategy for AVs in which the upper layer generates the
desired speed that helps to smooth the traffic flow, and
the lower layer attempts to maintain reasonable headways
with preceding vehicles when appropriate.

• We validate the efficacy of the above method on a simu-
lation of throughput-restricted traffic aimed at capturing
the high degree of variability in driving behaviors and
traffic state estimates common to real-world networks,
and we demonstrate that our method can consistently
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Fig. 1: An illustration of the targeted highway network within
this study (I-24 Westbound in Nashville, Tennessee), seen
within the highlighted region.

achieve smoother traffic flow and large energy savings
in congested states of traffic.

• We justify the modular and flexible architecture of the
two-layer control strategy by deploying the upper layer
as part of the “speed planner” for 100 AVs in a mas-
sive traffic experiment conducted on Nashville’s I-24 in
November 2022.

II. CONTROLLER DESIGN

A. Problem Statement

In this paper, we are interested in exploring methods for
ameliorating congestion in mixed autonomy highway net-
works. The considered network, see Figure 1, is a 14.5-km
long segment of I-24 located in Nashville, Tennessee. This
network has been the topic of some interest in recent years,
with researchers attempting to both reconstruct [17], [18]
and address [18]–[20] characteristics of driving within this
network that produce inefficiencies in energy consumption. In
particular, we explore the implications of automated driving
on addressing inefficiencies arising from string instabilities
in human driving behaviors, which result in the formation of
stop-and-go traffic during peak demand intervals within this
network.

We focus on deriving longitudinal responses for AVs dis-
persed with a straight, single-lane track. Figure 2 provides a
visual interpretation of the explored problem setup. We con-
sider the task of traffic flow harmonization in settings where
AVs (in red) are distributed amongst, and interact with, human-
driven vehicles (in blue and white, blue represents the leading
vehicle sensed by AV). Both microscopic observations and
macroscopic traffic state estimations (TSE) can be obtained
by AVs. We assume that besides its own position and velocity
information (xα, vα) the AV can sense the leading vehicle’s
position and velocity (xl, vl), and get access to downstream
TSE in the form of space-mean speeds (xi, v̄i), i represents the
ith segement. Based on these inputs, we aim to develop driving
speeds for AVs to smooth the traffic flow while maintaining
safe and appropriate gaps between AVs and their leaders.

Fig. 2: A Top View interpretation of the explored single-lane
problem setup. Red cars represent AVs, blue represents sensed
leading human-driven vehicles and white represents unsensed
human-driven vehicles. Grey dashed vertical lines indicate the
division of macroscopic TSE segments and their positions.

In the following subsections, we present a two-layer control
strategy that includes an upper layer: target speed, a lower
layer: gap regulation, and a safety filter.

B. Upper layer: Target Speed

The proposed approach adopts and extends prior heuristic
on traffic flow harmonization [12]–[14], [16], which posit
that traffic may be homogenized near its desirable uniform
driving speed by operating a subset of vehicles near accurate
predictions of said speed. The desirable uniform driving speed
must be achieved without shared communication between
adjacent vehicles, as in mixed-autonomy settings human-
driven vehicles are incapable of sharing their desired speeds.
Instead, we rely on macroscopic TSE data to synchronize the
driving speeds of automated vehicles. In particular, vehicles
are assigned target speed profiles contingent on traffic state
information, which is shared and common among all AVs.

The target speed vtarget,α = f(hα, vα, vdes,α) is designed
based on an actuation function as follows:

vtarget,α =


vα if 0 ≤ hα < 1s

(2− hα)vα + (hα − 1)vdes,α if 1s ≤ hα ≤ 2s

vdes,α if hα > 2s

,

(1)
where vα and hα are the speeds and time gaps (in seconds s)
of the subject vehicle, respectively.

To address safety concerns, we assign the desired speed
only if the time gap between the subject and the preceding
vehicle is not relatively small. This design is consistent with
car-following behavior, which prioritizes maintaining a safe
distance between vehicles.

The desired speed profile vdes,α may be extracted in a
number of different ways, with many convolutional map-
pings capable of homogenizing the flow of traffic. Given
that macroscopic TSE data is typically quite sparse in real-
world applications, such as the INRIX data [21] available
for our considered highway network has a granularity of
approximately one average speed data point for every half-
mile, we utilized kernel methods to obtain the desired speed.
First, we preprocess the sparse TSE data by interpolating
those discrete data pairs (xi, v̄i) to a continuous speed profile
vj = v(xj), j represents any points on the road, as an
approximation of the traffic state with higher granularity. Then



Fig. 3: Example of the proposed desired speed profile for
sample traffic state estimates. Average (aggregated) speeds
across multiple segments (orange dots) are interpolated to a
continuous profile. Uniform kernel as Eq. (3) expressed is
applied to obtain the desired speed profile (green line).

we obtain the desired speed by applying a kernel function K(·)
on v(xj) given the position of the AV xα:

vdes,α =

∫ xα+w

x=xα
K(xα, x)v(x)dx∫ xα+w

x=xα
K(xα, x)dx

, (2)

where xα is the position of the subject vehicle, and w is the
width of the estimation window.

Many different kernel functions such as Gaussian kernel,
Triangular kernel, Quartic kernel, Uniform kernel, etc. can be
chosen. For the purposes of this study, we consider a uniform
kernel, the simplest such mapping. The desired speed profile
at a position xα is accordingly defined as:

vdes(xα) =

∫ xα+w

x=xα
v(x)dx

w
. (3)

For human drivers, when they observe a gap between their
vehicle and the one preceding, they tend to accelerate to
close the distance. Ironically, this behavior by human drivers
is responsible for causing string instabilities, which lead to
traffic congestion and delays. As demonstrated in Figure 3,
our proposed desired speed profile aims to slow down in
advance, although not excessively, to create a gap from
the preceding vehicle. This approach takes into account the
information provided by the TSE, which indicates the presence
of congestion in the nearby downstream area. The proposed
desired speed profile is adaptive to traffic states and offers
relative robustness, as it only requires one parameter, w, to
tune.

C. Lower layer: Gap regulation

While our goal is to manage human drivers’ car-following
behaviors by proactively increasing the gap, it is crucial to take
into account the social acceptance of our approach and ensure
that it does not negatively impact traffic throughput. The
primary function of the controller’s lower layer is to maintain
a safe and responsive distance for the ego vehicle, enabling it
to adapt to nearby occurrences such as the emergence of large
gaps. In particular, when provided traffic state information
overestimates or underestimates the actual state of traffic,

additional feedback mechanisms are employed to allow AVs
to respond in a manner more reminiscent of adaptive cruise
control (ACC) [22]. The gap regulation part is designed as
(kp(hα − hdes) + kd(vl − vα)), which is similar to the design
of the ACC vehicle model [23], and aims to maintain a desired
time gaps hdes while further reducing the discrepancy in speeds
between ego and leading vehicles. The kp and kd terms, similar
to other PD feedback control methods, specify the intensity
of responses by AVs to such fluctuations. Equipped with the
target speed layer, our controller tries to drive smoothly while
maintaining a reasonable gap with the anticipation of future
oscillations in driving speeds.

D. Safety filter

Finally, to avoid potential collisions with the preceding
vehicle from unforeseen driving events, we additionally restrict
the magnitudes of assigned speeds by values imposed by a
safety filter vfs. The safety filter in our formulation is treated
as a generic term to allow for flexible assignment.

In this paper, we adopt a simple method as Eq. (4) with the
idea of maintaining sufficiently large gaps, both in space and
time, subject to the leading vehicles’ most recent fluctuations
in speeds.

vfs =
sα − smin + vlτs +

1
2alτ

2
s − 1

2vατs

hmin +
1
2τs

, (4)

where s is the space gap between the preceding vehicle and
the subject vehicle; smin is the minimum space gap between
the two vehicles; vl is the velocity of the preceding vehicle;
τs is the decision-making horizon; al is the acceleration of the
preceding vehicle; hmin is the minimum time gap between the
two vehicles and v is the velocity of the subject vehicle.

In summary, we develop a two-layer feedback controller
designed to:1) proactively and reactively generate a target
speed to smooth traffic flow utilizing both macroscopic TSE
and microscopic observations; and 2) adjust the gap between
vehicles in order to maintain social acceptance and prevent
reductions in throughput. o ensure safety, the controller is
equipped with a safety filter component. The proposed ap-
proach to obtain the control speed vc is outlined as follows:

vc = max(0,min(vtarget,α + kp(hα −hdes)+ kd(vl − vα), vfs)).
(5)

III. EVALUATION IN SIMULATION

In this section, we evaluate the proposed controller across
several simulation experiments. The results aim to answer the
following:

• Is the proposed controller effective at improving the
energy-efficiency and homogeneity of driving across both
human-driven and automated vehicles?

• Is this approach sensitive to unforeseen events that are
common within multi-lane highway networks, and in
particular to disturbances induced by sudden and/or ag-
gressive lane changing behaviors?



TABLE I: Intelligent Driver Model (IDM) Parameters

Parameter v0 T a b δ s0 ϵ
Value 45 1 1.3 2.0 4 2 N (0, 0.3)

A. Simulation Environment

To validate the efficacy of our longitudinal driving strategy
within I-24, we utilize a microsimulation model presented
in [18]. In particular, to capture a degree of variability in
driving behaviors that is difficult to recreate with common
microsimulation tools [24], [25], we instead model the platoon
response of both simulated human-driven and automated vehi-
cles following leading trajectories collected directly from the
target network. These leading trajectories consist of position
and velocity measurements τ := {(x1, v1), . . . , (xT , vT )}
sampled in increments of 0.1 second, and vary in terms of time
collected and severity of congestion witnessed, thus offering
a robust assessment of the influence of automated vehicles
within viable states of traffic.

To model the behaviors of platoons of vehicles following
the aforementioned trajectories, we initially place N vehicles
upstream of the leading vehicle and equidistant from one
another1, and update the state of said vehicles via logic
specified either by a car-following model fhuman(·) or the
AV model described in the following section. For human-
driven vehicles, this acceleration response is dictated by the
Intelligent Driver Model [26] (IDM), a popular model for
reconstructing string instabilities and the formation of stop-
and-go style behaviors. Through this model, the acceleration
for a vehicle α is defined by its bumper-to-bumper space
gap sα, velocity vα, and relative velocity with the preceding
vehicle ∆vα = vl−vα. The fixed parameters for the IDM are
set in accordance with [18] and provided in Table I.

This model is assigned to all vehicles following the leading
trajectory when simulating human-driven (baseline) responses
to varying downstream conditions, while in mixed-autonomy
simulations, every 100

p th vehicle is assigned an AV model to
mimic a penetration rate of p%.

Figures 5(a) and 6(a) depict the platoon response of human-
driven vehicles following a sample of the aforementioned
trajectories exhibiting some degree of sharp oscillations in
driving behaviors. As seen here, perturbations induced by the
leading vehicle are amplified by following vehicles within the
platoon and propagate backward in space and forwards in time,
resulting in the formation of stop-and-go like behaviors that
inhibit the energy-efficiency of the given network.

B. Simulation procedure

Simulations were conducted on the one-lane environment
described above with a step size of 0.1 sec/step and a following
platoon consisting of 200 vehicles. Among the drives recorded
within I-24, we evaluate our method on trajectories that were
collected during morning peak demand intervals (6am–7am)

1Vehicles are initially placed with 2-second gaps between one another and
driving with the same speed as the leading vehicle.

TABLE II: Proposed controller parameters.

Parameter Description Value

kp Proportional gain 2.0
kd Differential gain 0.5
hdes Desired time headway 2.0 s
w Sliding window length for speed estimation 3000 m
smin Minimum safe space headway 5.0 m
hmin Minimum safe time headway 0.5 s
τs Safety decision-making horizon 5.0 s
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Fig. 4: Accepted space gap and time gap by human-driven
and automated vehicles in each of the fully human-driven and
mixed-autonomy simulations. As we can see, automated vehi-
cles primarily maintain reasonable headways but are willing
to adopt larger gaps when required to avoid future anticipated
congestion.

and exhibit some degree of sharp oscillations in driving speeds.
This amounts to a total of 10 varying trajectories, seven of
which, we note, observe what may be deemed as light-to-
moderate congestion (e.g. Figure 5), whereby vehicles alter-
nate between free-flowing and congested states of traffic, while
the remaining three exhibits more severe forms of congestion
(e.g. Figure 6), whereby driving speeds are consistently slow
and stop-and-go behaviors are frequent. To model an AV
penetration rate of 4% we replace every 25th vehicle model in
the platoon with the controller depicted in the previous section.
The parameters of this controller used within this assessment
are depicted in Table II.

To capture realistic traffic state estimation measurements
within the above simulations, we synchronize the above tra-
jectories real world estimates collected from INRIX [21]. His-
torical average speed measurements are collected from INRIX
for the target network, and these values are adjusted in position
and time with the leading vehicle to produce results similar
to those expected in real world settings. These measurements
are collected in segments of length approximately equal to 0.5
miles, and are updated in increments of 1 minutes.

C. Performance metrics

We evaluate the response of vehicles within the above
simulation across the following metrics:

1) Energy Efficiency. Improving energy efficiency can in-
centivize more uniform driving speeds. To analyze the
performance of the proposed controller in terms of energy
efficiency, we adopt a semi-principled energy model that
has a physics-based component [17]. The model takes
as inputs the instantaneous vehicle speed v, acceleration



TABLE III: Simulation Performance

Distance traveled (km) MPG (AVs) MPG (total)

Light/Moderate Human-driven 13.71 – 45.41
Experiment 1 Mixed-autonomy 13.60 (−0.80%) 49.87 (+9.82%) 52.76 (+16.19%)

Human-driven 13.86 – 39.45
Experiment 2 Mixed-autonomy 13.77 (−0.65%) 42.55 (+7.86%) 43.48 (+10.22%)

Human-driven 14.58 – 40.36
Experiment 3 Mixed-autonomy 14.47 (−0.75%) 44.93 (+11.32%) 46.66 (+15.61%)

Human-driven 14.09 – 40.46
Experiment 4 Mixed-autonomy 14.04 (−0.35%) 48.21 (+19.15%) 51.17 (+26.47%)

Human-driven 13.23 – 44.19
Experiment 5 Mixed-autonomy 13.16 (−0.53%) 46.14 (+4.41%) 45.11 (+2.08%)

Human-driven 14.24 – 39.79
Experiment 6 Mixed-autonomy 14.20 (−0.28%) 46.24 (+16.21%) 48.16 (+21.04%)

Human-driven 14.48 – 38.65
Experiment 7 Mixed-autonomy 14.36 (−0.83%) 48.12 (+24.50%) 49.31 (+27.58%)

Heavy Human-driven 13.32 – 36.67
Experiment 8 Mixed-autonomy 13.31 (−0.08%) 42.95 (+17.13%) 41.42 (+13.50%)

Human-driven 13.10 – 36.34
Experiment 9 Mixed-autonomy 13.00 (−0.76%) 52.48 (+44.41%) 48.69 (+33.98%)

Human-driven 10.70 – 30.97
Experiment 10 Control 10.61 (−0.84%) 38.48 (+24.25%) 36.03 (+16.34%)

Human-driven 13.53 – 39.20
Average Mixed-autonomy 13.45 (−0.58%) 46.0 (+17.3%) 46.3 (+18.0%)

TABLE IV: The fitted polynomial model Parameters

Parameter C0 C1 C2 C3 p0
Value 0.14631965 0.01217904 0 0.00002743 0.04553801
Parameter p1 p2 q0 q1 β
Value 0.04743683 0.00180224 0 0.02609037 0.01311175

a, and road grade θ, and outputs engine speed, en-
gine torque, fuel consumption, gear, transmission output
speed, wheel force, wheel power, and feasibility of the
given (v,a,θ) with respect to engine speed and engine
torque. In our training process, we take Toyota RAV4 as
the prototype vehicle and simplify the energy model to
a fitted polynomial model with the assumption that the
road grade θ is 0:

g(v, a) = max(f(v, a), β) (6)

where

f(v, a) = C0 + C1v + C2v
2 + C3v

3

+ p0a+ p1av + p2av
2

+ q0a
2
+ + q1a

2
+v

(7)

and a+ = max(a,0), and β is the minimum fuel rate,
which is not necessarily zero because different vehicles
have different criteria for enacting a fuel cut. The param-
eters we used can be found in Table IV.
The energy consumption obtained from the model will
be converted into Miles-Per-Gallon (MPG) as the metric
to indicate energy efficiency.

2) Throughput. Since the simulation experiment will end if
it reaches the end of the leading trajectory, regulation on
controlled vehicles may reduce the throughput near and

upstream of these vehicles. For fixed regions, measuring
the distance traveled can be an equivalent representation
of measuring the traffic flow. Therefore, we use con-
trolled vehicles’ travel distance as a representation of the
throughput.

3) Proximity to leader. Close proximity may denote unsafe
driving behaviors while large distances between vehicles
may denote reductions in throughput and may encourage
cut-ins and cut-outs by following vehicles. We use space
gap and time gap as metrics to measure the proximity to
the leader.

D. Comparative analysis

Table III depicts the average performance of the system on
all 10 utilized trajectories for the metrics we described above.
Our controller consistently produces driving behaviors that sig-
nificantly improve the energy-efficiency to both human-driven
and automated vehicles at virtually no cost to vehicle miles
traveled. Compared to the baseline, the proposed controller
provides on average 18.0% savings to energy consumption
with only 0.58% reduction in distance traveled by the con-
trolled vehicle. As Figure 4 shows, the controlled vehicles
leave a more conservative gap with the preceding vehicle. In
controlled cases, both space gap and time gap spread in a wider
range. With the knowledge of the congestion downstream,
the controlled vehicles should deliberately leave more gaps
to avoid sharp deceleration, as a result, drive at a smoother
speed and save energy consumption. This behavior propagates
to other vehicles immediately upstream of the automated
vehicles as well, resulting in more uniform driving speeds
throughout the platoon. This is for instance true in Figure 5,



(a) Fully human-driven (b) Mixed autonomy

Fig. 5: A sample response from sporadic perturbations induced
by a leading trajectory.

(a) Fully human-driven (b) Mixed autonomy

Fig. 6: A sample response from frequent perturbations induced
by a leading trajectory.

where perturbations are amplified by trailing drivers within the
platoon and result in frequent transitions between free-flowing
and congested states of traffic in the Fully human-driven case,
while AVs dampen the magnitude of oscillations experienced
by consecutive vehicles within the platoon as Figure 5(b)
shows. In heavy congestion scenarios represented by frequent
perturbations induced by selected leading trajectories, without
the guidance of AVs, the strength of severity of oscilla-
tions from the leading vehicle produces frequent stop-and-
go responses from the upstream, as Figure 6(a) demonstrates.
However, by maintaining speeds near the aggregate state of
the network, AVs are capable of negative many of these stop-
and-go responses.

E. Sensitivity to lane changes

Finally, we evaluate the ability of our approach to cope with
external and unforeseen disturbances common to multi-lane
networks. In particular, knowing that our method mitigates
congestion in part by forming large gaps with leading vehicles
when predicted forward speeds are low, we explore the sensi-
tivity of our solution to lane-changing events when AVs form

(a) Fully human-driven (b) Mixed autonomy

Fig. 7: A sample response from sporadic perturbations induced
by a leading trajectory with the simple lane change model.

large gaps with their immediate leaders. In order to do so, we
use a simple lane change model inspired by the work of [27]
that stochastically inserts vehicles into the network when the
headway between adjacent vehicles is high and periodically
removes vehicles to maintain approximate consistency with
the total number of vehicles within a simulation.

Figure 7 depicts the spatio-temporal performance of human-
driven and automated vehicles when lane changes of the form
above are introduced into the simulation environments. As we
can see, while more frequent oscillations are observed in the
presence of lane changes, AVs continue to produce uniform
driving amongst vehicles in the mixed-autonomy settings,
providing an on average 9.84% MPG improvement among all
10 experiments. The stochastic injection of vehicles does not
result in vehicle-to-vehicle collisions either, demonstrating the
effectiveness of the proposed safety filter as well. We leave
analyses of this control strategy under more elaborate lane
change models for future work.

IV. APPLICATION TO FIELD TEST

Motivated by the promising results demonstrated in our sim-
ulations, we aim to further validate the modular and flexible
architecture of this two-layer control strategy by applying it
in a real-world field test.

A. Massive Traffic Experiment

In mid November 2022, a massive traffic experiment that
occurred on the considered network was conducted by the
CIRCLES Consortium [28] to test whether introducing just a
specific proportion of automated vehicles to the road can help
ease the traffic jams and reduce fuel consumption for the traffic
system. Over the course of five days, researchers conducted
one of the largest traffic experiments of its kind in the world,
deploying a fleet of 100 Nissan Rogue, Toyota RAV4 and
Cadillac XT5 vehicles onto the considered network during the
morning commute. Figure 8 shows the test vehicles in the
parking lot at the test site. Each vehicle was equipped with
a variety of control algorithms overwriting the cruise control
system, and designed to automatically adjust the speed of the
vehicle to improve the overall flow of traffic — essentially
turning each car into its own “robot traffic manager.”

This massive operation had been prepared over the course
of the three last years, parallel to the development of the I-
24 MOTION testbed, which equips the considered network



Fig. 8: The CIRCLES parking lot at capacity after a test, when
all vehicles have been returned.

with 300 4K digital sensors to monitor traffic. To achieve this
tremendous undertaking, more than 50 CIRCLES researchers
from around the world gathered in a large “command center”
in a converted office space in Antioch, Tenn. Each morning
of the experiment, which ran from Nov.14 to Nov.18, trained
drivers took the automated vehicles on the designed routes
on the I-24 MOTION testbed. As the drivers traversed their
route, researchers collected traffic data from both the vehicles
and the I-24 MOTION traffic monitoring system.

Unfortunately, hardware issues arose prior to the com-
mencement of the experiment, preventing us from extracting
the preceding vehicles’ states as input for the designed con-
troller. As a result, our microscopic observations were limited
to the AV’s position and velocity. The macroscopic TSE
obtained from INRIX remained available to us. In response
to this, a “MegaController” that includes the combination
of many researchers’ control algorithms in the CIRCLES
Consortium was proposed. The two-layer architecture of the
proposed method offers the flexibility to adjust and adapt to
real-world applications based on different goals and needs. The
following section demonstrates how the two-layer controller
conceptually adapts to this situation.

B. Application

The modular architecture of the two-layer controller permits
various components to be designed and inserted, depending on
the approach and goal. What we present here is a precursor
to a more complex architecture that was actually deployed
in the field experiment. For additional information on the
advanced architecture, please refer to our forthcoming papers,
which are currently in preparation. As Figure 9 demonstrates,
conceptually, the upper layer serves as a “speed planner” that
takes in the downstream traffic state estimates and generates
target speeds, while the lower layer can be considered as a
“vehicle controller” that executes the target speeds given the
microscopic observations. We had a server on the cloud to
compute the target speeds and communicate with each AV.
However, traffic state estimates in the real world are usually
not accurate enough given the fact of traffic data sparsity
and communication delay. For example, in the massive traffic
experiment, the INRIX data we utilized was not real-time.
The space-mean speed data points received on the server

Fig. 9: The conceptual framework of the proposed controller
in application to field test.

Fig. 10: Visualization of the procedure of deploying the upper
layer on field collected data.

represented the actual traffic state from 3 minutes prior. To
compensate for those defects, a module including prediction
and fusion was proposed where we would predict the delay
of the traffic state estimate for the correction and fuse with
the traffic data obtained from our vehicles. This framework
aligns with the structure of the “MegaController” and we
incorporated the upper layer of the proposed method into the
“speed planner” module in the field experiment. Due to the
massive scale of the experiment, it will take a longer time
to mine the data collected, quantify the energy impact and
evaluate the methods. We present here a hypothetical reality
of the upper layer controller had it been solely run during the
field test for demonstration.

Figure 10 illustrates the procedure of deploying the upper
layer controller to obtain the target speed profile based on real
traffic state estimates provided by INRIX during the course of
our field test. The raw data to begin with, shown as the orange
crossings, is the average speeds across multiple pre-defined
segments on the test routes in one minute. We simulate the
vehicle ping records that contain 31 dummy vehicles’ positions
and speeds at 1 Hz. The green curve in the figure is the
traffic state estimation obtained by fusing vehicle ping data
(blue dots) with interpolated INRIX data (dashed orange line).
Feeding it into the speed planner, we can obtain the target
speed profile shown by the red curve. Obviously, compared
to the other curves in the figure, the target profile can guide
vehicles to slow down earlier and pass through the congested
area at a relatively smooth speed, thus aiming to achieve
harmonization of the overall traffic flow.



V. CONCLUSION

This paper explores the problem of designing congestion
mitigation control strategies through automated vehicles. We
depict a two-layer control strategy that utilizes downstream
traffic state information to plan and coordinate a smoother
driving trajectory for the purpose of harmonizing driving
speeds and improving energy efficiency. Evaluated with sim-
ulations that capture a high degree of variability in driving
behaviors and traffic state estimates common to real-world
networks, our proposed method could achieve an average of
over 15% energy savings with only 4% AVs introduced to
the simulated Interstate I-24 network. We demonstrate the
proposed method’s modular and flexible architecture with its
application to the massive traffic experiment. Future works
can include extending this with more accurate and robust
simulations of traffic flow dynamics, and devising methods
for performing similar congestion mitigation without the need
for downstream traffic state estimates.
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