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Abstract—Cooperation of automated vehicles (AVs) can im-
prove safety, efficiency and comfort in traffic. Digital twins
of Cooperative Intelligent Transport Systems (C-ITS) play an
important role in monitoring, managing and improving traffic.
Computing a live digital twin of traffic requires as input live
perception data of preferably multiple connected entities such as
automated vehicles (AVs). One such type of perception data are
evidential occupancy grid maps (OGMs). The computation of a
digital twin involves their spatiotemporal alignment and fusion.
In this work, we focus on the spatial alignment, also known
as registration, and fusion of evidential occupancy grid maps of
multiple automated vehicles. While there exists extensive research
on the synchronization and fusion of object-based environment
representations, the registration and fusion of OGMs originating
from multiple connected vehicles has not been investigated much.
We propose a methodology that involves training a deep neural
network (DNN) to predict a fused evidential OGM from two
OGMs computed by different AVs. The output includes an esti-
mate of the first- and second-order uncertainty. We demonstrate
that the DNN trained with synthetic data only outperforms
a baseline approach based on coordinate transformation and
combination rules also on real-world data. Experimental results
on synthetic data show that our approach is able to compensate
for spatial misalignments of up to 5 meters and 20 degrees.

Index Terms—C-ITS, perception, fusion, deep learning

I. INTRODUCTION

Non-connected AVs can only perceive as much of their
environment as their on-board sensors allow them to. This
is limited by the number of sensors available and visual
restrictions, e.g. due to weather conditions or occlusions. Other
traffic participants and infrastructural elements can obscure the
line of sight and might thus lead to insufficient environment
perception, e.g. on busy intersections or in construction sites.

†These authors contributed equally.

By sharing and fusing perception data between multiple AVs,
both perception accuracy and reliability can be improved. This
has been shown in the cloud-based collective environment
model developed in the UNICARagil project [1] and is being
extended to a live digital twin of traffic in the AUTOtech.agil
project [2]. This digital twin is created from data perceived
by AVs as well as stationary and non-stationary infrastructure
sensors.

OGMs describe the occupancy states of spatial cells in the
environment of an AV. Evidential OGMs also quantify the
first- and second-order uncertainty of the occupancy states.
This uncertainty information shall be taken into account when
fusing OGMs from multiple AVs. Combining spatial environ-
ment data requires the data to be temporally synchronized and
spatially aligned. In this work, we assume the data to be tem-
porally synchronized and focus on the spatial alignment and
fusion. AVs can estimate their position and orientation by self-
localization using e.g. GNSS. In real environments, this often
comes with considerably high uncertainties in the estimated
pose. Especially urban areas with high traffic volumes and
many high buildings are a challenging task as GNSS signals
can be obstructed. An approach that is able to align and fuse
evidential OGMs with consideration of uncertain poses is thus
an important feature for a live digital twin of traffic in a C-ITS.

Different approaches to fuse spatial occupancy information
are proposed in recent works which, however, have some
weaknesses. The authors of [3] and [4] fuse spatial information
on the sensor level introducing high latencies. In [5] and [6],
OGMs are spatially aligned using coordinate transformation
without paying attention to pose uncertainties. Feature point
matching across grid maps is used for spatial alignment in
[7] and [8], which both use manual feature extraction with
decreasing efficiency in more complex OGMs.
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This work presents a novel approach to combined OGM
registration and fusion, which takes pose uncertainties into
account. It utilizes a convolutional neural network (CNN)
that performs the task of spatial alignment and fusion of
occupancy information in one forward propagation step. We
present a neural network architecture that takes two OGMs
with corresponding, uncertain poses as inputs and predicts a
fused OGM as output. Our contributions are

• a novel neural network architecture for combined and
uncertainty-aware registration and fusion of evidential
OGMs,

• a scalable method using physical-based rendering to
generate realistic training data from simulation,

• a quantitative evaluation of the trained model in compar-
ison to a rule-based baseline approach on synthetic data,
and

• a qualitative evaluation of the model when presented with
real-world data.

II. BACKGROUND AND RELATED WORK

This section introduces the OGMs being used in this work
and briefly describes the mathematical concept of evidence
theory as this is the basis for the occupancy information in
the grid cells and the naive combination rule. Additionally,
current approaches to OGM fusion are described.

A. Occupancy Grid Maps

Object-based environment representations describe the ex-
istence probabilities and motion states of particular objects in
the environment of an AV. On the other hand, an OGM [9]
is a grid-based environment representation that does not rely
on an object model but assigns occupancy information to
discrete spatial cells in the environment of the AV. While
probabilistic OGMs assign a scalar occupancy probability to
each cell [10], evidential OGMs use distinct belief masses,
e.g. for the possible cell states ”free” and ”occupied”. This
is based on evidence theory as introduced by Dempster and
Shafer [11], [12] and allows to distinguish between aleatoric
and epistemic uncertainty. This allows differentiating between
those cells with an uncertain state because of missing data and
those with an uncertain state because of conflicting data. The
latter is especially important when data from different sources
shall be fused, e.g. to create a live digital twin of traffic.

The evidential OGMs used in this work are based on
the frame of discernment Θ = {F,O}, which comprises
the possible and mutually exclusive cell states ”free” and
”occupied”. Belief masses m ∈ [0, 1] are assigned to all
possible subsets of Θ, i.e. 2Θ = {∅, {F}, {O},Θ}, while ∅
is not a possible cell state and Θ represents an unknown state.

Belief masses from different sources can be combined using
Dempster’s Rule of Combination. The formula given by [13]
combines two belief masses m1 and m2 for the state of interest
X:

(m1 ⊕m2)(X) =∑
A,B∈2Θ|A∩B=X m1(A) ·m2(B)

1−
∑

A,B∈2Θ|A∩B=∅m1(A) ·m2(B)

(1)

It is possible to compute classical probability values from
belief masses using Pignistic Transform:

pO = mO + 0.5 · (1−mO −mF ) (2)

The belief masses in the cells of the OGM used in this work
are predicted by a deep inverse sensor model as presented in
[14]. In that work, an end-to-end learning framework was de-
veloped to train a model to predict evidential OGMs from lidar
measurements. It is based on the PointPillars architecture [15]
and is trained using synthetic training data while still showing
good generalization capability to real-world data.

B. Fusion of Occupancy Grid Maps

Occupancy information in OGMs perceived by different
vehicles shall be combined into a single representation. This
consists of two steps: spatial alignment and combination of
occupancy information. There are several different existing
approaches that can be grouped as follows:

Early sensor fusion: The approaches introduced in [3]
and [4] both fuse the sensor data perceived by distinct agents
directly and generate one OGM from the fused data afterwards.
In [3], two or more lidar point clouds are registered by
an extension of the iterative closest point (ICP) algorithm,
and in [4], the point clouds are registered by coordinate
transformation based on known poses. Drawbacks of this early
fusion of sensor data are the processing efficiency due to
high data volumes and the lack of a temporal synchronization
between data sources.

Coordinate transformation: The approaches described
in [5] and [6] align two or more grid maps by using co-
ordinate transformation only and then fuse the stored belief
masses cellwise. The given poses are assumed to be perfectly
accurate. The authors of [5] utilize a log-likelihood ratio for
probability fusion, while [6] compares several approaches such
as Dempster’s Rule of Combination, Bayesian Filtering, and
Independent Opinion Pool. A drawback of these approaches
is that real-world poses are never fully accurate, which is not
considered with coordinate transformation.

Image Registration: In [7], a multi-stage approach for
grid map registration is developed: At first, corner points
are extracted from the OGM. According to those points, an
initial optimal transformation matrix is calculated based on
the isomorphism scheme of a triangle. This transformation
is optimized by iterating the isomorphism scheme with more
corner points and finding a maximum common subgraph. A
similar approach is presented in [8], except that the feature
point extraction and matching are performed using an image
stitching CNN architecture in combination with a matching
topology graph. These methods are suitable for the alignment
but are not able to compensate for errors in the input OGMs.



III. METHODOLOGY
The proposed deep neural network processes two evidential

OGMs and corresponding (uncertain) poses as input data and
predicts the fused OGM from the perspective of the AV
that perceived the first input OGM. Figure 1 shows the data
processing pipline during training and prediction time. In the
following, the network architecture, synthetic training data
generation, and the preprocessing steps comprising prealign-
ment and augmentation are described.

A. Network Architecture

The architecture used in this work is based on
DeepLabV3+ [16], which is a popular CNN architecture
that was initially developed for image segmentation. The
network consists of three main parts: The network backbone,
the encoder, and the decoder. The encoder features atrous
convolutions with different rates, point-wise convolutions and
pooling operations. The decoder mainly features convolution
and upsampling layers.

In this work, ResNet-50 [17] is used as the network’s
backbone and the last activation function of the network is
changed to ReLU instead of softmax. Thus, for each cell
i the model is able to predict evidence for the cell being
free ei,F and the cell being occupied ei,O. These evidences
ei,A ≥ 0 with A ∈ Θ can be transformed into belief masses
mi,A ∈ [0, 1] and an uncertainty mass ui ∈ [0, 1]:

αi,A = ei,A + 1 (3)
mi,A = ei,A/S (4)
ui = K/Si (5)

with the number of classes K = 2 and the Dirichlet strength
S =

∑
A∈Θ αi,A.

The loss function used for this architecture is based on the
loss function introduced in [14] with the following adaptions:
(1) The Kullback-Leibler divergence term is neglected as it
did not have a positive impact on the training progress and
(2) a weighting factor ow ≥ 1 is introduced to account for the
underrepresentation of occupied cells compared to free cells
in the OGMs.

Each cell i in the evidential OGM contains two belief
masses, one for the cell being free mi,F and one for the cell
being occupied mi,O. In the following equation, yi is the true
belief mass in the label while p̂i is a parameter of a Dirichlet
probability density function and can be computed from the
evidences predicted by the neural network as p̂i,A = α̂i,A/Si

using Equation 3.

Li(w) = ow · Li(w), ow =

{
ow, yi,O > 0.5
1, yi,O ≤ 0.5

(6)

with

Li(w) = (yi,F − p̂i,F )
2 +

p̂i,F (1− p̂i,F )

Si + 1

+ (yi,O − p̂i,O)
2 +

p̂i,O(1− p̂i,O)

Si + 1
.

(7)

B. Training Data Generation
Creating training data for the task at hand using real-world

data would involve an immense labeling effort and is not
easily scalable. Hence we decided to use synthetic training
data, which has already shown good generalization capabilities
for the task of occupancy grid mapping in our previous
work [14]. Using an advanced simulation framework [18] that
provides a lidar plugin based on ray tracing and physically-
based rendering, it becomes possible to generate as much
training data as required virtually for free. In the simulation,
we modeled one of our research vehicles that is equipped
with a Velodyne VLP32C lidar sensor on its roof. We used
two instances of this model in our simulations to generate
lidar point clouds that are processed by the deep inverse
sensor model presented in [14] to generate OGMs. If the two
vehicles are close enough to each other, i.e. the OGMs are
overlapping, the maps and the corresponding exact poses are
stored as shown in Figure 2. They make up the input data
for the training. The label data consists of the correct fusion
of both input OGMs. The fusion is performed twice, once
from each of the two perspectives, and consists of several
steps. Starting from the precisely known poses, both OGMs
are transformed into a common coordinate system. After this
coordinate transformation, the stored belief masses are fused
cellwise using Dempster’s Rule of Combination (cf. Equation
1). Afterwards, both fused OGMs are stored as labels. Since
the fusions have been performed from both perspectives, the
generated data can be split up into two input-label pairs.

C. Prealignment
Prealignment is the first step of the preprocessing. Based on

the two input poses, a coordinate transformation is conducted
that prealigns the second input map to the first one. Depending
on the pose uncertainties, this alignment can be rather rough.
As the poses are perfectly accurate in the simulation, artificial
uncertainty is added to the data. The uncertainty is drawn
from a Gaussian normal distributions, which is calculated
separately for the x and y coordinates and for the orientation
ψ. The Gaussian normal distributions have a zero mean and
the 98% confidence interval for the translational and rotational
uncertainties are defined by r and α respectively.

D. Augmentation
During the training, the input-label-pairs are augmented to

increase the diversity of the training data and thus improve
the generalization of the trained model. Random horizontal
and vertical flips as well as random rotation in the interval
from −20 to 20 degrees are applied. After augmentation,
both input OGMs are concatenated along the channel axis,
so that each cell in the resulting map has four channels with
free and occupied belief masses from both input OGMs. This
concatenated tensor is used as input for the neural network.

IV. EXPERIMENTAL SETUP AND RESEARCH
QUESTIONS

As introduced in Section III-B, our deep learning-based
registration and fusion model is trained using synthetic data,



Fig. 1. Two evidential OGMs perceived by different AVs are transformed into a common coordinate system based on the estimated vehicles poses and fed
into the adapted DeepLabV3+, which predicts a fused OGM as output. During training, augmentation methods are applied.

Fig. 2. A representative input-label pair consisting of two input maps with
corresponding poses and the fused map from the perspective of the first input
map.

which is generated in a simulation environment. The simulated
scenarios take place in an urban environment, where 9 tem-
plates are extracted that only cover small road sections of about
400 meters to make sure that both vehicles meet each other.
The templates comprise different types of intersections as well
as straight road segments. More than 600 scenarios were gen-
erated based on those 9 templates, each containing individual,
random variations. Those variations include e.g. pulk traffic,
parked cars, and moving pedestrians. The pulk traffic consists
of a large variety of cars, trucks and motorcycles. A total of
10,000 input-label pairs were generated this way. That data
was split into training, validation, and test dataset with a ratio
of 80:10:10.

Four models with different configurations were trained,
whereby each configuration differed in the amount of uncer-
tainty that was applied to the input data. All models reached a
minimum validation loss after approximately 200 epochs with
an initial learning rate of 0.01, a learning rate decay factor
of 0.5 and a plateau patience of 10 epochs before the decay
factor is applied. The batch size was set to a maximum value
of 80 and the occupation factor ow was set to an empirically
determined value of 3.0.

The architecture is trained using the Adam optimizer. The
input OGMs have a length of 81.92 meters and a width of
56.32 meters. Their cells have a side length of 32 centimeters,

Configuration A B C D

r [m] 0.0 1.0 2.5 5.0

α [deg] 0.0 10.0 15.0 20.0

Fig. 3. Four different training configurations are used to train four different
models. r denotes the 98% confidence interval for the translational uncertainty
and α for the rotational uncertainty of the AVs’ poses.

thus they have a size of 256x176 pixels. The origin of the
sensor is located in the middle of the OGMs.

In the following, we want to answer the research questions:
• How can a methodology for combined registration and

fusion of evidential OGMs be designed?
• How well is our deep learning-based approach able

to compensate for spatial misalignments of the input
OGMs?

• How does its performance compare to a rule-based base-
line approach for different degrees of misalignment in the
input OGMs?

• How does the model trained on synthetic data perform
when presented with real-world data?

V. RESULTS AND DISCUSSION

The four trained deep learning-based fusion models are
evaluated qualitatively and quantitatively on the synthetic
test dataset. The different trained models are compared to a
baseline two-stage fusion approach that consists of coordinate
transformation in the first stage and belief mass fusion using
Dempster’s Rule of Combination (cf. Equation 1). Eventually,
one of the models trained on synthetic data is evaluated
qualitatively on real-world data to analyze its generalization
capabilities after a domain shift.

A. Evaluation on Synthetic Data

Representative prediction results are depicted in Figure 4.
The prediction results of the deep learning-based models are
contrasted with the label and the naive fusion. For the purpose
of this visualization, 80 % of the scenario-specific 98 %
confidence intervals are applied to the input poses. As can
be seen, both the naive fusion and the deep learning-based
model perform very well for configuration A. Starting with
configuration B, the naive fusion becomes worse with larger



amounts of uncertainty. Street limits and parked as well as
moving cars are heavily misaligned. The deep learning-based
models, on the other hand, produce much more reliable and
consistent results. Occupied areas are somewhat larger and
predictions get less accurate with growing uncertainties, but
most of the important areas are still covered and localized
correctly, even if high uncertainties are applied.

Fig. 4. Fusion results our models (bottom) compared to the results of the
baseline model (top) for the different configurations as defined in Figure 3.
The applied pose uncertainties are set to 80 % of the defined 98 % confidence
interval.

Figure 5 depicts boxplots of the Kullback-Leibler diver-
gence (KLD) distributions of both results from the deep
learning-based models and from the naive fusion for the differ-
ent training configurations over the test dataset. Expectantly,
the KLD distributions become worse, the more uncertainty is
applied. But it is striking that the decline of fusion quality
happens much faster and stronger for the naive fusion. While
the initial deep learning-based model is, on average, worse
than the naive fusion, all the following models are much
better. This diagram not only shows that the average prediction
quality of both approaches is drifting apart but also that the
prediction quality of the deep learning-based model varies
much less, and is thus more reliable.

To be able to calculate classification scores, the predicted
belief masses need to be transformed into a categorical rep-
resentation. It is assumed that each cell has one of the two
classes ”free” and ”occupied”. At first, the predicted masses
are transformed to classical probabilities: pF and pO using
Equation 2. Then, the classification is performed: A cell is
denoted free if pO > 0.5, otherwise occupied.

The Figures 6 and 7 show the evolution of the precision,
recall, and dice scores for the deep learning-based models
and the corresponding naive fusions. The first diagram depicts

Fig. 5. KLD score distribution over the test dataset for our models and
the corresponding results using the baseline model according to the training
configuration depicted in Figure 3.

the scores for the occupied cells and the second one for the
free cells. As expected, all scores gradually decrease with
increasing uncertainty. The slopes of the curves belonging to
the deep learning-based models, however, are all much flatter.
This suggests that uncertainties have a greater impact on the
naive fusion. Without any uncertainties, all scores are better
for the naive fusion. But as uncertainties increase, the deep
learning-based models eventually become dominant in most
categories. Merely the precision for occupied cells and the
recall for free cells is worse, which is the consequence of factor
ow that was set to 3 and emphasizes the model to predict a
higher belief mass for the occupied compared to the free state.

A B C D
0.92

0.94

0.96

0.98

1

Precision (Our) Precision (Baseline)
Recall (Our) Recall (Baseline)
Dice (Our) Dice (Baseline)

Fig. 6. Classification scores for occupied cells predicted by our model
compared to the baseline model.

B. Evaluation on Real-World Data

Model D (cf. Figure 3), which was also used for the
evaluation on synthetic data before, was also tested with



A B C D
0.92

0.94

0.96

0.98

1

Precision (Our) Precision (Baseline)
Recall (Our) Recall (Baseline)
Dice (Our) Dice (Baseline)

Fig. 7. Classification scores for free cells predicted by our model compared
to the baseline model.

real-world data recorded with two of our research vehicles.
Both vehicles have a 32-layer lidar sensor on their roofs at
approximately the same position. The deep inverse sensor
model presented in [14] is used to compute OGMs from the
lidar data and the vehicles use GNSS to estimate their poses.
The OGMs and poses recorded in both vehicles were manually
synchronized in time and fed into the proposed DNN. Figure
8 shows the output of the DNN compared to the results of the
baseline approach.

Fig. 8. The bottom row shows the results of our proposed model when
presented with OGMs recorded with two of our research vehicles on the test
track compared to results of the baseline approach in the top row.

VI. CONCLUSION AND OUTLOOK

We presented a methodology that uses a CNN to spatially
align and fuse two evidential OGMs perceived by different
AVs. The approach is able to compensate for errors both in
the vehicle poses as well as in the OGMs. The presented
model is trained with synthetic data and outperforms a baseline
approach as soon as the poses of the AVs are affected by
errors. The experiments with synthetic data have shown that
the deep learning-based model shows good results even for
spatial misalignments of up to 5 meters and 20 degrees

between both OGMs. A qualitative evaluation on real-world
data demonstrates the generalization capabilities of the model
to real-world data.

However, the deep learning-based model tends to over-
estimate occupied regions leading to a lower recall for the
estimation of free cells and a lower precision for the estimation
of occupied cells. First experiments with OGMs of higher
resolution have shown potential to overcome this problem and
will be analyzed in future work.
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