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Abstract—Given their flexibility and encouraging performance,
deep-learning models are becoming standard for motion pre-
diction in autonomous driving. However, with great flexibility
comes a lack of interpretability and possible violations of phys-
ical constraints. Accompanying these data-driven methods with
differentially-constrained motion models to provide physically
feasible trajectories is a promising future direction. The foun-
dation for this work is a previously introduced graph-neural-
network-based model, MTP-GO. The neural network learns to
compute the inputs to an underlying motion model to provide
physically feasible trajectories. This research investigates the
performance of various motion models in combination with
numerical solvers for the prediction task. The study shows
that simpler models, such as low-order integrator models, are
preferred over more complex, e.g., kinematic models, to achieve
accurate predictions. Further, the numerical solver can have a
substantial impact on performance, advising against commonly
used first-order methods like Euler forward. Instead, a second-
order method like Heun’s can greatly improve predictions.

I. INTRODUCTION

The unknown decisions of surrounding road users are a
primary source of uncertainty in traffic situations. Similarly
to how a human driver adapts its future trajectory based on
anticipations of the environment—autonomous vehicles should
be equipped with the ability to predict the future actions of
other traffic participants in order to ensure safe and proactive
operation. The behavior prediction task [1] encapsulates this
problem of predicting the intention and future motion of
surrounding traffic agents, and its importance as a research
topic has grown significantly over the last decades.

Due to the considerable difficulty of hand-crafting models
that can decode the social interactions between a time-varying
number of traffic participants, learning-based approaches have
offered useful adaptability, proving valuable in addressing
these complex problems [2]. Despite their flexibility, how-
ever, learning-based methods exhibit certain limitations. First,
unlike conventional state estimation, these methods often lack
interpretability because of the numerous latent representations.
More importantly, they rarely provide performance guarantees,
rendering them less attractive in applications with stringent
safety requirements. Recent research has proposed coupling
(deep) data-driven models with differential constraints to
address these issues within the scope of motion prediction.
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Fig. 1. Schematics of the kinematic single-track model with u1 denoting the
steering angle. Its use for motion prediction is interesting due to its connection
and frequent use in autonomous planning and control applications [8].

The general idea is to have the learnable components of the
model compute the inputs to an underlying motion model,
thereby generating physically feasible outputs [3]–[6]. By
drawing inspiration from target tracking [7], or model-based
control [8], numerous formulations can be utilized for the
motion prediction task, including various orders of integrators,
non-holonomic constrained models or even Neural Ordinary
Differential Equations (neural ODEs) [9].

Leveraging on our work in [6], this paper delves deeper
into integrating deep graph-based networks with differentially-
constrained motion models for trajectory prediction. The
investigation focuses on the design of differential constraints,
appropriate complexity class selection for heterogeneous traffic
scenarios, and their impact on prediction and training perfor-
mance. Furthermore, as numerical solvers are used to compute
model states, the choice of integration methods can significantly
influence the outcomes. In light of this, an investigation into
the consequences of choosing various numerical solvers in
combination with different motion models is conducted.

A. Contributions
The primary contributions of this paper are:
• An investigation into the properties of differentially con-

strained motion models across distinct complexity classes,
illustrating their impact on overall model effectiveness.

• A study of the effects of diverse continuous-time integra-
tion techniques used in dynamic motion models, and their
influence on training efficacy and prediction accuracy.

All investigations were performed based on the Graph Neural
Network (GNN) architecture MTP-GO [6] for prediction
performance using the highD [10] and rounD [11] data sets.
Implementations are available online1.

1https://github.com/westny/mtp-go
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II. RELATED WORK

The motion prediction problem can be found in many
research fields, closely related to applications in state estimation
and target tracking [2]. Predicting the future states of the ego-
vehicle is useful for the development of active safety systems. In
such applications, physics-based models are typically employed
to obtain physically feasible predictions. In [12], a vehicle-
dynamics model in combination with a Kalman filter is used
to predict future position. In [13], the use of different physics-
based vehicle models is presented for collision avoidance
applications. An investigation on a range of curvilinear motion
models [7] for vehicle tracking is presented in [14], illustrating
the importance of appropriate model selection dependent on
the application. While physics-based methods generalize well,
they often simplify the true dynamics. One possibility entails
using a grey-box approach to combine the physical model with
learnable parts, for example, using Gaussian processes [15].
Combined with Kalman filtering, physics-based models are
suitable for applications with short-term predictions. However,
when the prediction horizon increases, assumptions on motion-
model inputs become increasingly invalid, requiring time-
varying input predictions conditioned on the current scene.

Recently, the motion prediction problem has been the target
of learning-based research [1], [2]. Because of the temporal
nature of the problem, several approaches have based their
models on Recurrent Neural Networks (RNNs) [4], [5], [16]–
[19] or more recently, Transformers [20], [21]. To utilize the
spatial characteristics of the problem, these models are often
integrated with Convolutional Neural Networks (CNNs) [18],
[19], or GNNs [4], [5], [19], [22], [23]. A potential issue
with complete black-box models aimed at predicting future
motion is that model outputs can be physically infeasible. In
[3], the use of a kinematic single-track model [8] is proposed
for inclusion in the prediction model. The idea is to have
a deep neural network compute the inputs to the motion
model to generate kinematically feasible outputs. Trajectron++
[4] is a GNN-based method that does trajectory prediction
by a recurrent generative model combined with model-based
kinematic constraints. In the paper, a modified unicycle model is
used to describe wheeled vehicles and a single-order integrator
is used to describe pedestrians. STG-DAT [5] is a similarly
structured model to that of Trajectron++. Similarly to [3], STG-
DAT employs a kinematic single-track model in the prediction
model. In [6], MTP-GO is proposed. The method uses an
encoder–decoder model based on temporal GNNs to compute
the motion model inputs. Instead of using predetermined motion
constraints, the motion models are learned using neural ODEs.

III. PROBLEM FORMULATION

The trajectory prediction problem is formulated as estimating
the probability distribution of the future positions of all
agents ν ∈ Vt currently in the scene for each time instant
t + 1, . . . , t + tf . The predicted mean future trajectory of
an agent ν is a sequence x̂νt+1, . . . , x̂

ν
t+tf

of time-stamped
positions in R2. The forecasted trajectory is accompanied by an
estimated state covariance P ν

t+1, . . . ,P
ν
t+tf

used to represent

the prediction uncertainty. To provide dynamically feasible
outputs, the future trajectories are computed using differentially
constrained motion models f where

ẋ = f(x,u), (1)

and the input u is the output of a deep neural network.
The two main research questions of this paper concern

the formulation and integration of the motion model in
the trajectory predictor. Possible model assumptions in (1)
range from single integrators to kinematic models and neural
ODEs. How this choice affects performance and training is
a central research question. Since the models are formulated
using differential equations, model states are retrieved using
numerical integration methods. Therefore, the impact of the
choice of numerical Ordinary Differential Equation (ODE)
solver on training and prediction performance is researched.
All investigations are performed based on a GNN architecture
[6] and are evaluated using naturalistic driving data [10], [11].

IV. GRAPH-BASED TRAFFIC MODELING

Based on the proposal in [6], a traffic situation over n time
steps is modeled as a sequence G1, . . . ,Gn of graphs centered
around a vehicle ν0. For a graph Gi = (Vi, Ei), the sets Vi and
Ei refer to the agents currently in the scene and their edges,
respectively. Given an agent ν ∈ Vi, the model has access to
its historic observations fνi ∈ Rdf , such as previous planar
positions and velocities (see Table I) from time t− th until t.
The graphs within the observation window may be dissimilar
at different time instants because of the arrival and departure
of agents. Predictions are computed for all the agents Vt still
in the scene at prediction time t. Given the full history

H =
(
{Gi}ti=t−th ,

{
{fνi }ν∈Vi

}t
i=t−th

)
(2)

probabilistic trajectory prediction can then be summarized as
modeling the conditional distribution

p

({(
xνt+1, . . . ,x

ν
t+tf

)}
ν∈Vt

∣∣∣∣H) . (3)

While the feature histories of different nodes can be of different
lengths at the prediction time instant t, the model should still
be able to predict the future trajectory for all nodes currently
in the graph.

V. MOTION MODELING

The prediction model consists of a deep neural network that
learns to predict the inputs u = [u1, u2] of a differentially
constrained motion model with states x. Several motion
models used in target tracking [7] and predictive control [8]
applications hold potential for use in behavior prediction. This
research aims to investigate alternative formulations and draw
conclusions regarding their usability and effectiveness. The
models considered are of different orders, but they all have
at least two state variables [x, y], used to represent the planar
positions of the prediction target.



TABLE I
INPUT FEATURES

Feature Description Unit

x Longitudinal coordinate m
y Lateral coordinate m
vx Instantaneous longitudinal velocity m/s
vy Instantaneous lateral velocity m/s
ax Instantaneous longitudinal acceleration m/s2

ay Instantaneous lateral acceleration m/s2
ψ Yaw angle rad

Highway specific [24]

dy Lateral deviation from the current lane centerline [−1, 1]
dr Lateral deviation from the road center [−1, 1]

Roundabout specific [6]

r Euclidean distance from the roundabout center m
θ Angle relative to the roundabout center rad

A. Pure Integrators

Pure-integrator models are the simplest considered here. The
inputs enter into the differential equations with the highest
derivative, which depends on the model degree. Intermediate
state transitions are modeled as direct integrations.

1) Single Integrator (1XI): The model has two states (x, y),
and their rate of change can be directly controlled by the
neural network, i.e., velocities vx, vy are control signals u1, u2,
respectively as

ẋ = u1 (4a)
ẏ = u2 (4b)

2) Double Integrator (2XI): The model has four states,
positions and velocities. The accelerations can be controlled
by the network:

v̇x = u1 (5a)
v̇y = u2 (5b)

3) Triple Integrator (3XI): The model has the most states
(six) of all considered. In this case, the neural network controls
the jerk:

ȧx = u1 (6a)
ȧy = u2 (6b)

B. Orientation-Based Models

Orientation-based models refer to motion models with inter-
nal states of orientation ψ and speed v, generally formulated
as

ẋ = v cos(ψ) (7a)
ẏ = v sin(ψ) (7b)

ψ̇ = χ(x,u) (7c)
v̇ = u2, (7d)

where the driving function χ varies by chosen model, stated
explicitly in the respective descriptions.

1) Curvilinear (CL): This refers to a general, curvilinear-
motion model [7]:

ψ̇ =
u1
v
, (8)

where the input u1 represents the acceleration perpendicular
to the trajectory.

2) Curvature (CT): Mathematically, the curvature formula-
tion looks similar to the curvilinear-motion model. However,
the input does not refer to the acceleration but instead the
curvature of the current trajectory arc:

ψ̇ = u1v (9)

3) Unicycle (UC): The unicycle model represents the vehicle
as a single controllable wheel, where the change in turn rate
is one of the inputs:

ψ̇ = u1 (10)

In [4], this is used to describe wheeled vehicles.
4) Kinematic Single-Track (ST): The kinematic single-track

model, illustrated in Fig. 1, is commonly used in motion
planning and control applications [8]. Here, the orientation
is controlled by the steering angle u1:

ẋ = v cos(ψ + β) (11a)
ẏ = v sin(ψ + β) (11b)

ψ̇ =
v

lr
sin(β) (11c)

β = arctan

(
lr

lf + lr
tan(u1)

)
(11d)

In this research, the lengths lf and lr that make up the
wheelbase are estimated using the current vehicle’s dimensions.
Note that the angle β enters into the equations describing ẋ
and ẏ, which is different from (7). A slightly modified version
of this model is used in [5].

C. Neural Ordinary Differential Equations
A neural ODE is a type of neural network that learns a

continuous-time dynamic system by modeling its derivatives
[9]. Adopting the methods proposed in our previous work
[6], two general neural ODE formulations of varying order
are considered. The motion models consist of differentially-
constrained feedforward networks with learnable parameters.

1) First Order (N-ODE1): Two separate ODEs, f1 and f2
are used to describe the state dynamics where each function is
associated with its respective input:

ẋ = f1(x, y, u1) (12a)
ẏ = f2(x, y, u2) (12b)

2) Second Order (N-ODE2): For the second-order model,
only the highest-order derivatives are parameterized. Interme-
diate states are pure integrators, which gives

ẋ = vx (13a)
ẏ = vy (13b)
v̇x = f1(vx, vy, u1) (13c)
v̇y = f2(vx, vy, u2) (13d)



D. Generating Dynamically Feasible Model Inputs

Although the neural network may directly learn which ranges
of model inputs are suitable for the best performance, outputting
feasible values can not be guaranteed unless explicitly handled.
Additionally, bounding the inputs further supports the goal of
guaranteeing feasible outputs. Bounds on the motion-model
inputs are enforced using the HardTanh activation function:

HardTanhu(u) =


umax, u > umax

umin, u < umin

u, otherwise
(14)

Most input bounds are based on the training data, if available;
otherwise, they are determined by physical insight. For sim-
plicity, the double-sided constraint is assumed to be symmetric,
i.e., umin = −umax, which is reasonable for all inputs.

E. Numerical Integration

The motion models presented in Section V are all formulated
as controllable, continuous-time ODEs. The model states are
retrieved by solving an initial-value problem using methods of
numerical integration. In this research, how the choice of these
methods affects the prediction performance is investigated,
most of which are in the Runge-Kutta family of methods [25].
Consider the general model in (1), stated again for convenience:

ẋ = f(x,u) (15)

The perhaps most well-known ODE solver is the forward-Euler
method, which for a given step size h is formulated:

xk+1 = xk + hf(xk,uk) (16)

Due to its simplicity and low computational cost, the forward-
Euler method is an appealing choice for solving differential
equations. It is also the choice of method in [5]. However, the
forward-Euler method does have drawbacks, most notably a
small region of stability, heavily dependent on the appropriate
choice of step size h [25]. Other methods, specifically those
of higher order, are typically favored in practical applications
where accuracy is more important. The classic fourth-order
Runge-Kutta method is one such example [25]:

η1 = f(xk,uk), (17a)

η2 = f(xk +
h

2
η1,uk), (17b)

η3 = f(xk +
h

2
η2,uk), (17c)

η4 = f(xk + hη3,uk), (17d)

xk+1 = xk +
h

6
(η1 + 2η2 + 2η3 + η4) (17e)

In numerical analysis software, it is generally not a fixed-
step method like those stated in this subsection that is the
default. Instead, it is typically a variable-step solver, such as
the Dormand-Prince method [26]. In these solvers, the step
size h is computed based on intermediate calculations.

VI. TRAJECTORY PREDICTION MODEL

This work leverages the MTP-GO2 model presented in
our previous research. Therefore, only a brief summary of
the main components will be presented here; for details, see
[6]. The complete MTP-GO model consists of a GNN-based
encoder–decoder module that computes the inputs to a motion
model for trajectory forecasting. The output is multi-modal,
consisting of several candidate trajectories x̂jt+1, . . . , x̂

j
t+tf

for
different components j ∈ {1, . . . ,M} used to capture different
maneuvers. In addition, each candidate is accompanied by a
predicted state covariance P j

t+1, . . . ,P
j
t+tf

which is estimated
using an Extended Kalman Filter (EKF).

A. Temporal Graph Neural Network Encoder
1) Graph-Gated Recurrent Unit: Using an extended Gated

Recurrent Unit (GRU) cell [27] where the conventional linear
mappings are replaced by GNN components [28], spatial-
temporal interactions can be captured. The GNNs takes as input
the representations for the specific node ν and the information
of other nodes in the graph. Intermediate representations are
computed by two GNNs as[

κνr,i‖κνz,i‖κνh,i
]
= GNNf

(
fνi , {fτν }τ 6=ν

)
(18a)[

ξνr,i‖ξνz,i‖ξνh,i
]
= GNNh

(
hνi−1,

{
hτi−1

}
τ 6=ν

)
, (18b)

where ‖ is the concatenation operation. These are then used to
compute the representation hνi for time step i as

rνi = σ(κνr,i + ξ
ν
r,i + br) (19a)

zνi = σ(κνz,i + ξ
ν
z,i + bz) (19b)

h̃νi = φ(κνh,i + r
ν
i � ξνh,i + bh) (19c)

hνi = (1− zνi )� h̃νi + zνi � hνi−1, (19d)

where the bias terms br, bz , bh ∈ Rdh are additional learnable
parameters, � the Hadamard product, σ the sigmoid function,
and φ is the hyperbolic tangent.

2) Graph Neural Network: In [6], the properties of different
GNN layers and their use in trajectory prediction are investi-
gated. Here, the GNNs in (18) are modeled using a modified
version of the Graph Attention Network (GAT) [29] framework.
To compute the aggregation of weights for a neighborhood,
GAT layers utilize an attention mechanism [30]. In our modified
version, called GAT+, the results of the standard GAT output
are summed with the output of a linear layer that takes the
representation of the center node [6].

B. Decoder with Temporal Attention Mechanism
Similarly to the encoder, the decoder also utilizes a graph-

GRU component. Its task is to compute the motion model input
u and the process noise Q for time steps t + 1, . . . , t + tf .
The first h-input to the decoder is taken as the last hidden
representation from the encoder hνt . The updates then proceed
just as in (18b). To construct the input f , the decoder addi-
tionally utilizes a temporal attention mechanism conditioned
on the full encoder representation oνt = [hνt−th , . . .h

ν
t ].

2Multi-agent Trajectory Prediction by Graph-enhanced neural ODEs



C. Uncertainty Propagation in Forecasting
The prediction step of the EKF is used to estimate the future

states and state covariances. Combining the computed estimates
with a mixture density network [31], the model outputs multi-
modal future predictions by learning the parameters of a
Gaussian mixture model [31].

1) Extended Kalman Filter: For a differentiable state-
transition function f , the prediction step of the EKF is:

x̂k+1 = f(x̂k|k,uk) (20a)

Pk+1 = FkPk|kF
T
k +GkQk|kG

T
k, (20b)

where
Fk =

∂f

∂x

∣∣∣
x̂k|k,uk

(21)

Here, x̂ and P refer to the state estimate and state covariance
estimate, respectively, and f is the current motion model.
For all motion models, the process noise is assumed to be
a consequence of the predicted inputs and therefore enters
into the two highest-order states. This noise is modeled as
zero-mean with covariance matrix

Q =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
(22)

Assuming that the noise is additive, Gk is designed as a matrix
of constants. In the simplest case with two state variables, then
Gk = Ts · I2, where Ts is the sample period. For higher-order
state-space models, Gk is generalized:

Gk = Ts

(
0 · · · 1 0
0 · · · 0 1

)T

(23)

2) Mixture Density Network: Each output vector yk of the
model contains mixing coefficients πj , along with the state
estimate x̂jk and state covariance estimate P j

k for all mixtures
j ∈ {1, . . . ,M}:

yk =
(
πj ,

{
x̂jk,P

j
k

}M
j=1

)
, (24)

where πj is constant over the prediction horizon tf . For
notational convenience, the predictions are indexed from
k = 1, . . . , tf . The model is trained by minimizing the Negative
Log-Likelihood (NLL) of the ground truth trajectory

LNLL =

tf∑
k=1

− log

∑
j

πjN (xk|x̂jk,P
j
k )

 (25)

VII. EVALUATION & RESULTS

The model combinations are evaluated using different data
sets, encouraged by their varying dynamics and behavior. To
motivate the use of a deep-learning-based backbone to compute
the motion model inputs, a Constant Acceleration (CA) and
Constant Velocity (CV) model is included as a reference. Unless
stated differently, the classic fourth-order Runge-Kutta method
(RK4) was used as the numerical solver. For explicit methods,
the solver step size h was set to the sample period Ts = 0.2. In
Section VII-D, the different model combinations are evaluated
on different data sets. A study on numerical solver implications
is presented in Section VII-E.

A. Data Sets
For training and testing, two different data sets, highD

[10] and rounD [11], were used. The data sets contain
recorded trajectories from different locations in Germany,
including various highways and roundabouts. The data contain
several hours of naturalistic driving data captured at 25 Hz.
Observations for training and inference cover at most 3 s and at
least one sample. During the preprocessing stage, the original
input and target data were down-sampled by a factor of 5,
effectively setting the sampling period Ts = 0.2 s.

B. Training and Implementation Details
All implementations were done using PyTorch [32] and

PyTorch Geometric [33]. For numerical integration, we used
torchdiffeq [34]. Jacobian calculations were performed us-
ing functorch [35]. The Adam optimizer [36] was employed
with a batch size of 128 and a learning rate of 0.0001. A key
observation revealed that the number of ground truth states
used during training substantially affected test performance. For
instance, with motion models containing four states, [x, y, v, ψ],
despite the dependency of x and y on v, having the model
concurrently learn to enhance all three as opposed to only x and
y led to a notable performance improvement. It is important to
note that the orientation angle cannot be directly incorporated
in (25) as it fails to account for the cyclical nature of angles.

C. Evaluation Metrics
Several metrics are used to evaluate the investigated model

combinations, which are presented here for a single agent.
These are then averaged over all agents in all traffic situations
in the test set. As the predicted distribution is a mixture, L2-
based metrics are computed using the component j∗ with the
predicted largest weight, j∗ = argmaxj π

j .
• Average Displacement Error (ADE):

ADE =
1

tf

tf∑
k=1

‖x̂k − xk‖2 (26)

• Final Displacement Error (FDE):

FDE = ‖x̂tf − xtf ‖2 (27)

• Miss Rate (MR): The ratio of cases where the predicted
final position is not within 2 m of the ground truth [2].

• Average Path Displacement Error (APDE):

APDE =
1

tf

tf∑
k=1

‖x̂k − xk∗‖2

k∗ = argmin
i
‖x̂k − xi‖2

(28)

• Average Negative Log-Likelihood (ANLL):

ANLL =
1

tf

tf∑
k=1

− log

∑
j

πjN (xk|x̂jk,P
j
k )

 (29)

• Final Negative Log-Likelihood (FNLL):

FNLL = − log

∑
j

πjN (xtf |x̂
j
tf
,P j

tf
)

 (30)



TABLE II
MODEL COMBINATION PERFORMANCE BY DATA SET

Data set Model ADE FDE MR APDE ANLL FNLL

highD

CA 0.78 2.63 0.55 0.46 — —
CV 1.49 4.01 0.79 0.87 — —

1XI 0.25 0.85 0.05 0.25 −1.74 1.27
2XI 0.28 0.92 0.05 0.28 −1.72 1.57
3XI 0.32 1.05 0.06 0.31 4.95 4.30
CL 0.32 1.01 0.06 0.31 −0.68 1.99
CT 0.33 1.02 0.07 0.31 −0.76 1.97
UC 0.28 0.92 0.06 0.27 −0.84 1.77
ST 0.28 0.93 0.06 0.27 −0.80 1.78
N-ODE1 0.26 0.89 0.06 0.25 −2.03 1.32
N-ODE2 0.27 0.91 0.06 0.26 −1.90 1.34

rounD

CA 4.83 16.2 0.95 3.90 — —
CV 6.49 17.1 0.94 4.25 — —

1XI 0.99 3.03 0.34 0.60 0.16 3.31
2XI 0.99 3.10 0.36 0.61 −0.17 3.83
3XI 1.45 4.54 0.57 0.96 0.67 4.88
CL 1.48 4.81 0.65 1.10 1.22 4.81
CT 1.38 4.04 0.74 0.98 0.94 4.40
UC 1.29 3.85 0.57 0.90 0.93 4.48
ST 1.24 3.67 0.56 0.85 0.68 4.01
N-ODE1 0.99 3.07 0.37 0.63 0.20 3.38
N-ODE2 0.98 3.09 0.35 0.63 −0.19 3.75

D. Evaluation of Model Combinations

The prediction model’s performance using different motion
models on the two data sets is presented in Table II.

1) Highway: There is no significant difference between the
employed motion models for the highway trajectory prediction
task, with most methods being comparable to the first decimal
on L2-based metrics. However, some minor differences indicate
that the 3XI model, along with all the orientation-based
models, performs slightly worse than the others, particularly on
NLL. This is interesting, especially considering that highway
trajectories are typically smooth, often described using quintic
polynomials in motion planning applications [37]. By that
argument, the 3XI model should intuitively be competitive to
the other methods in this context, which is not the case. Instead,
it is the models 1XI, 2XI, N-ODE1, and N-ODE2 that report
the best results combined over all metrics.

2) Roundabout: The performance of the methods when
predicting roundabout trajectories, compared to the results for
highway predictions, indicates that this is a more complex
problem. Regardless, most of the deep-learning enhanced
motion models perform well. The orientation-based models are
underperforming in this context, reporting errors significantly
larger than the others. This is interesting, given that these
types of motion models are typically used in related works
[3]–[5]. Instead, the combined results indicate that simple
integrators are adequate for accurate learning-based motion
prediction, which is encouraging given their reduced complexity
and low computational demands. The prediction performance
can be further assessed by studying the illustration in Fig. 2,
showing an example prediction using test data from the rounD
data set. In particular, Fig. 2b illustrates the difficulties of the
investigated problem, but also the limitations of the methods.
Over a 5 s prediction horizon, numerous events can occur,
and although the methods accurately capture the overall true

(a) While the method is capable of multi-agent predictions, the blue car illustrates
a single forecast objective. The quality of the prediction between motion models
varies slightly, although most predictions are close to the ground truth. The
1XI, N-ODE1, and N-ODE2 models are visually the best performing in this
scenario. The figure background is from the rounD data set [11].
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(b) It is clear from the predictions in (a) that most methods overshoot the
true trajectory. Comparing how well the model predicts the velocity may
provide an indication of which models are the most effective.

Fig. 2. Example predictions of the motion models on a roundabout scenario.

path, only a few successfully predict deceleration entering the
curve. Still, most models remain accurate for up to 3 s before
diverging.

E. Implications of Numerical Solver Selection

Since the choice of integration method could substantially
impact the solution trajectory, it is interesting to study its
effect within this context. Three different motion models were
selected for this study: ST, 2XI, and N-ODE2. The models were
trained and evaluated using different numerical solvers: forward-
Euler method (EF), Heun’s method (Heun), Kutta’s third-
order method (RK3), classic fourth-order Runge-Kutta method
(RK4), Dormand-Prince variable-step method (DOPRI), and
an implicit-Adams method (Adams) [25]. Both data sets were
subjected to the investigation but yielded similar results. While
the conclusions hold for both scenarios, only the performance
on rounD will be discussed here.

The effect of numerical solver selection is presented in
Table III. The results illustrate varying model responses to
different solvers. What is true for all motion models, however,
is that the worst results are achieved in combination with
EF. Interestingly, using a second-order solver, like Heun’s,
has a significant positive impact on performance compared



TABLE III
ROUND SOLVER PERFORMANCE

Model Solver ADE FDE MR APDE ANLL FNLL

ST

EF 1.82 4.97 0.73 1.24 2.32 4.71
Heun 1.23 3.64 0.55 0.83 0.74 4.10
RK3 1.28 3.80 0.58 0.87 0.75 4.12
RK4 1.24 3.67 0.56 0.85 0.68 4.01
DOPRI 1.30 3.84 0.67 0.90 0.91 4.42
Adams 1.24 3.69 0.56 0.84 0.73 4.12

2XI

EF 1.50 4.18 0.58 0.89 5.67 7.10
Heun 0.97 3.07 0.34 0.60 −0.22 3.75
RK3 0.98 3.08 0.35 0.61 −0.22 3.77
RK4 0.99 3.10 0.36 0.61 −0.17 3.83
DOPRI 0.99 3.09 0.36 0.60 −0.19 3.77
Adams 1.01 3.12 0.39 0.61 −0.17 3.73

N-ODE2

EF 1.90 7.48 0.72 1.07 5.84 7.48
Heun 1.00 3.11 0.35 0.62 −0.19 3.76
RK3 0.99 3.10 0.37 0.62 −0.19 3.77
RK4 0.98 3.09 0.35 0.63 −0.19 3.75
DOPRI 1.10 3.46 0.44 0.70 0.24 4.08
Adams 0.98 3.04 0.35 0.61 −0.19 3.73

to EF. Going beyond the second-order method, offers only
marginal performance increases, much of which is dependent
on the model–solver combination. For example, N-ODE2
responded positively toward using the implicit Adam’s method,
but arguably not enough to be considered significant.

The trade-off between performance and computational de-
mands is an interesting topic. In Fig. 3, the training performance
over 10 hours using the aforementioned models and selected
solvers is presented. The choice of numerical solver can have
a significant impact on the training duration, likely resulting
from additional function evaluations specific to higher-order
methods. As one might expect, employing the variable-step
solver DOPRI led to a notably extended training duration.

Although the effect on model inference time is not as
pronounced as in the case of training performance, similar
trends can be observed (see Fig. 4). Most model-solver
combinations require less than 1 millisecond to compute
predictions for a single agent, with little variation. However,
as with the training duration, using the variable-step solver
DOPRI necessitated a much longer computation time.

VIII. CONCLUSION

An evaluation of differentially-constrained motion models
and numerical solvers for learning-based trajectory prediction
was presented. Using the MTP-GO framework, a range of
motion models, from pure integrators to kinematic models
and neural ODEs, were examined. It was found that simpler
models, such as low-order integrators, yielded the best results
irrespective of scenario complexity. The study also revealed that
the selection of a numerical solver can significantly influence
both training and prediction performance. Although the findings
indicate that effective prediction performance can be achieved
using a second-order numerical solver like Heun’s method, it
underscores the importance of making well-informed model
and solver choices when implementing these methods.
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Fig. 3. Training progress of ST, 2XI, and N-ODE2 over 100 epochs for
different solvers on the rounD data set, using one NVIDIA A100 GPU. The
training process for the various models is differently affected by solver selection,
especially when using the variable-step solver, DOPRI. Interestingly, training
N-ODE2 with EF resulted in a longer total duration than using RK4. This
is possibly because of the combination of the small stability region of EFs
and the N-ODE2s dynamics. Instead the additional function evaluations RK4
adds increased stability during training. Although excluded from the figure
for clarity, solvers like Heun’s and RK3 were in magnitudes similar to EF.
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[27] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder–decoder approaches,”
in Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation, 2014, pp. 103–111.

[28] J. Oskarsson, P. Sidén, and F. Lindsten, “Temporal graph neural networks
for irregular data,” in Proceedings of The 26th International Conference
on Artificial Intelligence and Statistics, 2023.

[29] S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention
networks?” in International Conference on Learning Representations
(ICLR), 2022.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, vol. 30, 2017.

[31] C. M. Bishop, Pattern recognition and machine learning. Springer,
2006.

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances
in neural information processing systems, vol. 32, 2019.

[33] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning on
Graphs and Manifolds, 2019.

[34] R. T. Q. Chen, “torchdiffeq,” 2018, accessed on 1.09.2022. [Online].
Available: https://github.com/rtqichen/torchdiffeq

[35] R. Z. Horace He, “functorch: Jax-like composable function transforms
for pytorch,” 2021, accessed on 23.11.2022. [Online]. Available:
https://github.com/pytorch/functorch

[36] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in International Conference on Learning Representations (ICLR), 2015.

[37] M. Werling, S. Kammel, J. Ziegler, and L. Gröll, “Optimal trajectories for
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