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Abstract—Understanding the interaction between different
road users is critical for road safety and automated vehicles (AVs).
Existing mathematical models on this topic have been proposed
based mostly on either cognitive or machine learning (ML)
approaches. However, current cognitive models are incapable
of simulating road user trajectories in general scenarios, and
ML models lack a focus on the mechanisms generating the
behavior and take a high-level perspective which can cause
failures to capture important human-like behaviors. Here, we
develop a model of human pedestrian crossing decisions based on
computational rationality, an approach using deep reinforcement
learning (RL) to learn boundedly optimal behavior policies given
human constraints, in our case a model of the limited human
visual system. We show that the proposed combined cognitive-
RL model captures human-like patterns of gap acceptance and
crossing initiation time. Interestingly, our model’s decisions are
sensitive to not only the time gap, but also the speed of the
approaching vehicle, something which has been described as
a “bias” in human gap acceptance behavior. However, our
results suggest that this is instead a rational adaption to human
perceptual limitations. Moreover, we demonstrate an approach to
accounting for individual differences in computational rationality
models, by conditioning the RL policy on the parameters of the
human constraints. Our results demonstrate the feasibility of
generating more human-like road user behavior by combining
RL with cognitive models.

Index Terms—Human behavior, computational rationality,
noisy perception, reinforcement learning

I. INTRODUCTION

The interaction between road users is defined as “a situ-

ation where the behavior of at least two road users can be

interpreted as being influenced by the possibility that they

are both intending to occupy the same region of space at the

same time in the near future” [1]. Interdependence between

vehicles and pedestrians makes interactions between road users

instrumental for road safety and automated vehicles (AVs),

which pushes the research into road user interaction.

Pedestrian is the most vulnerable group among all road

users [2], and their behavior is difficult to predict. How drivers

may behave is limited by the machinery of a vehicle and

traffic rules, whereas pedestrians have more freedom, and are

limited only by traffic rules. To better understand pedestrian

behavior, some detailed metrics related to crossing behavior
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were investigated [3]–[5]. For example, gap acceptance, where

the gap is defined as the time or spatial distance between

the pedestrian and approaching vehicle, is an important met-

ric for understanding the crossing decision [3]. Lobjois and

Cavallo [4] found that speed-dependent gap acceptance was

shown in different age groups i.e., the gap acceptance rate

was higher when the approaching vehicle was faster in a

given time gap. Petzoldt [5] investigated the relationship

between gap acceptance and time to arrival (TTA) estimation.

They speculated that speed-dependent crossing decisions were

caused by the biased TTA estimation. Another important factor

affecting the safety of crossing is cross initiation time (CIT).

Tian et al. [3] observed that CIT was greater when the vehicle

was driven at a higher speed for any given initial TTA, which

led to unsafe behavior.

A descriptive study of road user behavior is insufficient

for AVs to understand and predict other road users’ actions;

therefore, mathematical models of road user behavior are

required for AVs. In recent years, many mechanistic models

have been proposed to generate and understand pedestrian

behavior. For example, rule-based models, such as the social

force model, were successful in traffic flow simulation [6],

[7]. However, they are limited in capturing the details of

road user interactions. To generate more explainable and

accurate road user interactive behavior, cognitive models, such

as the evidence accumulation model, were utilized to model

pedestrian crossing decisions [8], [9].

With increased computing power and more available data,

machine learning (ML) models have gained increasing at-

tention for road user behavior prediction. Long Short-Term

Memory (LSTM), a variant of Recurrent Neural Networks

(RNN), was used in pedestrian trajectory prediction [10]. To

better predict the interactive behavior between pedestrians,

Alahi et al proposed a ‘Social LSTM’, with a social layer

into the LSTM algorithm, and the model outperformed state-

of-the-art methods [11].

Many efforts have been made to understand and simulate

the microscopic behavior of road users. ML models can

reproduce accurate trajectories across a diverse range of sce-

narios, and cognitive models can provide the interpretability

of the interactive behavior and the underlying mechanism.

However, both streams of methods have some limitations. In

conventional cognitive models, the modeler should define how

the specific task is completed and the model should be updated

if the environment and task change. This makes it difficult to

simulate road users’ trajectories in general scenarios. Whereas



ML models focus on the minimization of high-level error

metrics, rather than the mechanisms generating the behavior or

whether the aspects of behavior that are important to humans

are being captured. Sometimes the model with high accuracy

does not necessarily generate realistic human behavior [12].

Computational rationality, as a general approach of model-

ing human behavior, has shown promising properties in mod-

eling human-computer interaction (HCI) [13]. This framework

is based on the idea that human behaviors are generated

by cognitive mechanisms that are adapted to the structure

both of the environment and the mind and brain itself [14].

In this paper, we developed a model of human pedestrian

crossing decisions based on computational rationality, using

deep reinforcement learning (RL) to adopt optimal behavior

policies given human-like constraints. We show that when

we constrain the agent by a simple model of human visual

perception, it reproduces human gap acceptance behavior

qualitatively, including the speed-dependencies, which have

not been previously considered as rational behavior. We also

demonstrate an approach to using computational rationality

to model individual differences, by conditioning RL on the

parameters of human constraints.

II. METHOD

A. Dataset

The dataset used for validation was collected in the previous

experiment reported by Giles et al. [9]. Fig. 1 shows a

birds-eye view of the experiment. A brief summary of the

experimental setup is provided below. 20 participants were

recruited for the experiment. In the experiment, they wore

an HTC Vive Virtual Reality (VR) headset and experienced

the virtual crossing task. The VR environment consisted of a

straight two-lane road with a total width of 5.85 m, with a

zebra crossing at the participant’s location.

In terms of the experimental procedure, participants stood

in front of the zebra crossing. When participants were ready

to start the trial, they turned their head to the right to trigger

the scene. A car at the predefined initial position d0 would

approach the participant at different speeds v0. The experiment

included a mix of scenarios; in this paper, we will only

consider the scenarios where the speed of the approaching

vehicle was constant. The detail of these scenarios is shown

in TABLE I, where also the initial time to arrival (TTA)

τ0 = d0/v0 is listed. Participants pressed the button on the

HTC Vive’s controller when they felt safe to cross. Upon

this button press, CIT was recorded, and the location of the

participant in the virtual environment moved across the zebra

crossing at the speed of 1.31 m/s. This button-press approach

was chosen in favor of physically crossing the road, to reduce

the impact of variability in motor constraints on the crossing

decision. Each participant experienced 6 different constant-

speed trials. Therefore, 120 data trials were used for the

validation of the model.

Fig. 1. Birds-eye view of the experiment.

B. Model

This research aims to model the pedestrian crossing de-

cision under the assumption that human behaves rationally

within limits. Therefore, two models were compared, as shown

in Fig. 2. One is the ideal observer crossing model, in which

the agent has perfect information about the environment.

Another is the model considering the visual limits. In this

model, the agent perceives the environment subject to noise,

but Bayes-optimal perception.

1) Noisy perception: We assume the agent has a noisy

perception of the state of vehicles and perfect knowledge about

their own state.

a) Noisy visual input: The observation obtained by the

agent is according to the principle of the human visual system,

i.e., the sensory input received by our human visual system

is noisy [15]. It is important to consider the nature of this

noise; here we are building on models which assume that

visual noise is introduced at the level of the human retina,

as angular noise [16]. In the current model, we assume that

the agent observes the position of the other agent along its

line of travel by observing the angle below the horizon of

the other agent [17], [18], with a constant Gaussian noise

of standard deviation σv . In practice, this means that the

pedestrian observes the position of the vehicle with a distance-

dependent noise of standard deviation σx(k) = fv[x(k)],
where x(k) is the true world state, and:

fv[x(k)] = |dl|

(

1−
h

d · tan(arctan h

d
+ σv)

)

,

where dl is the longitudinal distance between the pedestrian

agent and the crossing point, d is the distance between the

agent and the approaching vehicle, h is the eye height over

the ground of the ego agent, which is set to 1.6 m for all

pedestrian agents for simplicity, and σv could vary between

pedestrians.

b) Kalman filter: There is psychophysical evidence that

human perception system works like a Bayesian optimizer,

and Bayesian methods have been successful in modeling

perception and sensorimotor control [16], [19]. Therefore,

we used a Kalman Filter as a model of the human visual

TABLE I
VEHICLE APPROACH SCENARIOS

v0 m/s d0 (m) τ0 (s)

6.94 15.90 2.29

13.89 31.81 2.29

6.94 31.81 4.58

13.89 63.61 4.58

6.94 47.71 6.87

13.89 95.42 6.87



(a)

(b)

Fig. 2. Comparison of models. (a) Ideal observer model, where the agent
had full information about the environment. (b) Model with visual limitations.
Two variants were developed. One was the model without noise magnitude
parameter. Another was the model with noise magnitude parameter, as shown
in the orange dashed box.

perception to percept the environment [18]. In our model,

we initialized the Kalman filter with a noisy position of the

vehicle, and a noisy velocity centered at the true velocity with

a standard deviation of all velocity values. At each step, the

Kalman filter received the noisy position about the other agent,

and the output, i.e., the filtered position and velocity of the

vehicle, and the variance of the position and the velocity, was

the input of the RL agent.

2) Reinforcement learning model: In our model, in line

with the theory of computational rationality, we view pedes-

trian behavior as a Partially Observable Markov Decision

Process (POMDP) under bounds posed by perception. RL

algorithm, where the agent interacts with the environment

and learns the optimal strategy by trial and error, can be

used to derive the boundedly optimal policy for this type of

problem [13], [20].

a) State space S: The time step in the simulation affects

the resolution of the results of the decision time. In our model,

one time step corresponds to 0.1 seconds, which is suitable for

the dataset we are using. At each time step t, the environment

is in a state st ∈ S. A state contains true information about

the vehicle and the agent, i.e., the position and velocity of the

vehicle and the agent.

b) Action space A: At each time step t, the agent takes

an action at ∈ A. In this paper, in line with the button press in

the experiment, the agent can make the decision to Go or Not

Go. If the Go decision is made, the agent will go straight at

the speed of 1.31 m/s, as in the experiment, resulting either

in a successful crossing or in a collision, and the scenario will

finish.

c) Reward R: In the experiment where the datasets were

collected, the participant’s task was to cross the road as soon as

they felt safe to do so, either before or after the car had passed

them [21]. Therefore, in our model we want the agent to cross

the road in as short a time as possible without a collision. At

each time step t, the agent will receive a negative reward of

0.5×simulationsteps, which helps the agent to cross the road

faster. The agent will be given a reward of 200 when crossing

the road without collision, and a reward of −200 if a collision

happens. The form of this reward function was chosen based

on some initial testing. As the focus of this study is on the

potential effect of noisy perception on the crossing decision,

we kept the reward function simple; future work can further

refine it to better capture human preferences.

d) Observation space O: The agent receives observation

ot ∈ O at each time step. In the ideal observer model, the

agent gets the complete information about the environment. In

the model with visual limits, the agent only observes partial

information about the state of the environment. At each time

step, the agent receives the processed estimates of the position

and velocity and uncertainty about the position and velocity of

the other agent from the Kalman Filter and the exact position

and velocity of the ego agent.

e) Transition function T : The transition function defines

how the current state st changes to the next state st+1 taking

action at. In our model, if Not Go action is chosen, the vehicle

will move according to the kinematic equations with the given

speed, and the position of the agent will not change. Once

Go action is chosen, whether the collision happens will be

calculated, and the corresponding reward will be given to the

agent. Then, the simulation finishes.

f) Deep Q-Networks: Deep-Q Network (DQN) is a

method using the neural network to learn the optimal policy to

maximize the state-action function (Q function), Q(s, a), the

expected rewards for an action taken in a given state [22].

DQN is suitable for the problem with a continuous state

space and a discrete action space. For the extensibility of the

model to more complex situations, we utilized an enhanced

version of DQN, Double DQN (DDQN). The Double DQN

(DDQN) structure, which decouples the update of the neural

network parameter for action selection and evaluation, can

avoid the overestimation of the action value [22]. Furthermore,

the dueling network was used, in which the Q-function is

decoupled to a value function and a state-dependent action

advantage A(s, a) function. Compared with the single-stream

DQN, the Duelling DQN shows better performance especially

when different actions lead to a similar value because of the

consideration of the state value in the Q value [23]. We trained

the agent through a two-layer fully connected network, with

512 and 256 nodes. The learning rate and discount factor are

0.001 and 0.99 respectively. To explore the optimal policy, an

ϵ - greedy algorithm was used for exploration: At each time

step t, a random action is chosen with probability ϵ, and the

action with maximum Q value is chosen with probability 1−ϵ.
We decreased ϵ by 10−4 in each learning step. The minimum

value was set to 0.001.

C. Training and fitting

As we don’t know the correct value for σv , and additionally

each participant in the experiment may have an individual σv ,

we trained the model for different σv ranging from 0−1 with

a step size of 0.002. We trained the model in two different



ways. First, we trained a separate model for each σv . With this

approach, for any given σv , we can get a boundedly optimal

policy from the model trained with that σv . This approach

is somewhat inconvenient and will not scale well to more

complete models of human constraints, with more parameters

than just one. Therefore, as an alternative approach, we instead

trained just a single model, across all of the different σv , and

in this case we also provided σv as an input to the model, as

illustrated by the dashed line in Fig. 2. In other words, we

conditioned the RL on σv . With this approach, for any given

σv , we get a boundedly optimal policy from this single model,

by also giving it σv as an input.

With the 1.31 m/s walking speed in the experiment, it is

possible to cross before the vehicle without collision even for

the lowest TTA of 2.29 s. To avoid our agents learning this

trivial policy of always just immediately crossing, in training,

we also included a lower TTA of 1 s, in which the agent did

not have enough time to cross safely before the vehicle.

We used three criteria to identify model convergence and

stop training: (1) the collision rate is less than or equal to

0.01, which means one collision at most happened in the last

100 episodes; (2) ϵ has reached the lowest value of the epsilon-

greedy algorithm; (3) the difference in average reward between

the last 100 episodes and the last 200 to 100 episodes is less

than 1 to make sure that the average reward does not improve

much and becomes stable and converged. The separate model

for each σv reached the convergence criteria around 5000

episodes, and the single model for different σv reached the

convergence criteria around 7000 episodes.

We also identified the σv that fitted the experimental data

best for each participant by likelihood maximization. We esti-

mated the probability density function (PDF) of CIT predicted

for each model by kernel density estimation, separately for

each of the six scenarios (Table 1). This allowed us to calculate

the model likelihood of each σv for each participant, by

multiplying the model PDF values at the participant’s observed

button press times. Finally, we combined all the PDFs from the

different participants, with tuned σv . We applied this method

to both model types, i.e., separate models for each σv , and a

single model for all σv . In addition to this per-participant fit,

we also selected one σv from the models with separate σv ,

which best fitted the entire dataset.

Abbreviations will be introduced here for referring to dif-

ferent model variants; e.g., EXP: experimental (EXP) data;

IO: ideal (I) observer (O) model; LMD: visually limited (L)

input to multiple (M) models without the noise parameter,σv

as input and one σv fitted across the entire dataset (D); LMP:

similar to LMD except, the noise parameter,σv is fitted per

participant (P); LSP: visually limited (L) input to a single(S)

model with noise parameter,σv as additional input and σv is

fitted per participant (P).

III. RESULTS

A. Experimental results

First, we reanalyzed the experimental data reported by

Pekkanen et al. [21]. As shown in the first panel on the left

in Fig. 3, this experiment replicated the general finding that

the gap acceptance rate strongly depended on initial TTA,

i.e., more pedestrians crossed before the car when there was

a larger time gap. In addition, we can observe the speed-

dependent gap acceptance rate, i.e., for a given initial TTA,

more pedestrians accepted the gap if the speed was higher [3],

[4]. This effect was strongest at the initial TTA of 4.6 s.

Regarding CIT, which is shown in the first row in Fig. 4,

there was some spread in CIT, both when crossing before and

after the car.

B. Behavior of the model

The results of IO, the model without visual limits, are shown

in the second panel on the left in Fig. 3 and the second row

in Fig. 4. In the model without visual limits, the agent had

full information about the environment, and crossed the road

without collision in the shortest time. Therefore, as shown in

the second row of Fig. 4, the agent always started to cross at

the first time step when it was safe. The second panel in Fig. 3

shows that the agent always accepted the gap in 2.3 s, 4.6 s,

and 6.9 s initial TTA conditions.

The three graphs on the right in Fig. 3, and the last three

rows in Fig. 4 show the results of the models with visual

limits. In models with visual limits, the agent received the

processed information of the Kalman filter instead of the exact

information about the environment.

As shown in Fig. 3, the models with visual limits captured

the pattern of the gap acceptance rate observed in the exper-

iment. The TTA-dependent gap acceptance rate, i.e., the gap

acceptance rate increased with the initial TTA, was predicted

by all three model types. Unexpectedly, the difference within

the same TTA group was also captured by the model. The

agent was more likely to accept the gap when the vehicle speed

was higher in the given initial TTA. This pattern was shown

by all model types. Overall, the model has a slightly greater

tendency to accept gaps than the human participants. This may

Fig. 3. Gap acceptance rate by human participants and different models. See the main text for explanations of the model abbreviations.



Fig. 4. Cumulative probability for CIT. The four columns show different initial TTA conditions. See the main text for explanations of the model abbreviations.
(Note: CDF curves are extended to the right after the cumulative probability reaches y = 1.)

be what is causing the model to show a speed dependency

at 2.3 s TTA (because the model sometimes crosses there,

whereas the humans almost never did), but not at 6.9 s TTA

(because the model has already reached full gap acceptance at

this TTA, which the humans had not).

1) Variability within and between individuals: From Fig. 4,

there was some spread in CIT also for model LMD – i.e., the

model showed some within-individual variability – due to the

trial-to-trial variability in visual noise. That model LMP, with

different σv for different participants, came closer to capture

the human variability, suggesting that some of the variability

in the human data is from between-individual differences.

To test this, we did the Akaike Information Criterion (AIC)

analysis of LMD, LMP, and LSP. AIC, which considers both

the log-likelihood and the cost of more parameters, allows

us to compare the performance of different models, and the

preferred model is the one with the minimum AIC value [24].

Fig. 5. Distributions of initial estimated TTA from the output of the visual
perception model, across the different scenarios in the experiment. The gray
vertical line is the mean value, and the shading area shows the 5

th and 95
th

percentiles of the estimated TTA.

The AIC values are 113, 57, and 79 for the LMD, LMP and

LSP respectively. Therefore, LMP, the model with different

individual σv , outperformed other model variants. This sug-

gested that some of the variability in human CIT is due to

between-individual variability in sensory noise.

2) Speed-dependent gap acceptance: To investigate the

reason why the model showed speed-dependence in its gap

acceptance rate, we calculated the estimated TTA through

the velocity and position estimated by Kalman filter at the

first time step. As shown in Fig. 5, for the same time gap,

the distribution for the estimated TTA was more dispersed at

lower speed conditions. In other words, at low speeds, there

was greater uncertainty about the estimated TTA, which could

be the reason why it is better, from a reward maximization

perspective, to be more careful about crossing in these sit-

uations. This perspective aligns with the findings of Chen

et al. [25], who showed that apparently biased behavior in

a more abstract choice task might also be explained as a

consequence of optimal sequential decisions under uncertainty.

Interestingly, Tian et al. [3] showed that in the road-crossing

context, humans may in practice be achieving this strategy by

making use of relatively simple visual cues.

IV. DISCUSSIONS AND CONCLUSION

We developed a model of human pedestrian crossing de-

cisions based on computational rationality, using deep RL to

adopt optimal behavior policies given human-like constraints.

We show that when we constrain the agent by a simple

model of human visual perception, it reproduces human gap

acceptance behavior qualitatively. Furthermore, the model also

predicts the speed-dependencies that are typically observed in

human gap acceptance. These have previously been considered

as evidence of biases in human pedestrian decision-making,



but our results demonstrate that this type of speed-dependence

is a rational adaption to noisy visual perception. When com-

paring the results of LMP and LSP, it shows that these two

approaches learned similar policies, but not identical policies.

We believe that the approach of conditioning RL on constraint

parameters is a promising approach for considering individual

differences. As an early attempt in using computational ratio-

nality in modeling road user interaction, we see the feasibility

to use computational rationality to model road user behavior.

The developed model could be served as the agent model in

the test environment of AVs.

There is ample scope for further improvements to our

model. For example, our agent is more likely to show faster re-

sponses than humans. One reason is that the human perceptual

filtering might be slower than the Kalman filter we used, which

can process the information without delay. Another reason

is that we have not considered the non-decision time in the

model [26]. We can also observe more variability in human

CITs than in model CITs. This could be due to both between-

and within-individual variability of unmodeled sources, and

the fact that we used only one free parameter, σv . In addition,

our reward function is simple and so far we have not tuned it.

This is enough for our purposes, to show qualitative patterns

of human road-crossing. However, this limitation is probably

the reason why the model has a greater tendency for gap

acceptance than humans. In future work, following a similar

approach to what we did with σv here, we could tune also

for example the time-loss penalty in the reward function.

Furthermore, in the current work, the agent is interacting

with a constant speed approaching vehicle. However, in the

real world, the pedestrian will interact with vehicles with

various kinematic states, which also affect the crossing be-

havior. For example, [21] suggests that human pedestrians are

also perceiving and interpreting vehicle deceleration. A major

advantage of the approach we have taken here is that deep RL

is scalable to much more complex traffic scenarios [27], far

beyond what is possible with conventional cognitive models.

We therefore conclude that computational rationality overall

holds great promise for applied modeling of human-like road

user interaction behavior.
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