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Abstract—Accurate vehicle trajectory prediction is an unsolved
problem in autonomous driving with various open research
questions. State-of-the-art approaches regress trajectories either
in a one-shot or step-wise manner. Although one-shot approaches
are usually preferred for their simplicity, they relinquish powerful
self-supervision schemes that can be constructed by chaining
multiple time-steps. We address this issue by proposing a middle-
ground where multiple trajectory segments are chained together.
Our proposed Multi-Branch Self-Supervised Predictor receives
additional training on new predictions starting at intermediate
future segments. In addition, the model ’imagines’ the latent
context and ’predicts the past’ while combining multi-modal
trajectories in a tree-like manner. We deliberately keep aspects
such as interaction and environment modeling simplistic and
nevertheless achieve competitive results on the INTERACTION
dataset. Furthermore, we investigate the sparsely explored un-
certainty estimation of deterministic predictors. We find positive
correlations between the prediction error and two proposed met-
rics, which might pave way for determining prediction confidence.

I. INTRODUCTION

The common separation of the Autonomous Driving (AD)
stack into perception, prediction, and planning components
drives a need for accurate forecasts of the future as a planner
input. In prediction, different challenges exist such as but
not limited to, representing the environment [1], modeling
multi-agent interactions [2], capturing the multi-modality of
the future motion distribution [3], adhering to kinematic con-
straints [4], as well as modeling a long prediction horizon [5].
In solving these tasks, various Deep Learning (DL) models
usually generate predicted trajectories of the agents sharing a
road situation with an autonomous vehicle (AV).

In terms of the approach to construct trajectories, prediction
models can be categorized into one-shot approaches [4], [6]–
[8], where a full trajectory is directly regressed, and step-wise,
autoregressive approaches that generate a trajectory sequen-
tially for each time step based on the previously predicted time
steps [5], [9]–[13]. The main drawback of one-shot approaches
is that long prediction horizons make it difficult to reason
about comprehensive changes in scene dynamics. Since the
models do not condition on future observations, the potential
for errors and high uncertainty is much larger toward the end
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Fig. 1: Left: the Multi-Branch Self-Supervised Predictor splits the
trajectory prediction problem into three equal time-segments, where
the ground-truth history and future are shown in green. It builds a
tree of multi-modal trajectories over two future segments (yellow
and orange), with a multi-modal trajectory (two modes) chained at
the output of each previous segment mode. Additionally, it ’predicts’
a uni-modal trajectory in the past (blue). Right: knowing the ground-
truth in training, the model builds another tree shifted by one segment
into the future. By constructing multiple trees, reconstructing the past,
as well as ’imagining’ how the context will evolve in each segment
(not depicted), the model receives additional (self-)supervision.

of a long prediction horizon. As opposed to one-shot models,
step-wise, autoregressive approaches build each prediction
based on the previous inference step. Similarly to one-shot
approaches, they tend to accumulate errors for longer horizons,
especially in interactive settings under distribution shift [14].
Furthermore, the autoregressive context makes it non-trivial
to combine multi-modal predictions between successive time
steps. In our work, we aim to bridge the two approaches and
offer potential answers to the drawbacks at hand.

Our starting point in addressing the question of combining
the different paradigms is the Self-Supervised Action-Space
Predictor (SS-ASP) model in [4]. Its main characteristic is
the ability to predict a latent representation of the driving
context (e.g. map and motion of non-predicted agents) prior
to predicting future trajectories for the vehicle of interest. In
achieving this, it is trained with future context data in addition
to future trajectories of the predicted agents, which separates it
from the existing state-of-the-art models. Furthermore, it can
’go back in time’ and check whether its reconstructions of
the past are consistent with the observed ground-truth history
through an auxiliary, inverse model task. These two aspects
can be regarded as a form of self-supervision and they enable
the model to interpret the trajectory prediction problem in a
segment-wise manner, where each segment consists of multi-
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ple time steps (for example, one second length) and multiple
segments are chained together. With each new segment, future
trajectories and context are predicted, and past trajectories of
the previous segment are reconstructed. This is in contrast to
pure one-shot or step-wise approaches, which do not employ
such strategies. However, these abilities are sparsely explored
in [4] and the proposed chaining of segments actually regresses
the results compared to a simple one-shot-like setup.

In this work, we aim to incorporate novel autoregressive
schemes from [15]–[17] to enable a multi-segment formulation
of a one-shot trajectory prediction model. With this, we aim
to answer the research question (i): can the prediction perfor-
mance of a one-shot model be improved by an autoregressive
formulation that creates room for additional self-supervision?
Furthermore, in light of the multi-segment structure, we aim
to investigate how the model uncertainty evolves with each
segment, given a deterministic problem formulation. In this
sense, we aim to answer the research question (ii): can
the confidence of the deterministic multi-segment model be
accurately rated, in order to define the limitations of the
model? This might pave the way toward the prediction of a
variable number of segments and thus a variable time-horizon.1

The main contributions of our work can be summarized along:
• Segment-wise prediction: a novel paradigm where the

resulting trajectory is obtained by predicting a number
of 1-second time segments and chaining them together.

• Multi-Branch SS-ASP: a multi-branch and multi-segment
extension of the approach from [4], trained by generat-
ing additional prediction paths (termed branches). The
proposed model ’imagines’ future context, reconstructs
past trajectories, and combines segment-wise multi-modal
predictions with various tree-search strategies. The model
is deliberately simplistic in terms of interaction and
multi-modality modeling but still competitive on the
INTERACTION dataset [18].

• Uncertainty of deterministic predictors: we assess the
given model’s confidence along evolving time-segments
with two novel approaches that exhibit a significant
positive correlation with the measured prediction error.

II. RELATED WORK

The focus of our work is self-supervised autoregressive
trajectory prediction and uncertainty estimation in the context
of our proposed model. Therefore, we are interested in au-
toregressive models (both in trajectory prediction and other
contexts), self-supervision, and uncertainty estimation in
trajectory prediction; we outline the section accordingly.

A. Autoregressive prediction

Autoregressive trajectory prediction models [5], [9]–[13]
incrementally model changes in scene dynamics compared to
one-shot models [4], [6]–[8], which have larger requirements

1A use-case is stopping the prediction after a certain segment in case
the uncertainty is too high. Providing only the ’confident’ predictions to a
planner might improve its performance since the output is not based on highly
uncertain predictions (and thus potentially overconfident).

on model expressiveness within a single prediction. Among
such models, [11] predicts the waypoints of the next step based
on an agent’s own state and the waypoints of the surrounding
agents at the previous step. It handles multi-modality by
predicting a fixed amount of latent intents, which condition
the step-wise rolled-out trajectories. Similarly, [9] extends
the problem by inferring time-varying discrete intents of the
surrounding agents, which are incorporated into the step-wise
discrete-continuous hybrid model. It uses a learned proposal
function to ’traverse’ the system and obtain multiple modes.
In [19], step-wise environment prediction is done, similar to
the latent context prediction in [4]. The environment prediction
benefits from the autoregressive formulation; it is simpler to
predict observations in a single time step than a long horizon.

Outside of vehicle trajectory prediction, autoregressive mo-
dels are present in robotics and Imitation Learning (IL) [15]–
[17], [20]. In [16], the so-called latent overshooting method
is introduced that rolls-out new autoregressive predictions at
each intermediate future step, in parallel to the first prediction
sequence. This allows to increase the learning signal without
additional data. An autoregressive formulation is useful in
Model-Based Reinforcement Learning (RL) as well; [17]
showed that a multi-step loss, based on the autoregressively
predicted steps, increases the reward for deterministic plan-
ning modules compared to a single-step objective. Similarly,
the Dreamer model in [21] learns behavior directly from
autoregressive latent predictions (’imagination’) instead of
exploration. This significantly reduces the training time com-
pared to an explorative RL agent. In summary, the potential
for performance improvement as well as the larger design
space compared to one-shot models motivate the usage of an
autoregressive formulation in this work.

B. Self-supervision in trajectory prediction

Existing trajectory prediction models incorporate self-
supervision either through (i) a separate training stage or
(ii) through additional tasks. There are fewer approaches
performing (ii) in the literature; [22] proposes a contrastive
pre-training in which rasterized representations of intersecting
trajectories are rotated or semantics are exchanged in order to
learn an internal interaction representation. In contrast, [23]
fine-tunes a pre-trained predictor in an online-setting to adapt
to behaviors observed in inference. Among (ii), [24] enforces
additional temporal and spatial consistency tasks for trajectory
refinement that robustify the outputs in terms of pertubations.
Additionally, [25] takes a graph-based approach where certain
map and agent node features are masked out and presented as
a completion task for the model.

Learning environment models through self-supervision and
using the internal representations of scene dynamics for plan-
ning has received strong attention in RL [19], [26], [27].
It has shown to be a promising direction in IL-based AD
as well; in [21] the model predicts an evolution of the
scene in the latent space and reconstructs camera images,
semantic maps, and actions taken by the AV. Similarly, the
SS-ASP model [4] performs prediction in the latent space but



without full observation reconstruction. Instead, latent context
predictions are compared to encoded future observations and
an inverse model is learned as well [28], [29], which introduces
another transition prior on the environment. Compared to [21],
this is more efficient (due to lower dimensionality), however,
reconstructing rich observations from the latent space induces
stronger requirements on the expressiveness of the latent space.

C. Prediction uncertainty estimation
Despite the large number of deterministic trajectory predic-

tors in literature and the importance of communicating the
model uncertainty to a planner, the task has received limited
attention in literature. In general, estimating the epistemic
uncertainty of a prediction model is a challenging problem in
DL. Several approaches in trajectory prediction use the com-
putationally cumbersome deep ensembles [3], [30]. A more
general approach is Bayesian inference, where uncertainty is
directly estimated in conjunction with the prediction. However,
significantly more effort is needed to design and train Bayesian
networks compared to standard neural networks. In [31], a
theoretical framework is described that “casts dropout training
in deep neural networks as approximate Bayesian inference
in deep Gaussian processes“. In practice, the parameters of
a Gaussian distribution are approximated by the mean and
variance of multiple inference runs, each with different deacti-
vated (dropped-out) neurons. Along these results, [32] provide
a study of dropout-based Bayesian approximation in pedestrian
trajectory prediction and find improved accuracy through in
inference. In our work, we apply dropout-based techniques to
estimate the prediction uncertainty of the developed model,
due to the theoretical grounding and ease-of-use.

III. METHOD
In this section, we describe our method. In Sec. III-A

we define the addressed problem of trajectory prediction and
introduce notation. Sec. III-B describes the SS-ASP model
from [4]. Sec. III-C extends the SS-ASP into an autore-
gressive formulation and offers strategies how to combine
segment-wise multi-modal predictions. The proposed Multi-
Branch SS-ASP model is given in Sec. III-D. Strategies how
to determine the prediction uncertainty of the Multi-Branch
SS-ASP are introduced in Sec. III-E.

A. Problem definition and notation
Vehicle trajectory prediction can be framed as non-

interactive imitation learning [10], where given the observed
information D and ground-truth future trajectories Y ∗, we
learn the conditional distribution P (Ŷ |D) of future trajectories
Ŷ . In practice, deterministic models represent the distribution
by predicting K likely samples (modes) {Yj}Kj=1 as well as
their associated pseudo-probabilities {pj}Kj=1. Furthermore,
the prediction can be performed for a single vehicle or jointly
for multiple vehicles in a scene. Even though joint prediction
is a more sound approach to the problem [6], we limit the anal-
ysis to a single-agent setting for simplicity. Nevertheless, the
proposed model has no methodological restrictions preventing
an extension to joint prediction.
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Fig. 2: Left: the (non-self-supervised) FF-ASP [4], conceptually very
common in the literature (standard encoder-decoder structure) when
action-spaces are excluded. Past actions aτ0 and observations oτ0 are
encoded via an action encoder α and a context encoder ϕ into fea-
tures ατ0 (with a slight abuse of notation) and zτ0 . Future actions âτ1
are predicted by the decoder γ. Right: self-supervised model with
additional components in blue. The model additionally predicts future
latent context ẑτ1 with the context predictor ψ and trains it against
the encoding zτ1 as pseudo-ground-truth. Furthermore, it reconstructs
past actions âτ0 with an inverse model ξ and trains them against the
past ground-truth aτ0 . Multi-modal predicted actions and kinematic
models converting actions to positions are omitted for clarity.

The proposed model uses a segment-wise prediction for-
mulation where a time segment is a sequence of time steps
and a full T time step prediction consists of N equal length
segments2. Thus, we introduce supporting notation:

• i is the segment index, i ∈ [1, ..., N ]
• t is the number of time steps in a segment, T = N · t
• τi describes a future time segment i, ((i− 1) · t : it]
• τ0 describes a single past time segment, (−t : 0]

B. Self-Supervised Action-Space Predictor (SS-ASP)

The SS-ASP model [4] is the basis for developing the multi-
segment model proposed in this work. It is an action-space
prediction model, i.e. it predicts actions (accelerations and
steering angles) and obtains positions via a kinematic model.
At a high-level, it uses encoders for capturing past environment
context information (e.g. a CNN encoding birds-eye-view
grids or a GNN operating on graphs) into a latent (context)
feature vector. Furthermore, it uses an action-based encoder for
encoding past actions (e.g. RNN) and a multi-modal action-
based decoder for regressing future actions (e.g. RNN). This
does not separate it conceptually from a multitude of state-of-
the-art approaches (irrespective of the action-space), since a
vast majority uses a similar setup of encoding past information
(context, trajectories) and predicting future trajectories. The
described architecture is depicted in the left part of Fig. 2 (so-
called Feed-Forward Action-Space Predictor (FF-ASP) [4]),
where the context and action encoders, and action decoder are
parameterized by ϕ, α, and γ, respectively.

The SS-ASP model stands out in the sense that, additionally
to the aforementioned encoder and decoder components, it
predicts a latent future context prior to predicting future
actions. It trains this predicted future context against its own
encoding of the future context. Furthermore, it reconstructs

2In this sense, a one-shot prediction is a single-segment prediction.



past actions via an inverse model taking in future actions.
These two self-supervised tasks serve as additional regulariza-
tion for the model. The SS-ASP model is depicted in the right
part of Fig. 2, where the new context predictor component is
parameterized by ψ, and the action reconstructor with ξ. For
encoding the future context, the same past context encoder
ϕ is reused, in this case receiving future information during
training. The loss function of the model is

LSS−ASP = Ltraj + Lclass + Lcontext + Lrecon , (1)

with weights omitted for clarity. The trajectory regression loss
is Ltraj = ∥Ŷτ1(ẑτ1)−Y ∗

τ1 ||+ ||Ŷτ1(zτ1)−Y ∗
τ1 ||; its two terms

reflect the fact that the action decoder γ in Fig. 2 is called with
both predicted and encoded future context (Fig. 2 only shows
the former) in training to promote consistency between com-
ponents. The loss function (1) considers multi-modal outputs
via the winner-takes-all [33] approach. The classification loss
function Lclass considers mode probabilities via cross-entropy.
The context loss Lcontext = ∥ẑτ1 − zτ1∥ penalizes the mis-
match between encoded and predicted future context, while the
reconstruction Lrecon = ∥Ŷτ0(ẑτ1)− Yτ0∥+ ∥Ŷτ0(zτ1)− Yτ0∥
considers past ’predictions’ (two terms promoting consistency
similar to Ltraj). For more details, see [4].

C. Multi-Segment SS-ASP

The SS-ASP model can be extended into an autoregressive
formulation with repeated calls of its components over suc-
cessive time-segments. The components model the interplay
between context and actions over a certain time-segment and
chaining multiple calls is expected to perform reasonably well
in inference. This extension is depicted in Fig. 3a. However,
this naive formulation (partly presented in [4]) actually re-
gresses the performance due to the induced distribution drift
of chaining predictions on top of predictions [4], see Sec. IV-C.

In addition to the distribution drift, chaining multi-modal
predictions along trajectory segments is non-trivial. If the
action decoder γ generates k modes per segment, a decision
has to be made on which modes to expand in the next segment.
If the prediction is continued for a single mode in a segment,
diversity is suppressed, while considering all permutations
results in kN trajectories. Therefore, different strategies for
combining multi-modal predictions can be employed in order
to traverse the tree and select K out of possible kN modes.

In the following, six combination strategies are investigated,
visualized in Fig. 4. In implementing different strategies, we
make use of mode probabilities. These probabilities can be
either generated by the action decoder in addition to each pre-
dicted mode, or by a separate learned classification component.
Conceptually, all strategies can be placed between the All-
Modes strategy, considering kN modes, and the Single-Mode
strategy that selects the highest probability mode and discards
others3. Start-k and End-k strategies take k modes at the start
or the end, and a single mode otherwise. In Best-m-of-all, the
product of the probabilities of previous and subsequent modes

3Single-Mode can be viewed as an application of Best-first-search.
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âτ1

aτ0

zτ0

aτ0

zτ0
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future prediction. In addition
to predicting future actions
in a branched manner, we
branch context features as well
as reconstructed actions (not
visualized).

Fig. 3: Multi-segment (a) and multi-branch (b) SS-ASP depictions.
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Fig. 4: Six investigated combination strategies for N = 3 segments.
The selected modes are depicted in blue and non-selected in gray. The
number of predicted modes in a segment is k = 3. Best-m-of-All
uses m = 3 and Best-m-of-Prediction uses m = 2.

is calculated and the prediction is only continued for m most
likely modes4 of all modes within a segment. The last strategy
is Best-m-of-Prediction, where the prediction is continued for
m ≤ k most likely modes in a single multi-modal prediction,
disregarding probabilities of earlier segments.

Each strategy has unique advantages and disadvantages. To
quantify them, three properties are identified, see Tab. I. The
property (i) is the maximum number of multi-modal prediction
calls n for a sample, which serves as a proxy for the required
computation time5. The property (ii) is the total number of
obtained modes K over the entire prediction horizon. Property
(iii) is qualitative and describes mode diversity via {diverse,

4Best-m-of-all corresponds to the Beam search heuristic.
5n can be larger than the number of segments N in the prediction horizon,

e.g. n = 13 multi-modal prediction calls are required in the All-Modes
visualization of Fig. 4.



TABLE I: Different strategies categorized by the maximum number
of multi-modal prediction calls n for a sample, the total number of
predicted modes K, and the mode diversity.

Strategy K n Diversity
All-Modes kN

∑N−1
i=0 ki partially-diverse

Single-Mode 1 N diverse
Start-k k 1 + k · (N − 1) diverse
End-k k N partially-diverse

Best-m-of-All m 1 +
∑N−1

i=1 m unclear
Best-m-of-Prediction mN

∑N−1
i=0 mi partially-diverse

partialy-diverse, unclear} qualifiers. In diverse strategies the
K resulting modes share no segment trajectory subsets, in
partialy-diverse strategies the modes share a least one segment
trajectory subset, and for the unclear strategies the number
of shared subsets varies per sample. The presented strategies
of combining multi-modal prediction are general and can be
integrated with different multi-modal decoders, i.e. do not
depend on the specific action decoder used in this work.

D. Multi-Branch SS-ASP

The autoregressive formulation of the Multi-Segment
SS-ASP opens room for advanced training methods able to
reduce the distribution drift of chaining multiple predictions.
In the following, branched overshooting, termed in [20], is
used as well as a novel combination of context aggregation and
prediction, designed to cope with the partial observability of
the state through the autoregressive formulation. The resulting
model aims to answer research question (i) from Sec. I; it is
termed as the Multi-Branch SS-ASP.

1) Branched overshooting: It refers to a training method
in which additional prediction branches starting from interme-
diate future time steps (segments) are trained in conjunction
with the main branch [16], [20], visualized in Fig. 3b. A
prediction branch is simply a prediction from a start segment
to an end segment. For example, branch 0 refers to the full N
segment main branch, as used in the Multi-Segment SS-ASP,
while subsequent prediction branches start from shifted time
segments. This allows the model to perform N −1 additional,
shorter predictions (of lengths 1 to N − 1) in addition to the
N -segment prediction covering the entire prediction horizon.
As a result, additional training is performed without adding
training data. To the best of the authors’ knowledge, this
is the first work that applies such overshooting methods in
trajectory prediction. We apply it for action prediction and
action reconstruction, as well as latent context prediction.

Incorporating multiple segments as well as multiple
branches into the self-supervised loss of Eq. (1) extends the
loss function over time segments and branches. For example,
the trajectory loss Ltraj can be extended to a sum of losses
per branch b, Ltraj =

∑N−1
b=0 Lb

traj . A similar extension can
be performed for the classification, context, and reconstruction
components of Eq. (1). Thus, the overall loss in Eq. (1) can
be extended over branches and λi-weighted segments

LMB−SS =
∑N−1

b=0

∑N−b
i=1 λiLi,b

SS−ASP . (2)

Compared to Eq. (1), the loss function above provides signif-
icant additional training of the model on the same data.

2) Combining context aggregation and prediction: In au-
toregressive models, information from a previous recurrence
step is used to predict the next step. An agent’s observable
state (e.g. its dynamics) does not constitute sufficient statistics
for its behavior – to address this limitation, autoregressive pre-
dictions can learn additional latent features. A natural frame-
work for modeling such problems where partial observability
occurs is the Partially Observable Markov Decision Process
(POMDP). Furthermore, since historical behavior beyond the
previous recurrence step is relevant to determining the predic-
tion, an accumulation of ‘intent‘ over multiple recurrence steps
should be possible. In this way, the future development of the
scene can be modeled following Markovian assumptions.

The partial observability of intent over the entire prediction
horizon can be handled through the use of recurrence over
the latent context, which motivates the usage of a context
aggregator component. For a segment i, it accumulates the
encoded as well as predicted contexts of previous segments
into an aggregated latent context z̄i, {zτ0 , ..., ẑτi−1

, ẑτi}
χ→ z̄i

(parameterized by χ). The aggregated context z̄i can be con-
sidered as a latent context state that merges scene information
of multiple consecutive segments. Thus, we use it as a stand-in
for wherever predicted latent context is used, either as input to
an action predictor or reconstructor component (e.g. in Fig. 2
and Fig. 3a). A concept similar to incorporating recurrence
in latent context prediction are the Recurrent State Space
Models (RSSM) in [16], which include stochastic components
as opposed to the fully deterministic Multi-Branch SS-ASP.

E. Prediction uncertainty estimation

In this section, we present novel prediction uncertainty
estimation techniques for the deterministic Multi-Branch SS-
ASP model, as well as a corresponding evaluation procedure.
Since we perform prediction over time segments, we model
the change in prediction error between successive segments
i and i − 1 to capture the possibility of early predictions
being accurate and later ones deviating significantly from the
ground-truth. Specifically, we model the relative change in the
Minimum Average Displacement Error (minADE) for k modes

∆minADEk(i, i−1) = minADEk(i)−minADEk(i−1) , (3)

and find correlations to the deterministic model uncertainty. In
this sense, we aim to capture the model’s changing confidence
over time, and answer the research question (ii) from Sec. I.

The first uncertainty estimation metric is the reconstruction
error. This metric aims to capture disagreement between
model components generating predictions and reconstructions
(past ’predictions’) in inference. If the trajectory prediction of
a segment i significantly deviates from the reconstruction in
the same segment, it indicates the epistemic uncertainty of the
overall model. Specifically, we measure the deviation between
reconstructed xy positions Ŷτi,ξ of a segment i, obtained
through the action reconstruction of the inverse model ξ (see



Fig. 2), and the prediction Ŷτi,γ , obtained through the action
predictor γ (in case of segment 0 the ground-truth history Yτ0 )

∆recon(i) =

{
∥Ŷτi,ξ − Ŷτi,γ∥ i ≥ 1 ,

∥Ŷτ0,ξ − Yτ0∥ i = 0 .
(4)

In this implementation, the reconstruction error is coupled to
the SS-ASP architecture due to a prerequisite for an inverse
(reconstruction) model. However, adding the auxiliary task of
inverse predictions to any prediction model can serve as a
relatively straightforward-to-use additional regularization.

The second metric is the mean of mode variances. The
metric is based on the application of Monte Carlo dropout in
order to obtain an uncertainty estimate, naturally provided by
Bayesian inference [31]. Here, we estimate the variances of
predicted trajectories Ŷ under the dropout parameter distribu-
tion q(w|Dtrain) of weights w given the training data Dtrain.
For a single xy position in a mode j of segment i, it is

σ2
Ŷt,j,i

=
1

2
(Var (x̂t,j,i) + Var (ŷt,j,i)) . (5)

In practice, the variances are Monte-Carlo approximated by
drawing multiple samples w ∼ q(w|Dtrain) with different
weights dropped out [31]. In Eq. (5), we match same modes
between different inference runs (by output order). We assume
that variance between modes in a single run does not change
significantly by applying dropout due to the inherent model
determinism. The overall metric is obtained by averaging over
modes and time steps (assuming independence)

∆mode−var(i) =
∑k

j

∑T
t

σ2
Ŷt,j,i

kT . (6)

The metric in Eq. (6) serves as an estimate of the covariance
within a Bayesian network model whose weights are Gaussian
distributed, which is theoretically grounded in [31]. Therefore,
it serves as an indicator of the epistemic model uncertainty.

IV. RESULTS
A. Implementation

In implementing the Multi-Branch SS-ASP model, we use
various network types to implement the components in Fig. 2.
The context encoder ϕ embeds semantic images contain-
ing minimal driving context information (see Fig. 5) via a
ResNet18 CNN with output feature dimension 256. The action
encoder α is a 1D-CNN ActorNet model adapted from [34]
generating 128-dim. output features. The action and context
predictors γ and ψ, as well as the reconstructor ξ, are realized
by three linear layers of dimensions {512, 256, 256} (with
tanh activation). The predictors γ and ψ have an additional
two-layer Gated Recurrent Unit (GRU) with hidden state
dimension 256, called iteratively three times. At the output of
the action predictor γ, we use an additional linear layer and
a softmax operation to map the feature vector to pseudo-
probabilities of predicted modes. We use the same kinematic
bicycle model setup as in [4] to obtain positions.

In training the model on the loss function in Eq. (2),
we used the Huber loss function for all loss components in
Eq. (1) (equal weights). For the multi-segment formulation,
we used the segment length of 1s since we found it strikes a
balance in capturing rich information on a short time interval.

Fig. 5: Multi-Branch SS-ASP predictions on the INTERACTION
dataset. The model uses a simplistic image-based representation of
the driving context as input, representing past agent tracks by faded
bounding boxes (prediction-ego in green, other agents in blue). The
6 predicted modes are shown in red and the ground-truth in green.
The past reconstruction is shown within the prediction-ego depiction.

The loss values of different tasks (trajectory prediction and
reconstruction, and context prediction) within a segment are
averaged. This ensures that a segment is not over-represented
in the overall loss since more terms can be present in later seg-
ments depending on the combination strategy. For efficiency,
we batch different component calls over modes and among
different prediction branches; we observed an approximately
1.75-times increase in training time over SS-ASP.

B. Datasets and training setup

The models are trained on the INTERACTION [18] and
inD [35] datasets (using the same partition as in [6]), with 3s
predictions based on 1s history (N = 3 in the multi-segment
model). Implementation is done in PyTorch [36] with Adam
optimizer [37] in training over 20 epochs and batch size 32,
lasting two days for INTERACTION on a single Nvidia V100
GPU. The learning rate is set to 10−4 and multiplied with 0.5
if no improvement is observed in two consecutive epochs.

C. Prediction performance

We ablate the different multi-modal trajectory combination
strategies in Tab. II. We see that Start-k outperforms others;
this is expected due to its largest diversity in the first segment.
Additionally, we offer an ablation study of the proposed
approaches in Tab. III. It can be seen that (i) multi-branching
and (ii) context aggregation bring boosts in metrics while
multi-segmenting regresses the performance unless augmented
with (i) and (ii). This is consistent with the results in [4], where
a naive formulation with an End-k-like strategy is proposed.
Overall, the Multi-Branch SS-ASP model brings a significant
improvement of almost 25% over the basic model. It shows
that introducing additional training tasks without modifying
more problem-relevant aspects (e.g. interaction modeling) can
greatly improve prediction performance.

We compare the Multi-Branch-SS-ASP prediction results
to reported results of other state-of-the-art models on the



TABLE II: Comparison of combination strategies for multi-segment
multi-modal prediction. The parameters k and m are chosen such
that the same number of resulting modes is obtained, K = 8.

inD [35]

Method Configuration minADE6 minFDE6

All-Modes k = 2 0.25 0.61
Start-k k = 8 0.20 0.51
End-k k = 8 0.20 0.53

Best-m-of-All m = 8 0.24 0.59
Best-m-of-Pred. m = 2 0.22 0.54

TABLE III: Ablation study of proposed approaches: self-supervision,
multi-segment chaining (with Start-k strategy, k = 9), branched over-
shooting, and context aggregation. Multi-branch* denotes branched
overshooting (Sec. III-D1) without context aggregation (Sec. III-D2).

inD [35]

Model Self-
Sup.

Multi-
seg.

Multi-
branch

Context
agg.

min-
ADE9

min-
FDE9

FF-ASP [4] ✗ ✗ ✗ ✗ 0.22 0.56
SS-ASP [4] ✓ ✗ ✗ ✗ 0.19 0.50

Multi-seg. SS-ASP ✓ ✓ ✗ ✗ 0.20 0.52
Multi-branch* SS-ASP ✓ ✓ ✓ ✗ 0.17 0.45
Multi-branch SS-ASP ✓ ✓ ✓ ✓ 0.17 0.43

TABLE IV: Minimal displacement metrics on the INTERACTION
validation dataset. All methods predict K = 6 modes. We do not
include [6], [41] due to a different number of predicted modes.

INTERACTION [18]

minADE6 minFDE6

TNT [42] 0.21 0.67
STG-DAT [43] 0.29 0.54

ITRA [13] 0.17 0.49
GOHOME [7] - 0.45

FF-ASP [4] 0.12 0.35
DIPA [44] 0.11 0.34

SS-ASP [4] 0.11 0.33

Multi-Branch SS-ASP 0.10 0.30

INTERACTION validation dataset in Tab. IV. Furthermore,
we evaluate the model on the INTERACTION test set online
leaderboard6, where it achieves a competitive 3rd place in
minADE6 and minFDE6. However, it scores 9th in Miss Rate
(MR); this is understandable since the model components are
inherently ill-equipped to handle interaction modeling due to
the very low-information-density environment representation
and simplistic CNN encoding. For such purposes, many state-
of-the-art approaches use graph- or Transformer-based [38] ar-
chitectures in their encoders [6], [39] as well as target selection
heuristics in their decoders [3], [40]. Such approaches could be
easily integrated into the overall architecture. The generality
of the self-supervision, segment-wise prediction, and branched
training does not preclude component-level improvements.

D. Prediction uncertainty estimation

We evaluate the uncertainty quantification strategies from
Sec. III-E by observing whether they correlate with the change
in prediction error over successive segments. We quantify the
prediction error by the ∆minADE in Eq. (3). In this way, a
high value of the uncertainty metric could indicate that the
model’s predictions will deteriorate over time.

6http://challenge.interaction-dataset.com/leader-board as of 01-Feb-2023

We calculate the metrics from Sec. III-E for each predicted
segment on a randomly chosen 10% inD subset. The results
are visualized in Fig. 6. To ensure comparability between
the two methods, we group the (sorted) obtained values into
four quarters, where each quarter contains 25% of the overall
values (the first quarter is equivalent to the first quantile).
Then, within each quarter we approximate the ∆minADEk

error distribution by a four bin histogram (lightest to darkest
blue in Fig. 6). The bin intervals are determined by the quarters
of the ∆minADEk error distribution on the validation set.

Interpreting Fig. 6, we see that the change in the error
distribution between quarters is evident. For example, quartile
1 of segment 1 (Fig. 6a) contains the lowest-reconstruction-
error and more than 60% of its values lie in the low
∆minADEk range (lightest blue). Similarly, in quarter 4 of
Fig. 6a (containing the highest metric values) the histogram
distribution is biased towards high ∆minADEk samples (dark-
est blue). Therefore, a correlation between the metric and
the actual change in prediction error over segments can be
confirmed. Similar relationships can be found for the dropout-
based mean-of-mode-variances, where 20 Monte Carlo runs
are performed (we dropped-out the two linear layers before
the action predictor with p = 0.5). Furthermore, we observe
that in both metrics the histogram distribution favors higher
∆minADEk at later segments, which is reasonable.

V. CONCLUSION
In this paper, we investigated connections between one-shot

and autoregressive trajectory prediction models. We deliber-
ately focused on the structure of output representations and
the training approach, as opposed to more problem-relevant
aspects such as driving context and interaction modeling, in
order to better see the effects of the proposed approach. We
found significant gains by converting an existing one-shot pre-
dictor into a novel, segment-wise prediction trained with self-
supervision and overshooting. Furthermore, we proposed two
epistemic uncertainty measures for deterministic predictors. In
combination with the segment-wise output structure, they pave
way for prediction of a variable time horizon with the goal of
providing only confident predictions to a downstream planner.
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Scene anchor networks for joint action-space prediction,” in 2022 IEEE
Intelligent Vehicles Symposium (IV), 2022.

https://doi.org/10.1109%2Flra.2022.3151613
http://arxiv.org/abs/1811.04551
https://arxiv.org/abs/2109.14311
https://arxiv.org/abs/2005.04259
http://arxiv.org/abs/1911.07602


[42] H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, B. Varadarajan, Y. Shen,
Y. Shen, Y. Chai, C. Schmid et al., “TNT: Target-driveN Trajectory
Prediction,” arXiv preprint arXiv:2008.08294, 2020.

[43] J. Li, H. Ma, Z. Zhang, J. Li, and M. Tomizuka, “Spatio-Temporal Graph
Dual-Attention Network for Multi-Agent Prediction and Tracking,”

arXiv preprint arXiv:2102.09117, 2021.

[44] A. Knittel, M. Hawasly, S. V. Albrecht, J. Redford, and S. Ramamoorthy,
“Dipa: Diverse and probabilistically accurate interactive prediction,”
arXiv preprint arXiv:2210.06106, 2022.


	INTRODUCTION
	RELATED WORK
	Autoregressive prediction
	Self-supervision in trajectory prediction
	Prediction uncertainty estimation

	METHOD
	Problem definition and notation
	Self-Supervised Action-Space Predictor (SS-ASP)
	Multi-Segment SS-ASP
	Multi-Branch SS-ASP
	Branched overshooting
	Combining context aggregation and prediction

	Prediction uncertainty estimation

	RESULTS
	Implementation
	Datasets and training setup
	Prediction performance
	Prediction uncertainty estimation

	CONCLUSION
	References

