
Robust LSTM-based Vehicle Velocity Observer for Regular and
Near-limits Applications

Agapius Bou Ghosn1, Marcus Nolte2, Philip Polack1, Arnaud de La Fortelle1,3, and Markus Maurer2

Abstract—Accurate velocity estimation is key to vehicle control.
While the literature describes how model-based and learning-
based observers are able to estimate a vehicle’s velocity in normal
driving conditions, the challenge remains to estimate the velocity
in near-limits maneuvers while using only conventional in-car
sensors. In this paper, we introduce a novel neural network ar-
chitecture based on Long Short-Term Memory (LSTM) networks
to accurately estimate the vehicle’s velocity in different driving
conditions, including maneuvers at the limits of handling. The
approach has been tested on real vehicle data and it provides
more accurate estimations than state-of-the-art model-based and
learning-based methods, for both regular and near-limits driving
scenarios. Our approach is robust since the performance of
the state-of-the-art observers deteriorates with higher dynamics,
while our method adapts to different maneuvers, providing
accurate estimations even at the vehicle’s limits of handling.

I. INTRODUCTION

The knowledge of vehicle dynamics states is crucial for
successful autonomous driving applications. It is the basis for
proper planning and control. While many of the state variables
of a vehicle are measurable through in-car conventional sen-
sors, the knowledge of the non-measurable state variables, and
the filtering of the noisy measured states necessitates the use
of estimation tools: State observers.

Classical state observers rely on a model to describe the
evolution of system states and take into account the available
inputs and measurements to output the state estimations. The
quality of the estimations is hence highly influenced by the
model describing the system: It should be as close as possible
to the actual system. On the other hand, data-driven approaches
are independent of explicit physical models, relying on data
collected from the vehicle to estimate the needed quantities.

The longitudinal and lateral velocities of a vehicle are exam-
ples of non-measurable state variables describing a vehicle’s
dynamic behavior. Knowledge about these states, along with
the vehicle’s yaw rate, is key to effective vehicle control.

The observers presented in the literature are able to estimate
these quantities within a certain level of accuracy for normal
driving scenarios. The challenge remains in developing an
observer able to perform accurately in both low acceleration
and high acceleration maneuvers (cf. Section II).

In this paper, we propose an observer architecture based
on LSTM networks. This architecture is able to perform
longitudinal velocity, lateral velocity and yaw rate estimations
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Fig. 1. Stadtpilot vehicle used for testing the presented approach.

in normal and dynamically challenging driving scenarios (up
to ay = 0.8g) using only conventional in-car sensors. The
technique is demonstrated on the Stadtpilot vehicle of TU
Braunschweig shown in Fig. 1 and tested on thoroughly
performed maneuvers. The performance is compared to state
of the art observers presented in the next section.

In summary, this paper presents the following contributions:
• We present an LSTM-based observer to accurately esti-

mate the longitudinal velocity, lateral velocity and yaw
rate of a vehicle in normal and near-limits driving con-
ditions using only in-car sensor measurements.

• We validate the performance of the proposed learned
observer on a real vehicle while comparing to high
accuracy ground truth sensors.

• We demonstrate that the presented learned observer out-
performs state of the art model-based and learned-based
observers.

In the following, we present the state of the art observers in
Section II. We describe the system setup in Section III as well
as the data set collection for training and testing the observers
in Section IV. Section V presents the proposed architecture
and its training, while Section VI shows the results including
the comparison to state of the art methods. The paper is
concluded in Section VII.

II. RELATED WORK

As we create a learning based observer to estimate the
vehicle’s velocities and yaw rate, the state of the art observers
should be explored. Our review is split into model-based
and learning-based (and hybrid) observers. We present model-
based state of the art observers in Section II-A and learning-
based observers in Section II-B.

ar
X

iv
:2

30
3.

18
09

4v
1 

 [
cs

.R
O

] 
 3

1 
M

ar
 2

02
3



A. Model-based observers

Several classical approaches, with different observing tech-
niques and vehicle models were used in the literature to
estimate the vehicle’s velocities. The Luenberger linear ob-
server has been employed in applications like [1], [2] to
estimate the vehicle velocity, side slip angle, and yaw rate
using a dynamic bicycle model with a linear tire model.
The state of the vehicle is accurately estimated in normal
driving scenarios while inaccuracies occur for more dynamic
maneuvers as soon as non-linear dynamics start dominating
the models’ behavior. Non-linear observers with more complex
vehicle and tire models have e.g. been employed in [3], [4]; In
these works, the model used is able to describe the vehicle’s
maneuvers in a more accurate way for higher dynamics leading
to more accurate estimations. However, approaches based on
the Luenberger observer have the inherent disadvantage to
heavily rely on accurate measurements and models, as they
do not account for measurement- or process noise.

The Kalman filter is used in many estimation applications.
While there are non-linear extensions, in its original form, it
is a linear optimal filter. The Kalman filter algorithm involves
a prediction step where the current state and covariances of
the system are calculated based on the previously estimated
state, the current inputs and covariances and an update step
where the current measurements are used to correct the cal-
culated state and covariances. Many, also fairly recent, works
implemented linearized or non-linear variations of the Kalman
Filter to estimate the state of the vehicle; the Extended Kalman
Filter (EKF) for example has been used along with kinematic
or dynamic bicycle models ( [5], [6], [7], [8]) to estimate the
vehicle’s velocities, yaw rate, side-slip angle and tire forces
with different considerations to the tire model. Also, it was
used with a four wheel dynamic model [9] and a Pacejka tire
model to estimate the vehicle’s velocities and yaw rate.

The presented model-based observers are able to estimate
the state of the vehicle in a specific operational domain
where the assumptions of their used models are still valid;
the challenge is to estimate the state of the vehicle beyond
these assumptions.

The approaches presented in [7] and [9] show accurate
estimations on the scenarios they were tested on; they will
be compared to the proposed approach.

B. Learning-based observers

Machine learning based observers have been proposed in the
recent years to estimate the vehicle’s state based on measure-
ments data, e.g. to overcome limitations due to insufficient
knowledge about model parameters. When it comes to the
vehicle’s velocities, the literature includes hybrid approaches
that combine model-based and learned observers as in [10]
where a KalmanNet [11] architecture is used for velocity
estimation. This architecture implements a Kalman filter and
replaces the gain calculation by a recurrent neural network
prediction. Similarly, [12] use a neural network along a sliding
mode observer and a Kalman filter for velocity estimation.
Other works use Long Short-Term Memory (LSTM) or Gated

TABLE I
PARAMETERS OF THE VEHICLE USED FOR DATA COLLECTION (COG:

CENTER OF GRAVITY)

Parameter Description Value

M Mass of the vehicle 1578 kg
lf length from CoG to the front axle 1.134 m
lr length from CoG to the rear axle 1.578 m
b Track width 1.513 m
Iz Moment of inertia around the z-axis 2924 kg m2

Recurrent Units (GRU) networks, as in [13], [14] and [15]
where longitudinal and lateral velocities are predicted from
multiple sensor measurements, or as in [16] where the speed
of the vehicle is predicted based on IMU measurements.
The presented learned observers show accurate observation
quality. However, in contrast to our proposed solution, they
necessitate additional measurements in many cases (e.g. GPS
measurements [12], throttle position sensors [13], longitudinal
velocity measurements [14]).

The approaches presented in [10] and [15] show accurate
estimations for multiple driving scenarios and thus will be used
for comparison when evaluating our method.

III. SYSTEM SETUP

As we present a learning based observer for autonomous
vehicle applications, we made sure that the approach is applied
on a real vehicle. For that, we use the Stadtpilot vehicle
(AUDI A6 Avant C7) shown in Fig. 1 for data collection.
The characteristics of the vehicle are shown in Table I.

The vehicle is equipped with the Audi Sensor Array
(SARA) which provides longitudinal and lateral accelerations
(ax, ay), the yaw rate (ψ̇), the wheel speeds (Wij) and the
steering angle (δ). The reference dual-antenna INS/GNSS
iTraceRT F400 sensor is mounted to the vehicle to give
accurate measurements for the evolution of its state; it provides
the position (Easting – X , Northing – Y ) in UTM-coordinates,
the longitudinal and lateral velocities (Vx, Vy), the longitudinal
and lateral accelerations (ax, ay), the yaw (ψ), pitch (θ), and
roll (Φ) angles and rates (ψ̇, θ̇, Φ̇), and the side-slip angle (β).
The top view of the vehicle is shown in Fig. 2 showing the
available sensors and the variables of interest at the center of
gravity: the longitudinal and lateral velocities and the yaw rate.
The in-car sensors provide measurements at a 50 Hz frequency
while the reference sensor provides measurements at 100 Hz;
The reference sensor measurements will be down sampled to
50 Hz for synchronization purposes. The built learning-based
observer will take its input data from the in-car sensors and
will compare its outputs to the reference sensor measurements
which are considered as the ground truth. The defined system
will be used for data collection next.

IV. DATA SET

The previously defined system is used for data collection.
The recorded data set contains two types of maneuvers:

1) Low acceleration maneuvers effected in the city of
Braunschweig, Germany in normal weather conditions

https://www.imar-navigation.de/en/products/by-product-names/item/itracert-f200-itracert-f400-itracert-mvt


Fig. 2. Top view of the used vehicle showing the available in-car and reference
sensor measurements. The longitudinal Vx and lateral Vy velocities and the
yaw rate ψ̇ shown at the center of gravity of the vehicle will be estimated.
The variables are described in Section III.

during which multiple maneuvers were considered: U-
Turns, lane changes, in addition to normal driving
through out the city. This part consists of 770,000
samples equivalent to 4.3 hours of driving.

2) High acceleration maneuvers executed on a special test
track near Peine, Germany consisting of 300,000 sam-
ples equivalent to 1.6 hours of driving.

The total adds up to about 1 million samples.
To inspect the characteristics of the collected dataset, we

plot the resulting friction circle in Fig. 3. The plot shows
that the distribution is more populated in the low acceleration
regions which is rather logical: these values correspond to the
normal city driving in addition to the transitions between high
acceleration maneuvers; high acceleration data points (up to
ay = 1g) are present in the data set, as well: these correspond
to harsh driving maneuvers executed on the test track.

Having collected the needed data, a 60%-20%-20% split is
applied resulting in training, validation and testing data sets
respectively; the split is carefully performed to include both
low acceleration and high acceleration data in all sets.

The observing approach is defined next.

V. PROPOSED APPROACH

The aim of the developed observer is to estimate the current
longitudinal and lateral velocities and the yaw rate of the
vehicle given the in-car sensor measurements. Having the
ground truth iTraceRT sensor measurements, the target values
are available to train a learning-based observer.

Recurrent neural networks are chosen as the basis for
our learned observer as they are able to accurately learn
dynamic systems through their dependencies on previous time
steps [17]. LSTMs were developed to deal with the explod-
ing/vanishing gradients problem associated with traditional
recurrent neural networks [18]; they are implemented in our
proposed architecture.
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Fig. 3. Distribution of the collected data on the friction circle (number of
samples shown on a logarithmic axis): Most of the samples are in a low
acceleration range, but samples are present at high accelerations. g is the
gravitational acceleration expressed in m/s2.

We propose an LSTM-based observer that takes two inputs:
The first input is the in-car sensor measurements for the 50

previous time steps. Using multiple previous measurements
provides the neural network with additional information to
adapt to the actual vehicle dynamics. The choice of the number
of time steps is based on the approach shown in [19]. Note
that we choose one of the wheel speeds (rear right) to be used
from the in-car measurements: this ensures a fair comparison
with the state of the art methods that make this choice.

The second input includes the previous vehicle velocities
and yaw rate giving the observer knowledge about the state
of the vehicle in the previous time step. Note that we use two
different sources for the input velocities and yaw rate during
training and testing, as will be discussed below.

The output of the observer is the current vehicle’s longitu-
dinal and lateral velocities and yaw rate.

We specify two operating modes of our architecture:
The training mode shown in Fig. 4: In this mode, the vehicle

state data from the previous time step fed to the network is
the ground truth data to which Gaussian noise is added; the
added noise makes the network immune to drifting as it will
be trained to predict the current state even if the previous
state includes some noise (Which could be the case in the
testing mode). The standard deviations for the added noise
are 0.03 m/s for both longitudinal and lateral velocities and
0.003 rad/s for the yaw rate.

The testing mode shown in Fig. 5: In this mode, the data
for the previous time steps is the previous predictions of the
observer, which will create a closed loop. At the beginning of
its operation, an initial state should be provided to the observer.



Fig. 4. The LSTM-based observer during training. The network takes two
inputs: the in-car sensor measurements and the vehicle velocities and yaw rate
at the previous time step. The outputs are the estimated vehicle velocities and
yaw rate at the current time step.

Fig. 5. The LSTM-based observer during testing. The first input to the
network is still the measurements from the in-car sensors while the second
input are the predictions of the observer at the previous time step.

The architecture shown in Fig. 5 shows the operating mode
of our observer. The architecture includes a set of LSTM
layers to which the measurements of the in-car sensors are
fed. The LSTM part of the network is made of four LSTM
layers including 32, 64, 64 and 128 neurons respectively. Fully
connected layers follow, to which the output of the last LSTM
layer and the previous state are fed; the three fully connected
layers have 64, 128 and 64 neurons respectively. The output
of the network is the current longitudinal velocity, lateral
velocity and yaw rate estimations. The inputs and outputs of
the network are scaled between 0 and 1. The fully connected
layers have sigmoid activation functions. An L2 loss function
is used when training. The network is implemented using
PyTorch and is trained on an Nvidia Geforce GTX 1650 Ti for
50 epochs. After training the network, we proceed to testing it
and comparing its performance to state of the art approaches.

VI. RESULTS

The developed approach in addition to the state of the art
approaches presented in Section II will be tested on the testing
data set presented in Section IV.

In the following, the mean absolute error (MAE) metric
will be used. All of the observers will be first evaluated on
the whole testing set; then, separate scenarios will be consid-
ered: a normal driving scenario and a near-limits scenario.
The performance difference between the observers will be
highlighted. Note that the notion of ranking stated in the
following paragraphs consists of ranking first the observer with
the lowest errors and ranking last the observer with the highest
errors.

A. Overall performance

To evaluate the performance of the different observers,
we implemented the respective approaches and applied them

TABLE II
MEAN ABSOLUTE ERROR (MAE) FOR THE DIFFERENT OBSERVERS
CALCULATED FOR THE WHOLE TESTING SET. THE ERRORS OF THE

PROPOSED APPROACH ARE THE LOWEST AMONG THE STATE OF THE ART
OBSERVERS. LEGEND: DBM: EKF BASED ON THE DYNAMIC BICYCLE

MODEL; 4WM: EKF BASED ON THE FOUR WHEEL VEHICLE MODEL; KN:
KALMANNET BASED OBSERVER; GRU: END-TO-END GRU-BASED
OBSERVER. COLOR CODE: GREEN CELLS INDICATE THE LOWEST

ERRORS. ORANGE CELLS INDICATE THE NEXT TO LOWEST ERRORS. RED
CELLS INDICATE THE LARGEST ERRORS.

State DBM [7] 4WM [9] KN [10] GRU [15] Ours
Vx (m/s) 0.2 0.072 0.045 0.054 0.040
Vy (m/s) 0.052 0.038 0.095 0.023 0.021
ψ̇ (mrad/s) 4.51 4.52 4.54 4.68 2.94

to our testing dataset. The mean absolute errors have been
calculated for each of the estimated variables. Table II shows
the errors for the different observers. The errors show that
our approach is able to estimate the three variables with the
lowest errors. We remark that the KalmanNet approach [10]
ranks second and the EKF based on the dynamic bicycle model
[7] ranks last for the longitudinal velocity estimation; the
GRU-based approach [15] ranks second and the KalmanNet
approach [10] ranks last for the lateral velocity estimation; the
EKF based on the dynamic bicycle model [7] ranks second
and the GRU-based approach [15] ranks last for the yaw rate
estimation. To further inspect the performance of the different
observers, we look into specific maneuvers from the testing
set. Next, the performance of the observers for a sequence of
normal driving maneuvers is explored.

B. Normal driving maneuvers

After assessing the overall performance, we consider a
sequence of non-dynamic driving maneuvers to compare the
different observers. The distribution of the absolute lateral
accelerations during the maneuver sequence are plotted in
Fig. 6. The dotted line represents ay = 0.5g beyond which
many vehicle models become invalid due to the violation of
linearity assumptions (mainly in the tire models) ( [2], [20]).
The acceleration plot shows that the maximum acceleration is
amax

y = 2.10 m/s2 indicating low dynamic driving. The MAE
of the different observers for the considered maneuver are
shown in Table III. The proposed approach is able to perform
best among the considered state of the art observers for the
three variables.

It can be seen that for the longitudinal velocity estimation,
the KalmanNet based approach [10] ranks second with an
estimation error that is close to our approach; the EKF
based on the dynamic bicycle model [7] shows the worst
performance with an error 3 times higher than the proposed
approach. For the lateral velocity estimation, the GRU-based
approach [15] ranks second; the KalmanNet based approach
[10] performs the worst with an error 5 times higher than the
proposed approach. For the yaw rate estimation, the errors of
the presented state of the art approaches are similar except for
the GRU-based [15] approach that performs the worst.

To further inspect the presented results, we plot the estima-
tions by our proposed approach and the next best performing
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Fig. 6. Violin plot showing the distribution of lateral accelerations in the
datasets used for testing. Compared to the inner city driving test set, the
dynamic driving test set contains samples beyond the lateral accelerations of
the inner city driving test set and the 0.5g-limit discussed by [20].

TABLE III
MEAN ABSOLUTE ERROR FOR THE DIFFERENT OBSERVERS CALCULATED
DURING NORMAL DRIVING. THE ERRORS OF THE PROPOSED APPROACH

ARE THE LOWEST AMONG THE STATE OF THE ART OBSERVERS. CF.
TABLE II FOR LEGEND AND COLOR CODES.

State DBM [7] 4WM [9] KN [10] GRU [15] Ours
Vx (m/s) 0.12 0.084 0.041 0.059 0.039
Vy (m/s) 0.049 0.038 0.055 0.014 0.011
ψ̇ (mrad/s) 2.15 2.48 2.52 4.02 2.11

approach of each of the variables. We plot them in a subset
of the maneuver sequence summarized in Fig. 6. This subset
includes the highest lateral accelerations in the dataset. All
approaches are compared to the iTraceRT sensor values for
reference. Higher accelerations are associated with more dy-
namic maneuvers and thus more challenging estimations. The
plot is shown in Fig. 7. It shows a close performance between
our approach and the considered state of the art approaches for
both the longitudinal velocity and yaw rate estimations. This
is not the case for the lateral velocity estimation; the lateral
velocity plot shows a clear advantage for our approach which
is able to closely follow the reference iTraceRT values. Note
that none of the considered state of the art approaches is able
to achieve low errors for the three variables simultaneously.
Next, a near-limits maneuver is considered.

C. Near-limits maneuvers

Having inspected the behavior of the observers for a normal
driving scenario, we consider a sequence of near-limits maneu-
vers. The maneuvers were performed on a dedicated test track
to reach high accelerations. The distribution of absolute lateral
accelerations throughout the maneuver sequence is seen in
Fig. 6 showing harsh behavior with values reaching ay = 0.8g.

The MAE of the different observers are presented in Ta-
ble IV; It can be seen that for all of the observers the
errors increase for this maneuver comparing with previous
maneuvers, this is due to the harshness of the maneuver. The
proposed approach delivers the best performance among the
considered state of the art approaches.
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Fig. 7. Comparison between the proposed approach, the next best performing
approach and the reference for normal driving for each of the variables. The
performance is close for Vx and ψ̇ but a clear advantage for the proposed
method can be seen for Vy . Note that the proposed method is able to provide
the most accurate results for the three variables of interest while this is not
the case for the other observers (cf. Table III).

It can be seen that for both the longitudinal and lateral
velocity estimations, the GRU-based approach [15] ranks
second while the EKF based on the dynamic bicycle model [7]
gives the worst performance. For the yaw rate estimation, the
EKF based on the dynamic bicycle model [7] ranks second
while the KalmanNet based approach [10] performs worst
with an error that is almost double the error of the proposed
approach.

It is remarked that the GRU-based observer [15] ranks sec-
ond in both maneuvers for the lateral velocity estimation and
that the EKF based on the dynamic bicycle model [7] ranks
second in both maneuvers for the yaw rate estimation. For
the longitudinal velocity estimation the KalmanNet observer
ranks third in the harsh maneuver while it ranks second in
the normal driving maneuver; the GRU-based observer ranks
second in the harsh maneuver while it ranks third in the normal
driving maneuver. The proposed approach ranks first for all the
variables in both maneuvers.

To further inspect the presented results, we again plot
the estimations by the proposed approach and the next best
performing approach of each of the variables for the highest
lateral acceleration point in the maneuver sequence. The iTrac-
eRT sensor values are again used as a reference. The plot is
shown in Fig. 8. It can be seen that for the longitudinal velocity
estimation the performance is close for both observers with a
slight advantage to the proposed approach due to the glitches
seen in the estimations of the GRU-based observer [15]; for
the lateral velocity estimation and the yaw rate estimation, the
proposed approach is able to follow the reference iTraceRT
sensor values more closely. None of the considered state of
the art approaches is able to achieve low estimation errors for
the three variables simultaneously.

In summary, the presented approach adapts to the high



TABLE IV
MEAN ABSOLUTE ERROR FOR THE DIFFERENT OBSERVERS CALCULATED

FOR THE NEAR-LIMITS MANEUVERS. THE ERRORS OF THE PROPOSED
APPROACH ARE HIGHER THAN THE PREVIOUS DRIVING MANEUVER BUT

ARE THE LOWEST AMONG THE STATE OF THE ART OBSERVERS. CF.
TABLE II FOR LEGEND AND COLOR CODES.

State DBM [7] 4WM [9] KN [10] GRU [15] Ours
Vx(m/s) 0.48 0.13 0.10 0.091 0.079
Vy(m/s) 0.18 0.10 0.10 0.068 0.065
ψ̇(mrad/s) 15.8 17.0 18.5 16.1 9.2
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Fig. 8. Comparison between the proposed approach, the next best performing
approach and the reference for near-limits driving for each of the variables.
The performance is close for Vx but a clear advantage for the proposed method
can be seen for Vy and ψ̇. Note that the proposed approach is able to provide
the most accurate results for all three state variables of interest, while this is
not the case for the other observers (cf. Table IV).

dynamics of the maneuver and accurately estimates Vx, Vy

and ψ̇ of the vehicle for normal and high dynamic driving.
Our approach outperforms the considered state of the art ap-
proaches by delivering the lowest errors for all three estimated
state variables in all cases.

VII. CONCLUSION

In this work we presented a novel LSTM-based observer
architecture to estimate the longitudinal and lateral velocities
and the yaw rate of the vehicle. We validated our method on
real vehicle data thoroughly collected to reflect low dynamic
and high dynamic scenarios. The observer takes into consid-
eration its previous estimations and the measurements for the
previous 50 time steps. The presented approach was tested
and compared to state of the art model-based and learning-
based observers while considering different driving conditions:
normal city driving and near-limits driving. After thorough
analysis of the results we proved that the proposed method
is able to accurately estimate the three variables of interest
while adapting to the harshness of the maneuver. The presented
observer clearly outperforms state of the art observers.

Future work would explore the creation of a more diverse
training set, acceleration wise; the effects of training on a
specific acceleration range will be analyzed.
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