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Abstract—The use of smart roadside infrastructure sensors
is highly relevant for future applications of connected and
automated vehicles. External sensor technology in the form of
intelligent transportation system stations (ITS-Ss) can provide
safety-critical real-time information about road users in the form
of a digital twin. The choice of sensor setups has a major
influence on the downstream function as well as the data quality.
To date, there is insufficient research on which sensor setups
result in which levels of ITS-S data quality. We present a
novel approach to perform detailed quality assessment for smart
roadside infrastructure sensors. Our framework is multimodal
across different sensor types and is evaluated on the DAIR-
V2X dataset. We analyze the composition of different lidar and
camera sensors and assess them in terms of accuracy, latency,
and reliability. The evaluations show that the framework can be
used reliably for several future ITS-S applications.

Index Terms—Smart roadside infrastructure sensors, frame-
work, quality assessment, digital twin, automated driving

I. INTRODUCTION

The implementation of smart roadside infrastructure sensors
is crucial for the successful integration and utilization of
connected and automated vehicles (CAVs) in the future. In
urban areas in particular, high traffic densities, buildings or
vegetation pose major technical challenges for CAVs, as they
are unable to adequately detect and interpret the entire envi-
ronment under such circumstances [1]. In this context, external
sensor technology in the form of intelligent infrastructure, or
intelligent transportation system stations (ITS-Ss), enable the
collection of safety-critical information about the current state
of other road users in the form of a digital twin [2]. Here, a
digital twin means the transformation of a physical system in
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a digital environment. This state information can include, for
example, the position, dimensions, and velocity of each road
user and be transmitted to CAVs via infrastructure-to-vehicle
(I2V) communication. The added value thus gained is reflected
in an enhanced and more robust environmental perception for
CAVs which results in a more reliable trajectory planning [3].
Recorded traffic data can also be transferred to an offline
simulation environment apart from the online operation and
used for the development and validation of automated driving
functions [4]. In addition to specific applications in the field
of automated driving, ITS-Ss can also be additionally located
in the thematic field of smart cities. As an example, sensor
technology can be used to monitor and improve traffic flow in
real-time, e.g. by adjusting traffic lights. Another application
is monitoring parking lots to detect the availability of free
parking spaces and help drivers find them.

The downstream function of an ITS-S application and the
associated data quality are highly dependent on the applied
sensor technology. Different downstream functions have dif-
ferent requirements for the accuracy, latency, and reliability
of sensor data processing. As previously described, use cases
range from coarse traffic counting to high-accuracy trajectory
extraction. To date, however, there is insufficient evidence
on what sensor technology results in what levels of data
quality. Thus, it is not directly comprehensible for future ITS-S
operators which sensor qualities have to be procured at which
costs.

In this paper, we present a novel approach to perform a
detailed quality assessment for smart roadside infrastructure
sensors. Our framework is multimodal across different sensor
types and is evaluated using the DAIR-V2X dataset [5] as
an example of lidar and camera sensing. We evaluate the
compilation of single and multi-sensor setups and types per
virtual recording location at different sensor resolutions and
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with different computational hardware available. This is fol-
lowed by a holistic evaluation with respect to the accuracy,
latency, and reliability of the respective setup. All evaluation
steps are substantially related to the automated detection and
tracking of road users.

II. RELATED WORK

To the best of our knowledge, no current systematic review
on the quality assessment of smart roadside infrastructure
sensors for automated driving applications exists. Bai et al. [6]
focus on infrastructure-based object detection and tracking
analysis but do not explicitly analyze different sensor setups
and sensor qualities. However, the following subsections illus-
trate the considerable need for such investigations on the basis
of current research activities.

A. Current Activities on ITS-Ss

ITS-Ss have already been operated for several years for
various purposes in real traffic. In [7], a list of the most
prominent ITS-S activities in the field of connected and
automated mobility on a global scale is given. It is noticeable
that especially recent ITS-S activities have been set up in the
form of digital test fields and rely on the combined use of
camera, radar and lidar sensor technology to detect road users.
The main purpose of these digital test fields is to verify and
validate automated and connected driving functions as well as
the infrastructure-enabled operation of CAVs [8]. Examples
of significant activities in Germany are the ACCorD [2] and
Providentia [9] digital test fields. While the ACCorD test
field uses a mix of over 250 camera and lidar sensors, the
Providentia test field uses a mix of 75 camera, radar and lidar
sensors. Both projects aim at transferring the traffic events of
the measurement cross-sections into a digital twin with highest
accuracy and reliability at minimum latency. For this purpose,
sensors with the highest resolution – available at the time the
digital test fields were created – were used.

B. Smart Roadside Infrastructure Sensor Datasets

Sensor datasets from the vehicle perspective are available
in large numbers in the research area of CAVs and are
already adequately known, e.g. [10], [11]. Sensor datasets from
an infrastructure perspective, in contrast, have been almost
non-existent to date. However, the aforementioned increasing
activities in the field of ITS-S prove the acute need for such
datasets in order to conduct more advanced research in this
area in the future. Sun et al. provide an overview of the only
five infrastructure datasets currently available [12]: DAIR-
V2X [5], BAAI-VANJEE [13], IPS300+ [14], A9-Dataset [15]
and LUMPI [16]. All datasets consist of a combination of at
least one camera sensor and one lidar sensor. Radar sensors
are not represented. The characteristics of the sensors used
varies widely. Except for the LUMPI dataset, there is always
at least one pair consisting of a camera and lidar sensor at
approximately the same position with an equally similar field
of view (FOV). This is a relevant property for the intermodal
evaluation of sensor types and qualities.

III. METHOD

A. Requirements for the Assessment Framework

The framework for evaluating smart roadside infrastructure
sensors must meet several requirements in order to be able
to make multimodal and holistic statements. For this reason,
the following seven requirements are placed on the underlying
methodology: The framework must ...

1) ... be independent of the sensor technology used and be
able to handle it on a modular basis.

2) ... be able to make statements about different sensor
concepts.

3) ... be independent of the used computing hardware and
consider its influence on the results.

4) ... be usable by different actors with different require-
ment profiles and downstream functions.

5) ... be able to make generalistic statements independent
of the downstream function.

6) ... be tested and evaluated using a data-driven approach.

B. Framework Architecture

The task of the framework architecture is to fulfill all
requirements defined in subsection III-A and to generate
reproducible results. Figure 1 provides an overview of the
underlying architecture.

The input consists of any infrastructure sensor dataset of
any sensor type with any quality and resolution. Based on the
requirements for the sensor data sets used, which are defined
in subsection III-C, figure 1 already focuses on the use of a
camera and a lidar sensor data set. For each sensor type and
resolution, a representative training and validation dataset as
well as a test dataset must be provided. Then, matching neu-
ral network architectures are trained with the corresponding
training datasets and one trained model per sensor is returned.
It is important to ensure the interchangeability of the different
trained models in order to seamlessly integrate new, more
powerful neural network architectures into the framework.
For this purpose, we make use of a training platform that
has not yet been published and that enables exactly this. In
our case, we use the PBOD architecture [17] for lidar-related
tasks and the SMOKE architecture [18] for camera-related
tasks. Both network architectures generate three-dimensional
bounding boxes, a required condition for subsequent cross-
sensor quality assessment.

The software environment consists of a Docker container
with an embedded Robot Operating System (ROS) environ-
ment. First, multi-object detection is performed with each
related combination of sensor-specific dataset and trained
model. The datasets are transferred to ROS-bags beforehand
and played at a low playback rate to avoid data congestion
and loss and thus falsified results. With eight different camera
resolutions Ci and six different lidar resolutions Lj , we end
up with 14 such jobs. Subsequently, multi-object tracking is
performed for each single sensor setup as well as for each
cross-sensor type combination of all resolution levels. With

nsensor,combinations = i+ j + i · j (1)



Fig. 1. Framework architecture for quality evaluation of smart roadside infrastructure sensors.

TABLE I. GPU and CPU specifications of the computing hardware used.

Machine no. GPU CPU
1 Dual Nvidia A100

40 GB
Dual AMD Epyc 7742

2 Nvidia A100 40 GB Dual AMD Epyc 7742
3 Nvidia RTX 3090

24 GB
AMD Ryzen Threadrip-
per 3960X

4 Nvidia Quadro RTX
6000 24 GB

AMD Ryzen 7 3700X

this results in 62 sensor combinations in our case.
The underlying concept of using a Docker container is the

possibility of including different computational environments
for hardware related evaluations. In real use cases, sensor data
is evaluated by ITS-Ss on local or cloud-hosted computing
hardware. In order to also be able to make statements about
the influence of different computational hardware qualities on
the overall result, the Docker container is run on different
machines. In our case, four different workstations and servers
are used, whose specifications are given in table I.

Evaluating the 62 sensor combinations on four different
machines, we finally obtain n = 248 total combinations. For
each total combination, a holistic evaluation is then performed,
resulting in the quality assessment results.

C. Used Road Side Infrastructure Sensor Dataset

As presented in section II-B, five publicly available infras-
tructure sensor datasets exist to date. Based on the previously
formulated requirements, additional specific requirements for
the choice of the dataset are derived. The dataset to be used
must consist of at least one camera sensor and one lidar sensor.
Sensors of different types must record from nearly identical
positions and FOVs to ensure interchangeability. In addition,
all object annotations of the dataset must have information
in three-dimensional space to ensure interchangeability at the
object level as well. The coordinate transformation between
the different sensor coordinate systems must be known. Since

TABLE II. Specifications of the infrastructure sensors used in the DAIR-V2X
dataset.

Sensor Details
Lidar:
InnoVusion
Jaguar Prime

10 Hz sample rate, 300 vertical beams, 100◦
hor. FOV, 40◦ vert. FOV, 0.09-0.33◦ hor. angular
resolution, 0.13◦ vert. angular resolution, ±3 cm
distance accuracy

Camera:
HIKVISION
iDS-
TCE900QX-B

Sony IMX267LLR CMOS sensor with RGB filter,
25 Hz sample rate, 1920x1080 px resolution, 48.1◦
hor. FOV, 27.7◦ vert. FOV, 15.9 mm focal length,
global shutter, JPEG compressed

the framework aims to evaluate not only different sensor types
but also different sensor qualities, multiple resolution levels
per sensor must be considered. However, no dataset contains
sensor information of different resolutions at the same position
and FOV. For this reason, we will gradually scale down the
existing sensor resolutions to simulate different quality levels.

LUMPI and A9-dataset already do not meet the require-
ments regarding equal sensor position and FOV. BAAI-
VANJEE is also not suitable since the lidar sensors used
only have a vertical resolution of 32 layers and are thus
only suitable for a few further downscaling steps. The lidar
sensors of IPS300+ have 80 vertical layers and the most
annotated frames, but the quality of the annotations and the
coordinate transformations between the sensors are of too
low quality to be suitable for meaningful and reproducible
analyses. Accordingly, only the DAIR-V2X dataset remains.
It consists of 10,084 jointly annotated frames recorded with
a 300 vertical layers lidar sensor and a 1920x1080 pixel
resolution camera at an urban intersection in Beijing, China.
The specifications of the sensors used can be found in table II.

Based on the available raw sensor data, resolution lev-
els are defined to simulate possible infrastructure sensors
that may be used in current or future applications. Cam-
era: Ci = {2160, 1080, 720, 540, 360, 270, 180, 135} vertical
pixels, with a respective aspect ratio of 16:9. Lidar: Lj =



{256, 128, 64, 32, 16, 8} vertical planes. Since no information
about the associated vertical layer per point is stored in the
lidar point clouds, we apply our own algorithm to identify the
layer membership of individual points. In the first downsam-
pling step, the topmost 44 layers are first removed to reach
the highest resolution of 256 layers for our investigations.
Subsequently, every second layer is removed, while steadily
maintaining the lowest layer in each downsampling step. This
ensures that the remaining layers in each downsampling step
represent the relevant near range instead of the less relevant
far range. The camera images are at 1080 vertical pixels,
so we need to perform both upsampling and downsampling
steps. Upsampling to 2160 vertical pixels is done using nearest
neighbor value interpolation [19] and downsampling to all
remaining resolutions is done using a Lanczos filter [20].

In the next step, both the horizontal and vertical FOV of
the lidar sensor must be aligned with those of the camera
sensor in order to analyze only identical objects in both
sensor data per frame. The cropping of the lidar point clouds
takes place based on the determination of feature points.
The DAIR-V2X dataset consists of a training dataset and a
test dataset. The test dataset differs from the training dataset
in that it contains 85 different sequences whose frames are
chronologically related. The frames of the training dataset are
not chronologically connected and are therefore not suitable
for possible object tracking analyses. A major disadvantage of
the test dataset, however, is the annotations provided, which
were not generated manually but by a detector and are of very
poor quality. Thus, in order to perform reliable evaluations
regarding object detection and tracking, the frames of the
test dataset have to be corrected manually. Due to the high
time effort involved, we decided to use three representative
sequences. These three sequences contain all object classes,
different weather conditions and balanced motion flows of the
objects in all directions. After splitting the training dataset
into a training and validation dataset, we obtain 5988 frames
for training, 2511 frames for validation, and 472 frames for
testing. Moreover, we reduce the seven original classes of the
DAIR-V2X dataset to the four most common ones: pedestrian,
bike (mix of bicycle and scooter), car (mix of car and van), and
truck (mix of truck and bus). For the evaluation of detected
objects, the temporal offset between lidar and camera frames
must always be considered in the next steps, due to the non-
synchronized original acquisition rates of 25 Hz (camera) and
10 Hz (lidar). Although the camera frames are present in the
dataset at a virtual frequency of 10 Hz, the associated time
stamps correspond to the time stamps of the lidar frames.

D. Metrics for Quality Assessment

Looking at different use cases of ITS-Ss, we have identified
three key performance indices (KPIs): Accuracy, Latency,
and Reliability. Accuracy determines the quality of extracted
objects and trajectories from raw sensor data. Latency is an
important indicator to check whether the setup is suitable for
real-time applications or not. Reliability, in turn, indicates
how consistently the accuracy and latency values can be

maintained. Not every application allows large fluctuations
around an intended average value. The aim is to represent
these three values on a normalized scale between 0 and 1,
bundled in a quality vector Qn.

The accuracy of a system depends on the sensor accuracy
As, on the localization accuracy of the sensor Al, on the
object detection accuracy Ad and on the tracking accuracy
At. To determine Asi,j , we first define a sensor-independent
maximum detection distance of xdetection = 150m. In ad-
dition, we need to identify the type-dependent sensor error
esi,j , which depends on the ground sampling distance (GSD)
in image width w and image height h for camera sensors and
on the beam uncertainty for lidar sensors. Here we invoke the
formulaic relationships from [21].

Asi,j = 1−
esi,j

xdetection
(2)

with
esi = max(GSDw,h) (3)

esj = ELiDAR(xdetection) (4)

Ali,j depends on the initial and continuous registration of
the local sensor coordinate system into a global reference
coordinate system. It consists of a translational and a rotational
part. In general, these values are constant over a measurement
period. In [22] and [23], values for camera and lidar sen-
sor systems based on real measurements have already been
determined. Here we use the values for measurement cross
sections that are closest to our use case: etransi = 0.519cm,
eroti = 0.09◦, etransj = 4cm and erotj = 0.03◦.

Ali,j = 1−
eli,j

xdetection
(5)

with
eli,j =

√
e2transi,j + (xdetection ∗ eroti,j )2 (6)

To determine detection accuracy, we use the widely used mean
average precision (mAP) metric at an intersection over union
(IoU) threshold of 0.5.

Adi,j = mAP@[0.5] (7)

The composite accuracy As,l,d of a sensor is now given by

(As,l,d)i,j = Asi,j ∗Ali,j ∗Adi,j
(8)

For combined sensor setups m applies:

(As,l,d)m =
(As,l,d)i

(As,l,d)i + (As,l,d)j
∗ (As,l,d)i+

(As,l,d)j
(As,l,d)i + (As,l,d)j

∗ (As,l,d)j

(9)

To evaluate At, we use the Higher Order Tracking Accuracy
(HOTA) of Luiten et al [24]. In doing so, we extend the
evaluation of the 2D IoU in the HOTA algorithm for our use
case by a 3D IoU.

Ati,j = HOTAi,j (10)



Atm =
Ati +Atj

2
(11)

The final and already normalized accuracy thus results in

Accuracynormn = 4

√
(As,l,d)n ∗Atn ∈ [0; 1] (12)

The latency of a system is the elapsed time from the
recording of a sensor frame to the completed execution of
object detection and tracking of all objects located in the
frame. It is significantly dependent on the computing hardware
and sensor resolution used. While object detection runs mainly
on the GPU, object tracking is handled by the CPU.

Latencyn = tsensorexposuren + treadoutn+

tlocalnetworktransmissionn + tI/Ooperationn
+

tdetectionn + ttrackingn

(13)

Due to the not concretely feasible differentiation of the first
four summands, we summarize them simplified as

tsensorreadoutn = tsensorexposuren + treadoutn+

tlocalnetworktransmissionn + tI/Ooperationn

(14)

Normalization of the total latency is performed using a
minimum optimum value tmin = 0ms and a maximum
acceptable upper limit for real-time ITS-S applications of
tmax = 1000ms. :

Latencynormn = 1− Latencyn − tmin

tmax − tmin
∈ [0; 1] (15)

with

Latencyn =

{
Latencyn, for 0 < Latencyn < tmax

tmax, for Latencyn ≥ tmax

(16)
We represent the reliability of a system by the variances of

dataset characteristics, accuracies, and latencies.

Reliabilityn = V ar(R1n +R2n +R3n +R4n +R5n) (17)

with
R1n = (

nobjects

frame
)n (18)

R2n = (
Ad

frame
)n (19)

R3n = (
ttracking
frame

)n (20)

R4n = (
tdetection
frame

)n (21)

R5n = (At)n (22)

Investigations have shown that correlations exist exclusively
between R1 and R2, and R1 and R3. Due to the fact that we
only get one output per sequence with the HOTA algorithm,
no variance for R5 can be derived. Thus, the non-normalized
reliability results as follows

Reliabilityn = V ar(R1n) + V ar(R2n) + V ar(R3n)+

V ar(R4n) + 2Cov(R1n , R2n) + 2Cov(R1n , R3n)
(23)

TABLE III. Listing of accuracy metrics for selected sensor setups. The
calculation has taken place on machine no. 1.

Setup mAP As,l,d HOTA Anorm

C2160 0.0819 0.0817 0.1032 0.3030
C540 0.0859 0.0857 0.1290 0.3242
C135 0.0046 0.0046 0.0597 0.1287
L256 0.6243 0.6237 0.4270 0.7184
L32 0.4454 0.4450 0.2904 0.5996
L8 0.2464 0.2462 0.1511 0.4392
C2160 & L256 0.5964 0.5959 0.2128 0.5967
C540 & L32 0.3873 0.3870 0.2083 0.5328
C135 & L8 0.2419 0.2417 0.1114 0.4051

The normalization is obtained by relating the current reliability
value to the maximum and minimum reliability value of all
n = 248 total combinations.

Reliabilitynormn
=

1− Reliabilityn −min(Reliabilityn)

max(Reliabilityn)−min(Reliabilityn)
∈ [0; 1]

(24)

All now normalized values (12), (15) and (24) of a total
combination can then be transformed into a final quality vector.

Qn =

 Accuracynormn

Latencynormn

Reliabilitynormn

 , n ∈ {i, j,m} (25)

IV. RESULTS

After determining the metrics for generating the quality
vector, all n = 248 total combinations are processed in the
framework. In the following subsections, accuracy, latency,
reliability and the final quality vector are analyzed qualitatively
and quantitatively. The goal is to validate the framework
derived in section III on the present DAIR-V2X dataset.

A. Accuracy

Table III shows the listing for mAP, As,l,d, HOTA and
Accuracynorm of selected sensor setups. In the sensor class
camera it is noticeable that one of the medium resolutions pro-
vides comparatively better results than the highest resolution.
Nevertheless, the results are substantially worse compared to
the sensor class lidar. This is due to the underlying principle
of the SMOKE network. SMOKE performs a depth estimation
in a two-dimensional monocular image plane and is unable
to precisely determine the object’s position in the direction
along the optical axis of the camera, also known as the
depth direction. For instance, in the case of a vehicle moving
laterally, an error of as little as 1.5 meters in the depth direction
can lead to a complete failure of the detection process and a
mismatch with the ground truth. Further, the camera extrinsic
matrix of the dataset is found to have a significant error,
resulting in an inability to accurately project even correct
detections and ground truth onto the correct image space. As
a result, the combined setups also have slightly worse values
than the lidar-only setups.



Fig. 2. Representation of tdetection, ttracking and Latency of all total
combinations.

B. Latency

Figure 2 shows the results for tdetection, ttracking , and
Latency, respectively, split by machine. The correlation of
tdetection and the performance capabilities of the four GPU se-
tups as well as the correlation of ttracking and the performance
capabilities of the three different CPU setups are illustrated.
Based on the mean values of tdetection, an improvement by
a factor of 2.54 from machine no. 4 to machine no. 1 takes
place on the GPU level. However, the use of two instead of
one identical GPU hardly yielded any latency gains. Due to
the non-parallelized execution of object tracking, single-core
performance is crucial for keeping latency as low as possible.
For this reason, the CPUs of machine no. 3 and 4 deliver better
results than the server CPUs of machine no. 1 and 2. In the
total latency, there is finally a performance leap of a factor of
1.8 between machine no. 1 and machine no. 4.

C. Reliability

Figure 3 and 4 show the distribution of ttracking and Ad

over the number of objects per frame. It can be seen that
ttracking correlates positively with the number of objects per
frame. This is due to the fact that this is a serial operation,
where more objects per frame contribute to a higher processing
time. Ad, on the other hand, correlates negatively with the
number of objects per frame. The reason for this is the increas-
ing statistical probability that not all objects are detected as the
number of objects increases. A correlation between tdetection
and the number of objects per frame could not be determined.

D. Quality Vector

Table IV provides an overview of Accuracynorm,
Latencynorm, Reliabilitynorm and |Q| for different setups.
For each of these four values, the maximum and mini-
mum is given with the corresponding setup. The highest
Accuracynorm is achieved with the highest lidar resolution
and the lowest Accuracynorm with the lowest camera reso-
lution. For Latencynorm, the highest result is achieved with
the second lowest camera resolution on machine no. 4 and the
lowest result is achieved with the combination of the highest
camera and lidar resolution on machine no. 4. By definition,

Fig. 3. Distribution of ttracking over the number of objects per frame.

Fig. 4. Distribution of Ad over the number of objects per frame.

Reliabilitynorm ranges between 0 and 1. The value 1 is
achieved with the lowest lidar resolution on machine no. 3.
The value 0 is achieved with the combination of the highest
camera resolution and the second highest lidar resolution on
machine no. 4.
|Q| can be considered as a total score, which equally

considers Accuracynorm, Latencynorm and Reliabilitynorm.
The best overall result is achieved with the highest lidar
resolution in combination with the specifications of machine
no. 1. The worst result, however, is achieved with the sensor
setup consisting of the highest resolution camera and the
lowest resolution lidar in combination with the specifications
of machine no. 4. All 248 result combinations are additionally
shown in figure 5.

In conclusion, with the sensor setups and algorithms we
tested, the use of a single camera alone is insufficient for
tasks requiring depth information in the infrastructure view. On
average, a combined camera and lidar sensor setup is superior
to a single sensor setup. The camera provides additional infor-
mation about the road users in terms of dimension, orientation,
and classification to the information provided by the lidar. This
improves the final result, although the quality of the position
estimation suffers. In terms of reliability, it was found that
on lower-powered machines, lower sensor resolution is more
efficient and stable, even though it comes with lower accuracy.



TABLE IV. Listing of maximum and minimum quality vector entries and
lengths for different setups.

Setup Anorm Lnorm Rnorm |Q|
L256, machine 3 0.7189 0.9685 0.7184 1.4038
C135, machine 1 0.1285 0.9153 0.8672 1.2675
C180, machine 4 0.1629 0.9348 0.9628 1.3519
C2160 & L256, machine 4 0.5974 0.0636 0.0052 0.6008
L8, machine 3 0.4392 0.7456 1.0000 1.3224
C2160 & L128, machine 4 0.5651 0.0639 0.0000 0.5687
L256, machine 1 0.7759 0.9528 0.7184 1.4233
C2160 & L8, machine 4 0.0713 0.0308 0.3985 0.4060

Fig. 5. Display of all 248 result combinations of Q. The points are colored
according to their corresponding value |Q|, from low (red) to high (green).

V. CONCLUSIONS

In this paper, a framework for quality assessment of intel-
ligent roadside infrastructure sensors is presented. The frame-
work is generically designed so that it can be applied mul-
timodally across different sensor types. Key conclusions are
made about the accuracy, latency, and reliability of investigated
sensor systems consisting of one or two different sensor types.
Evaluations on the DAIR-V2X dataset using four different
computing environments and simulating 14 different sensor
quality levels have shown that the framework provides plau-
sible results. Previous assumptions about possible correlations
between sensor and computing parameters were confirmed. A
spanned quality vector space consisting of 248 infrastructure
setup combinations gives so far unique insights into real ITS-S
setups and their output qualities.

The analysis of further infrastructure sensor datasets allows
the extension of this quality vector space. As a result, even
more precise recommendations for action can be derived for
current or future applications in the field of digital twins, auto-
mated driving and smart cities, regardless of the downstream
function.
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