
ar
X

iv
:2

30
2.

01
06

0v
3

 [
cs

.R
O

]
 2

4
M

ay
 2

02
3

Physics Constrained Motion Prediction with

Uncertainty Quantification

Renukanandan Tumu∗, Lars Lindemann†, Truong Nghiem‡, Rahul Mangharam∗

Abstract—Predicting the motion of dynamic agents is a critical
task for guaranteeing the safety of autonomous systems. A
particular challenge is that motion prediction algorithms should
obey dynamics constraints and quantify prediction uncertainty
as a measure of confidence. We present a physics-constrained
approach for motion prediction which uses a surrogate dynamical
model to ensure that predicted trajectories are dynamically fea-
sible. We propose a two-step integration consisting of intent and
trajectory prediction subject to dynamics constraints. We also
construct prediction regions that quantify uncertainty and are
tailored for autonomous driving by using conformal prediction,
a popular statistical tool. Physics Constrained Motion Prediction
achieves a 41% better ADE, 56% better FDE, and 19% better
IoU over a baseline in experiments using an autonomous racing
dataset.

Index Terms—motion-prediction, autonomous-driving,
conformal-prediction, physics-constrained, machine-learning

I. INTRODUCTION

A central problem in autonomous driving is in predicting

the intents and future trajectories of dynamic agents. Planning

a safe trajectory depends on accurate trajectory predictions

of such agents. To predict the future motion of an agent,

we must involve the agent’s intent and its ability to realize

that intent. To do so, we must understand the past motion

of the agent and the surrounding context. This is complex

due to the interactions between agents, their surroundings, and

unknown objectives. To understand the ability to enact intent,

we must factor in the ability of an agent to control itself under

acceleration and steering limits.

Further challenges in motion prediction are the potential

for behaviors that are not present during training time and the

presence of input noise, e.g., Zhang et. al. showed that motion

prediction algorithms are susceptible to targeted noise attacks

[1]. There is hence a need for algorithms whose predictions

are robust to noise and behavior shift.

Physics constraints present a solution to this problem, re-

stricting the output space of trajectories to only those that are

This work was supported in part by NSF CCRI #1925587 and DARPA
#FA8750-20-C-0542 (Systemic Generative Engineering). The views, opinions,
and/or findings expressed are those of the author(s) and should not be
interpreted as representing the official views or policies of the Department
of Defense or the U.S. Government. This work is also supported in part by
NSF GRFP Grant #1845298
∗ University of Pennsylvania Philadelphia, PA, USA {nandant,

rahulm}@seas.upenn.edu
† University of Southern California, Los Angeles, CA, USA

llindema@usc.edu
‡ Northern Arizona University Flagstaff, AZ, USA

Truong.Nghiem@nau.edu

physically possible. We use dynamics models, which describe

the change in a system’s state, to integrate these physics

constraints. These constraints serve as a regularizer, encour-

aging better generalization. We propose Physics Constrained

Motion Prediction (PCMP), an approach that uses a surrogate

vehicle dynamic model and multi-step integration to ensure

that all predicted motion is dynamically feasible under the

given surrogate model. Specifically, we use neural networks,

such as LSTMs, for the intent prediction step for which we

have no conventional solution. We then use vehicle dynamics

along with the predicted intent to predict trajectories.

While this model decomposition gives us guarantees about

dynamic feasibility, which we use as a proxy for reasonable-

ness, it does not provide guarantees of accuracy. Therefore,

we use conformal prediction to quantify prediction errors

between PCMP and the unknown ground truth. Conformal

Prediction provides the advantage of being data-driven, hence

providing the ability to quantify uncertainty using statistical

reasoning even if the surrogate model is not representative of

the real system. We design two prediction regions tailored for

uncertainty quantification in autonomous driving.

Informal Problem 1. Given a series of past position obser-

vations (O), potentially containing location and orientation,

and environmental context (C), potentially containing map

information, predict the future positions (F) of an agent. We

also wish to quantify the uncertainty of the predictions F̂ such

that they belong to the set P(F̂) with a desired probability.

When solving the trajectory decoding task posed in Informal

Problem 1, most approaches use a multi-layer perceptron

(MLP), Long Short Term Memory network (LSTM)[2], or

other learned method to predict trajectories [3, Table 1]. Our

approach, PCMP, provides the following contributions:

1) PCMP incorporates physical constraints by limiting con-

trol inputs to physical bounds and incorporating dynam-

ics models into the trajectory generation. This guaran-

tees the dynamic feasibility of predicted trajectories.

2) PCMP provides intent interpretability through the pre-

diction of control inputs that can be clearly decoded into

intent; i.e, turning right and slowing down.

3) PCMP is robust to errors in parameter estimation for

its dynamics model.

4) PCMP provides informative prediction regions via two

new scoring functions for conformal prediction.

5) PCMP performs better than an LSTM baseline, with

41% better ADE, 56% better FDE, and 19% better IoU.

http://arxiv.org/abs/2302.01060v3

ADE: 0.35 FDE: 0.69 IoU: 0.29

(A) LSTM Prediction

ADE: 0.04, FDE: 0.12, IoU: 0.77

(B) PCMP Prediction

95% Coverage Prediction Region

(C) PCMP w/ Prediction Region

Input

Truth

Prediction

Prediction Region

Fig. 1. (A) shows an LSTM predictor with no physics information. We can see that the car is predicted to be sliding through the corner, and immediately
reducing its speed. (B) shows a PCMP predictor with a bicycle model. The car is predicted to hold its speed through the corner and point in the direction of
travel. (C) shows the PCMP predictor with conformal prediction regions. These regions are designed to contain the true trajectory 95% of the time, showing
us regions of the track to avoid. Bounding boxes are omitted in (C) for clarity. Prediction metrics are provided under each image.

A. Related Work

Physics-constrained neural networks aim to constrain neural

networks with physics biases [4]. Recent approaches use

physics constraints and ODE solvers in the loop [5], but aim

to learn the dynamics of a system, constrained by known

information about the system. Our approach differs from this

approach by incorporating physical constraints through the use

of activation functions, and by doing multi-step predictions

instead of system identification.

Motion Prediction approaches can be broadly categorized

into physics, pattern, and planning-based approaches, follow-

ing the framework proposed in Karle et al. [6]. Physics-

based approaches use physical knowledge, and pattern-based

approaches use learning and data to predict future motion.

This work bridges the gap between pattern and physics-based

approaches. This offers the dynamics guarantees of physics-

based approaches, and the robustness to noise of pattern-based

approaches, overcoming the disadvantages of each.

a) Physics based approaches: The most simple physics-

based approaches assume constant states like velocity and

yaw rate, or some combination of these [6], like the Constant

Turn Rate and Velocity (CTRV) model. Other methods use

reachability analysis [7] [8]. These models, while they can be

highly interpretable and offer guarantees of dynamic feasibility,

can be brittle to noise and measurement error.

b) Pattern based approaches: Pattern based-approaches

to motion prediction focus contributions on context extraction

from high-definition maps and positional information, which

in our problem formulation, is the context C. Motion pre-

diction approaches use LSTMs, graph neural networks, and

transformers, to extract map information [9], [10], [11], [12].

These approaches are the current state of the art on modern

motion prediction datasets [13]. They are strong in prediction

in noisy environments and are capable of understanding intent

given context, however the problem they seek to solve centers

around useful context extraction from multi-modal data.

When solving the trajectory decoding task, pattern-based

approaches use time series learning approaches like LSTMs

[3]. These approaches do not provide any guarantees of

dynamic feasibility. Trajectron++ [14] attempts to combine

the two approaches, by pairing a pattern-based encoding

with a dynamics-based decoder. Our method differs from

Trajectron++ in the following ways. PCMP does not use an

autoencoder or other mechanism to propagate gradients to the

feature extractor without using the dynamics. PCMP instead

propagates all gradients through the dynamics integration steps.

Additionally, PCMP is able to handle the bicycle model, which

is more specific than the unicycle model and challenging

during backpropagation due to the tan function and division in

the bicycle model. With some of the same tricks we propose,

however, Trajectron++ could potentially be extended to the

Bicycle model. PCMP offers a curriculum training approach

for models that incorporate dynamics integration for more

efficient training, and, finally, PCMP quantifies uncertainty

using Conformal Prediction.

Conformal prediction is a statistical tool for uncertainty

quantification that has recently been explored in machine

learning applications [15]. An independent and identically

distributed (i.i.d.) validation dataset is used to construct pre-

diction regions in which the unknown true value will be

contained with a desired probability of 1 − δ. These regions

are constructed by calculating the 1− δ quantile of a scoring

function, e.g., the displacement between the prediction and the

ground truth, over the empirical distribution of the validation

dataset. Of particular interest to us are conformal prediction

frameworks for motion prediction [16] and planning under

motion prediction uncertainty [17], [18]. We explore scoring

functions suitable for driving applications and use a refined

technique called Conformalized Quantile Regression (CQR)

[19]. To the best of the authors’ knowledge, this is the first

work that creates vehicle and map-based prediction regions.

II. METHODOLOGY

PCMP consists of three parts. First, we use pattern-based

methods to understand the intent of the agent, in the form

of control inputs. We impose limits on the control inputs,

which correspond to physical constraints. We call this step

the intent prediction step. Next, we use our dynamics model

and the predicted control inputs to predict the trajectory the

vehicle will take. We formalize this below. Afterward, we use

Conformal Prediction to build prediction regions in a particular

deployment domain. These prediction regions provide proba-

Fig. 2. This figure shows the PCMP prediction and training algorithm. The inputs (A), are fed into the LSTM, with the context vector C concatenated to
each position. The hidden state of the LSTM is processed through an MLP and scaled based on control input constraints to generate control inputs (B). These
control inputs are then passed into the dynamics integration step, which solves the ODEs of the dynamics equations with our control inputs and the last known
position of the vehicle for the prediction horizon. At training time, these predicted positions are then used to calculate a loss with the training data (C). This
loss is backpropagated (D) through the Trajectory Prediction steps and used to train the Intent Prediction networks.

bilistic guarantees of where the true trajectory will lie, helping

us understand the uncertainty in our predictions.

Problem 1. We are given a set of past observed positions of an

agent Oi = [pi,t−l, . . . , pi,t] at some time t, a time-invariant

environmental context variable Ci, and the future positions of

the agent Fi = [pi,t+1, . . . , pi,t+n]. Here, l is the observation

horizon and n is the prediction horizon.

We collect these in a training dataset Dtrain =
{(O0, C0, F0), . . . , (ONt

, CNt
, FNt

)} and validation and test

datasets Dval and Dtest, which are similarly composed. We

would now like to find an optimal motion prediction model

f(Oi, Ci) such that:

f = argmin
f

|Dtest|
∑

i=0

‖Fi − f(Oi, Ci)‖1 (1)

Further, we would like to create a prediction region Pval

such that the true future trajectory is contained in it with a

probability of at least 1− δ

P (Ftest ∈ Pval) ≥ 1− δ (2)

Solution 1. We use surrogate vehicle dynamics D(p, u) = ṗ,

to constrain agent motion, and sampling time ts, which defines

the time between two subsequent observations. We set f to be

equal to the output F̂ = [p̂i,t+1, . . . , p̂i,t+n], which is found

by solving the optimization problem described below, with a

weight vector λ.

minimize
g

|Dtrain|
∑

i=0

L






Fi,







p̂i,t+1

...

p̂i,t+n












(3)

s.t. p̂i,t = pi,t (4)

p̂i,j+1 = p̂i,j +

∫ ts

0

D(p̂i,j , ûi,j) dt

t < j < t+ n− 1 (5)
[

ût . . . ût+n−1

]⊤
= Ui = g(Oi, Ci) (6)

L(Fi, F̂i) =
1

n

t+n
∑

i=t+1

∣

∣

∣λ ·
(

Fi − F̂i

)∣

∣

∣ (7)

The uncertainty quantification problem, on the other hand,

is solved using Conformalized Quantile Regression (CQR)

[19] as detailed later, which will provide us the confidence

measure described in (2). We assume that Dval and Dtest are

drawn from the same distribution.

Equations (4) sets our initial condition, and (5) integrates

the dynamics. The prediction of control inputs is shown in (6).

Note that instead of optimizing for f , we only optimize for the

intent prediction g. Because we are only given O and F , we

must complete the integration of the dynamics, using the last

known vehicle state as given in O, and solve our minimization

problem by backpropagating our losses through the dynamics.

This has advantages; first, it does not require the solution of a

control problem to obtain U , and second, it allows us to use

observed data from a deployed system directly, without the

need for pre-processing.

A. Intent and Trajectory Prediction & Training

Intent prediction is represented by the function g, described

in Equation (6), and depicted in Figure 2. Classes of function

approximators that can be used to approximate g include

LSTMs [2], Transformers [20], Graph Neural Networks, or

other neural network architectures. In our experiments, we use

an LSTM to predict intent. Positive acceleration means the

vehicle is predicted to speed up, and negative means braking

intent. Negative steering indicates a left turn, positive indicates

a right turn.

Because our outputs are control inputs, which have real

physical analogs, we must constrain our final output layer to

match the physical limits of the agent. The tanh function

scales values from a domain of R to a range of (−1, 1).
Given an activation a, we define our activation function

φω(a) = ω tanh(a). This aids in training, when values like

acceleration and steering angle with different ranges must

be predicted by the same network. We can also use this to

impose constraints on the magnitude of the control outputs, for

example: limiting the range of the steering angle. These control

inputs can be read and interpreted to understand vehicle intent.

For trajectory prediction, we select surrogate dynamics

D(p, u) = ṗ to represent the motion of vehicles in our scenario.

We use this dynamics function by integrating it to produce our

output, as shown in the Trajectory Prediction section of Figure

2. Because we are given xt, an iterative update rule, described

in (4) and (5), is used to propagate the system forward. The

integration is done numerically, using either the Runge-Kutta

method or the Euler method. We found that in cases where the

timesteps are further apart than 0.1 seconds, RK4 integration

presented an advantage. We can use any dynamics model

here, so long as attention is paid to areas of the state and

input space where numerical instabilities emerge. The tan and

division operators are some examples of sources of numerical

instability.

Due to our use of a dynamics model, all predictions from

this method are dynamically feasible, regardless of the control

input. We define a dynamically feasible state transition as a

transition between pt → pt+1 with timestep ts, according to a

dynamics model D(p, u) = ṗ which is dynamically feasible if

∃u : pt +
∫ ts

0
D(pt, u) dt = pt+1. A trajectory p0, p1, . . . , pn

is said to be dynamically feasible according to the model

D and timestep ts if each of the transitions pi → pi+1

are dynamically feasible. This is true by construction in our

method, as the update rule (5) implements a state transition.

For training of PCMP, we evaluate F̂i using Equations (4)-

(6) for each item in our dataset and optimize using stochastic

gradient descent. We use the L1 loss function on the differ-

ence between F̂i and Fi, which is multiplied by the weight

vector λ. The loss function is given in (7). The L1 loss was

experimentally found to be more effective for training than the

L2 loss.

We use an increasing horizon curriculum to generate better

predictions. This is accomplished by calculating the loss using

the modified loss function in Equation (8), and increasing h
periodically from 0 ≤ h ≤ n with n as the prediction horizon.

Lh(Fi, F̂i) =
1

h

t+h
∑

i=t+1

∣

∣

∣λ ·
(

Fi − F̂i

)∣

∣

∣ (8)

B. Uncertainty Quantification with Conformal Prediction

Conformal prediction provides a simple method for quan-

tifying prediction uncertainty [15]. It is based on a scoring

function that evaluates how well a given prediction approxi-

mates the true but unknown value. Other works that quantify

uncertainty use circle-shaped prediction regions that are not

necessarily optimal for autonomous vehicles. We propose two

scoring functions that are tailored for applications in driving

with the Rotated Rectangle Region and the Frenet Region as

our scoring functions. Examples of these output shapes are

shown in Figure 3, along with the baseline circle prediction

region. All of the regions are generated with the same 1 − δ
of 95%.

1) Rotated Rectangle Region: The Rotated Rectangle Re-

gion is a Conformal Prediction Region where the region takes

95% Rotated Rectang�e Region

95% Frenet Region

Input

Truth

Prediction

Prediction Region

Circ�e Prediction Region

Fig. 3. The proposed conformal prediction regions. Top: the orientation of
the rectangles rotates with the last known position of the vehicle, which is
the last blue point in the figure. Bottom: the prediction regions in the Frenet
Region diagram show boxes that curve along with the shape of the track.

the shape of a rectangle that has been rotated to match the

orientation of the last pose of the vehicle. This region preserves

the vehicle’s direction of travel, revealing directional biases in

the predictor where an unrotated rectangle would not. This

method works even when a map of the environment is not

available.

To calculate the rotated rectangle region, we change the

coordinate frame of the prediction to be the last input pose of

the vehicle, pt. We also normalize the rotation of the vehicle

at that point, so the last known pose of the vehicle is identical

across each prediction. We denote the transformed position

vector Lpi,t = [Lxi,t,
Lyi,t,

Lθi,t], which designates that x, y, θ
are represented in the frame of the last known position of the

vehicle. For each predicted point, we calculate the signed error

in the X and Y direction, giving us the scoring function

s(Lp̂i,t,
Lpi,t) =

[

Lxi,t −
Lx̂i,t

Lyi,t −
Lŷi,t

]

2) Frenet Region: In cases where we do know the map or

track, we can use the Frenet Region, which calculates errors in

the Frenet coordinate frame. The Frenet frame is defined by a

progress variable s, and a displacement d. The progress takes

values on some interval usually [0, 1], and specifies the closest

location on the track centerline to the point. d is a signed

displacement that gives us the distance from the point to the

closest centerline point. These regions, by virtue of the Frenet

frame, will follow the curves of the track. To create the Frenet

Region, the prediction and target coordinates are converted to

the Frenet coordinate frame. We denote the Frenet coordinates

by F pi,t = [F si,t,
Fdi,t], and the scoring function:

s(F p̂i,t,
F pi,t) =

[

F si,t −
F ŝi,t

Fdi,t −
F
d̂i,t

]

3) Conformal Prediction: At its core, conformal prediction

uses a validation dataset that consists of i.i.d. data points.

Recall that the elements of this dataset are past observations

ptpre = [pt−l, . . . , pt] and future states ptpost = [pt+1, . . . , pt+n].

These data points can be thought of as drawn from a distribu-

tion Dt, i.e., [ptpre, p
t
post] ∼ Dt. It is easy to see that the elements

of Dcal are not i.i.d. and hence violate the i.i.d. assumption

made in conformal prediction. The reasons for this are twofold

and we will alleviate this issue as follows.

First, there is a natural coupling between neighboring data

points such as [ptpre, p
t
post] and [pt+1

pre , pt+1
post] that results in

dependence between the distributions Dt and Dt+1. To remedy

this dependence in practice, we create a validation dataset with

elements that do not share the same positions so that every

position in a vehicle trace was only used once. While this does

not fully eliminate the issue of dependence, we found that it

works well in practice. Second, the distributions Dt and Dt′

may be different because they were observed in different parts

of the track. Ultimately, we are interested in the independence

of the scoring function s(p̂i,t, pi,t). In our validation dataset,

we have created a stratified sample on the race lines and the

controllers, which should ensure that the data points in the

validation and test datasets are not strongly correlated.

Having discussed these challenges, we can now apply CQR.

CQR is a form of Conformal Prediction that provides two-

sided prediction intervals. We will only present the algorithm

in the interest of space, and refer the interested reader to [15]

and [19] for more information. First, we calculate the scoring

function s(p̂i,t, pi,t) for each timestep and item in the training

dataset. We then calculate the lower and upper quantile bounds

[qlow,t, qhigh,t] corresponding to the δ̄/2 and 1−(δ̄/2) quantiles

over the distribution of s(p̂i,t, pi,t). This gives us a baseline for

our prediction region for which we define the non-conformity

score R for each item in the validation dataset as

Ri,t = max {qlow,t − s(p̂i,t, pi,t), s(p̂i,t, pi,t)− qhigh,t}

This non-conformity score can be thought of as an error metric

for how conservative or liberal our prediction regions are.

We then pick the (1 − δ̄)(1 + 1/|Dval|) quantile of the non-

conformity scores, and call this E1−δ̄,t. Under the assumption

that the elements of the validation data are i.i.d., our single-

step prediction region with a (1 − δ) coverage guarantee is

Pval,t = [qlow,t−E1−δ̄,t, qhigh,t+E1−δ̄,t] were we set δ̄ = δ/2
to union bound over the dimensions in our nonconformity

score. Our choice of δ̄ is particularly important when we want

coverage guarantees for multi-step predictions. If we want to

be assured that P (pi,t ∈ Pt,val∀t)) ≥ 1 − δ, we can achieve

this by setting δ̄ = δ/n [17].

III. RESULTS AND DISCUSSION

We ran experiments to evaluate the performance of PCMP.

In Section III-D, we show that the performance of PCMP is

better than the LSTM and CTRV baselines in all measured

metrics. In Section III-E, we show that the PCMP predictor

provides better performance than the baselines on behaviour it

has not seen before. Section III-F shows that underestimating

the model parameter can provide performance improvements,

meaning that we need not be perfect in estimating the model

parameters of vehicles we hope to predict for.

A. Performance Measures

Average and Final Displacement Errors (ADE and FDE),

were used to capture the correctness of the trajectories. ADE

is computed by taking the average of the displacement between

predicted and true points, and FDE is computed by examining

the displacement between the final predicted and true points.

These metrics do not account for predicted heading error,

however, they are the standard metrics used in the field, so

we adopt them.

We additionally use Intersection over Union (IoU), a metric

commonly used in image segmentation and object detection.

This metric is calculated by overlaying the two bounding boxes

for the vehicle, and calculating the ratio of the intersecting

area of the prediction and ground truth to the union of the

prediction and true values.

B. Dataset

Our dataset was created in the F1Tenth Gym [21], a

simulator for autonomous racecars, which was extended with

RK4 integration for this work. We created the training set

by observing racecars following a number of predefined tra-

jectories on the track Spielberg. These trajectories fell into

two categories, centerline offsets, and an optimized race line,

pictured in Figure 4a. There are three centerline offsets; the

centerline itself, and a left and right offset. The optimal race

line was generated using the TUM race line optimization

toolkit [22]. This optimized race line exceeds the bounds of

all three centerline offsets, and we consider it to be out of

the distribution of centerline offsets. These controllers were

followed by two different controllers, the Stanley Controller

[23], and a Pure Pursuit controller. Input samples are selected

by taking non-overlapping 10 sample regions of the trace as

input. The ensuing 60 samples are used as the output.

The training and testing splits are stratified by trajectory and

controller, so all race line-controller pairs are proportionally

represented in the training, validation, and testing sets. Oi con-

tains 0.1 seconds of position and velocity: (x, y, θ, v) sampled

at 100 Hz, and Fi contains 0.6 seconds of position and velocity

data as the output. Ci contains the forward curvature of the

track at the last point in Oi. To approximate measurement

noise, a noise vector ǫ ∼ N (0, 0.01) is added to the position

and velocity.

C. Experimental Parameter Settings

For our baseline, we create an LSTM-based predictor, with

a hidden state size of 16 and an MLP decoder to predict the

states. In terms of our problem statement, we approximate

f(O,C) with an LSTM. This is a fair baseline, as the map

information and positional information is already extracted.

The exact same framework is used for the physics-constrained

model, where the same LSTM is used to approximate g(O,C).
Both models perform well on the autonomous racing dataset.

The model we used was the kinematic bicycle model, with

the control point defined at the center of the line connect-

ing the midpoints of the front and rear axles. We define

p = [x, y, θ, v]⊤, where x, y are position, θ and v are heading

TABLE I
NUMBER OF SAMPLES IN AUTONOMOUS RACING DATASET

Race Line Controller Speeds
Sample Counts

Training Validation Test

Center

Pure Pursuit

0.75 1684 210 211

0.85 1486 186 186

1.00 1264 158 158

Stanley

0.75 1689 211 211

0.85 1492 186 186

1.00 1268 159 159

Left

Pure Pursuit

0.75 1719 215 215

0.85 1517 190 190

1.00 1291 161 161

Stanley

0.75 1724 215 215

0.85 1521 190 190

1.00 1294 162 162

Right

Pure Pursuit

0.75 1644 205 206

0.85 1452 181 182

1.00 1236 155 154

Stanley

0.75 1654 207 207

0.85 1430 186 183

1.00 1244 156 155

Race

Pure Pursuit

0.75 1528 191 191

0.85 1348 169 169

1.00 1145 143 143

Stanley

0.75 1530 191 191

0.85 1349 169 169

1.00 1147 143 143

Total 34686 4336 4336

Race�ine� on Spie��erg

Center Line

Le�t Line

Right Line

Race Line

(a) Race lines used to generate the
dataset, on the track Spielberg us-
ing the F1Tenth Gym Simulator, in
corners 4, 5, and 6.

(A) ��D LSTM Prediction

(B) 	
D PCMP Prediction

Input

Truth

Prediction

(b) Plot (A) shows an LSTM pre-
diction in OOD dataset, with a
spinning behavior. (B) shows the
same scenario with a PCMP pre-
diction.

and velocity. u = [δ, a]⊤, where δ is steering angle and a is

acceleration. The model has a single parameter, the wheelbase

L, which is set to the true value, 0.3302.

D(p, u) = ṗ =











(

v + L
2

)

cos(θ)
(

v + L
2

)

sin(θ)
v tan(δ)

L

a











(9)

We scaled the outputs of the Intent Prediction network

by scaling the values of the acceleration and steering angle

in the ranges (−20, 20), [−7π/16,−7π/16] respectively. We

bounded the steering angle lower than ±π/2 due to the

numerical instability of the tangent function about that value.

We set λ = [1, 1, 4, 0] in our loss function, multiplying the

heading error by 4, and ignoring the velocity error. For the

curriculum approaches, we incremented h by one every two

epochs in the loss function defined in Equation 8. The models

were trained for 350 epochs.

D. Performance

To start, we evaluate the performance of our algorithm vs

the LSTM. All approaches were trained for 1500 epochs on

all race lines and evaluated on all race lines. The ADE and

FDE on the test set are shown in Table III. PCMP achieves

41% better ADE, 56% better FDE, and a 19% increase in IoU.

Figure 1 shows the qualitative difference between the two

methods, where the LSTM predicts an almost straight line in

a curve. In Figure 4, we see that although the training loss

of the LSTM is very close (±1 × 10−4), the test ADE is

very different, higher by ≈ 0.03 meters, and the IoU, which

takes heading error into account, is 0.12 higher. The dynamics

equations seem to be acting as a regularizer, discouraging

overfitting to the training dataset through enforcement of

system dynamics. PCMP trains quickly, obtaining most of its

performance by epoch 150 without curriculum, and epoch 175
with the curriculum. This shows a direction for future work,

where PCMP could be trained online with data collected in a

deployment.

1) Conformal Prediction Coverage: We used the validation

dataset as the calibration dataset and calculated 95% regions.

We calculated the single-step coverage on the test set or the

percentage of trajectories where the prediction lies within the

region, for the Rotated Rectangular and Frenet Regions. These

are presented in Table II. The single-step coverage is close to

our desired 95% coverage, with the s and s ∧ d coverage for

the Frenet Region having 1 − δ coverage on the test dataset.

All of the multi-step coverage guarantees hold, however, these

regions are conservative, and are much larger than the single-

step coverage regions.

TABLE II
CONFORMAL PREDICTION REGION COVERAGE ON TEST SET

Region Dimension Single-Step
Coverage

Multi-Step
Coverage

Rotated
Rectangle

x 94.69% 99.61%

y 94.86% 99.68%
x ∧ y 94.95% 99.84%

Frenet
s 95.52% 98.65%

d 94.87% 98.59%

s ∧ d 95.55% 99.49%

0.000

0.002

0.004

Training Lo��e

PCMP with Curricu�u�

PCMP

LSTM

10−1

100

Te�t ADE

PCMP with Curricu�u�

PCMP

LSTM

0 50 100 150 200 250 300 350

Epoch�

0.2

0.4

0.6

0.�

Te�t IoU�

PCMP with Curricu�u�

PCMP

LSTM

Fig. 4. Plot showing that despite the LSTM approach achieving a lower
training loss, the PCMP methods achieve lower displacement error and IoU
error, which takes heading error into account, on the test set. In the plot
showing training losses, the blue line representing the curriculum approach
shows an increasing loss for the first 120 epochs due to the curriculum, which
only calculates the loss for predicted timesteps, as described in (8)

TABLE III
RESULTS SHOWING AVERAGE AND FINAL DISPLACEMENT ERROR FOR APPROACHES TRAINED ON ALL RACE LINES AND EVALUATED ON ALL RACE LINES

Approach Training Loss (↓) ADE (↓) FDE (↓) IoU (↑)

CTRV (Physics) 0.006068 0.25683 ± 0.001991 0.74000 ± 0.005637 0.43644 ± 0.002339
LSTM 0.001212 0.07740 ± 0.000149 0.14845 ± 0.000171 0.66444 ± 0.000637
PCMP 0.001501 0.04917 ± 0.000204 0.12023 ± 0.000397 0.78254 ± 0.000521

PCMP + Curriculum 0.001451 0.04539 ± 0.000160 0.10644 ± 0.000275 0.79703 ± 0.000719

E. Robustness to Out of Distribution Driving

To examine the robustness of the Physics Constrained

motion prediction algorithm to out-of-distribution (OOD) be-

havior, we train on the centerline offset race lines but predict

on the optimal race line, which has significantly different

behavior through turns, as pictured in Figure 4a. We report

the ADE, FDE, and IoU on the in-distribution (ID) test set

and the OOD test set in Table IV. No conformal prediction

regions are used here, as the validation dataset does not have

the same distribution as the OOD behavior.

The results show that PCMP with a curriculum approach

obtains the ID and OOD errors. The performance of the LSTM

gets worse for the OOD test set by a factor of ∼ 2, but both

PCMP predictors perform better on the OOD test set than the

ID test set. This could be due to the optimal race line having

fewer sharp turns than the center line offsets, and carrying

higher velocity; both of these scenarios would advantage a

model that had a notion of inertia. Examining Figure 4b shows

that the LSTM prediction includes sharp rotations in a straight,

behavior that is largely aberrant. PCMP for the same scenario

predicts a trajectory much closer to the true trajectory.

F. Robustness to Modeling Error

To understand the impact of modeling errors on PCMP

performance, we initialize PCMP with incorrectly esti-

mated wheelbases. PCMP is trained using the curriculum

approach where the number of epochs per input is 1.

One model is trained for each wheelbase from the set

{0.0802, 0.0902, . . . , 1.4902, 1.5002}. We record the ADE,

FDE, IoU, and training loss of each model. Our results are

presented in Figure 5. We can see that there is a linear

correlation between the wheelbase and our tracked metrics.

This is interesting, as we would expect the error metrics to be

the lowest for the true wheelbase. We find linear correlations

between all of the reported metrics and the wheelbase. The

R-values of these correlations are 0.95 for ADE, −0.93 for

IoU, and 0.83 for training error. The FDE error is correlated

with an R-value of 0.51.

We were unable to sample lower values for the wheelbase

due to numerical instability in the training. This comes from

the term V tan(δ)/L in the dynamics. If we create two bicycle

models, one with wheelbase L, and one with wheelbase L/N ,

where N > 1, we can show that all states reachable by the first

model can be reached by the second model with the smaller

wheelbase. Intuitively, we can see that a unicycle is more

maneuverable than a bicycle, as a unicycle can turn on a dime,

whereas a bicycle cannot. We must weigh numerical instability

in training with prediction accuracy and model fidelity when

choosing a wheelbase. More importantly, we need not have

perfect wheelbase estimation, we can simply underestimate

and get accurate results. This analysis is only applicable to the

bicycle model, however, the bicycle model can be regarded as

a representative model for vehicle motion.

0.11

0.12

0.13

F
D

E

0.05

0.06

A
D

E

0.725

0.750

0.775

Io
U

0.2 0.4 0.6 0.8 1.0 1.2 1.4

�hee��a�e

0.00152

0.00154

T
ra

in
in

g
 L

o
�
�

True �hee !a"e

E#$ect o% Mode&ing Error on PCMP Per'or(ance

Fig. 5. The plot shows the ADE, FDE, training, and testing losses of a model
vs the wheelbase estimate used in the model. The true wheelbase is denoted
by the red line.

G. Limitations

While PCMP shows several benefits, there are limitations,

which can be placed in three categories; model selection, tol-

erance to large measurement noise, and conformal prediction

under distribution shift.

First, in our autonomous vehicle experiments, we know

that the bicycle model is a valid model for the system we

predict for. In the real world, if systems with four-wheel

steering are used, the same model may not produce accurate

predictions. This can be remedied by collecting data to use

to build prediction regions for this case or using Adaptive

Conformal Prediction [18]. It can also be addressed by using

a more apt model, but this can not be done online.

Next, we have shown that our method is tolerant to rela-

tively small amounts of noise, but under heavy noise regimes,

PCMP may fail to provide state-of-the-art predictions. We

used PCMP paired with LaneGCN [11]for feature extraction

on the Argoverse Dataset [13] and achieved a minADE(K=6)

of 1.86, to vanilla LaneGCN’s 0.87. This was largely due

to the high amounts of noise in the dataset, paired with the

lack of heading and velocity information in the dataset, which

we addressed by using LSTMs to estimate these values. This

does however show the potential for PCMP to be paired with

complex context extraction and intent estimation networks.

TABLE IV
RESULTS SHOWING THE ROBUSTNESS OF THE ABOVE APPROACHES TO OOD DATA.

OOD=OUT-OF-DISTRIBUTION,ID=IN-DISTRIBUTION

Approach ID ADE (↓) ID FDE (↓) ID IoU (↑) OOD ADE (↓) OOD FDE (↓) OOD IoU (↑)

CTRV (Physics) 0.2541 0.7322 0.4373 0.2679 0.7717 0.4306
LSTM 0.0698 0.1411 0.7027 0.1528 0.3026 0.5312
PCMP 0.0593 0.1517 0.7495 0.0559 0.1468 0.7409

PCMP + Curriculum 0.0513 0.1235 0.7748 0.0466 0.1149 0.7696

Finally, we make the assumption that we have a calibration

dataset with data i.i.d to our testing dataset in order to generate

valid Conformal Prediction Regions. This assumption may

often not hold, especially under distribution shifts. Techniques

like Adaptive Conformal Prediction [18] can be used to relax

or eliminate this assumption, where the prediction regions

adapt in real time to the data observed by the system.

IV. CONCLUSION

We have shown that PCMP provides guarantees of the

dynamic feasibility of its’ predicted trajectories in Section

II-A. We have shown how control inputs are predicted and

can be interpreted to understand predicted intent. We have

shown that PCMP performs better than baselines in III-D and

that it is better able to adapt to out-of-distribution behavior in

III-E. Section III-F shows that underestimates of the wheelbase

parameter can provide similar or better performance. Two new

conformal prediction regions were developed in II-B, for use

in scenarios with and without map information.

REFERENCES

[1] Q. Zhang, S. Hu, J. Sun, Q. A. Chen, and Z. M. Mao, “On Adversarial
Robustness of Trajectory Prediction for Autonomous Vehicles,” in 2022

IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), Jun. 2022, pp. 15 138–15 147, iSSN: 2575-7075.
[2] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural

Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997, conference Name:
Neural Computation.

[3] B. Varadarajan, A. Hefny, A. Srivastava, K. S. Refaat, N. Nayakanti,
A. Cornman, K. Chen, B. Douillard, C. P. Lam, D. Anguelov, and
B. Sapp, “MultiPath++: Efficient Information Fusion and Trajectory
Aggregation for Behavior Prediction,” in 2022 International Conference

on Robotics and Automation (ICRA), May 2022, pp. 7814–7821.
[4] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris,

S. Wang, and L. Yang, “Physics-informed machine learning,”
Nature Reviews Physics, vol. 3, no. 6, pp. 422–440, Jun. 2021,
number: 6 Publisher: Nature Publishing Group. [Online]. Available:
https://www.nature.com/articles/s42254-021-00314-5

[5] F. Djeumou, C. Neary, E. Goubault, S. Putot, and U. Topcu,
“Neural Networks with Physics-Informed Architectures and Constraints
for Dynamical Systems Modeling,” in Proceedings of The 4th

Annual Learning for Dynamics and Control Conference. PMLR,
May 2022, pp. 263–277, iSSN: 2640-3498. [Online]. Available:
https://proceedings.mlr.press/v168/djeumou22a.html

[6] P. Karle, M. Geisslinger, J. Betz, and M. Lienkamp, “Scenario Under-
standing and Motion Prediction for Autonomous Vehicles - Review and
Comparison,” IEEE Transactions on Intelligent Transportation Systems,
pp. 1–21, 2022, conference Name: IEEE Transactions on Intelligent
Transportation Systems.

[7] C. Pek, S. Manzinger, M. Koschi, and M. Althoff, “Using online
verification to prevent autonomous vehicles from causing accidents,”
Nature Machine Intelligence, vol. 2, no. 9, pp. 518–528, Sep. 2020,
number: 9 Publisher: Nature Publishing Group. [Online]. Available:
https://www.nature.com/articles/s42256-020-0225-y

[8] M. Koschi and M. Althoff, “SPOT: A tool for set-based prediction of
traffic participants,” in 2017 IEEE Intelligent Vehicles Symposium (IV),
Jun. 2017, pp. 1686–1693.

[9] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social LSTM: Human Trajectory Prediction in Crowded
Spaces,” in 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Jun. 2016, pp. 961–971, iSSN: 1063-6919.

[10] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde,
“THOMAS: Trajectory Heatmap Output with learned Multi-Agent
Sampling,” Jan. 2022, number: arXiv:2110.06607 arXiv:2110.06607
[cs]. [Online]. Available: http://arxiv.org/abs/2110.06607

[11] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun,
“Learning Lane Graph Representations for Motion Forecasting,” in
Computer Vision – ECCV 2020, ser. Lecture Notes in Computer Science,
A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds. Cham: Springer
International Publishing, 2020, pp. 541–556.

[12] N. Nayakanti, R. Al-Rfou, A. Zhou, K. Goel, K. S. Refaat, and B. Sapp,
“Wayformer: Motion Forecasting via Simple & Efficient Attention
Networks,” Jul. 2022, arXiv:2207.05844 [cs]. [Online]. Available:
http://arxiv.org/abs/2207.05844

[13] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan, and J. Hays, “Argoverse:
3D Tracking and Forecasting with Rich Maps,” Nov. 2019,
number: arXiv:1911.02620 arXiv:1911.02620 [cs]. [Online]. Available:
http://arxiv.org/abs/1911.02620

[14] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone,
“Trajectron++: Dynamically-Feasible Trajectory Forecasting With
Heterogeneous Data,” Jan. 2021, arXiv:2001.03093 [cs]. [Online].
Available: http://arxiv.org/abs/2001.03093

[15] A. N. Angelopoulos and S. Bates, “A Gentle Introduction to
Conformal Prediction and Distribution-Free Uncertainty Quantification,”
Dec. 2022, arXiv:2107.07511 [cs, math, stat]. [Online]. Available:
http://arxiv.org/abs/2107.07511

[16] K. Stankeviciute, A. M. Alaa, and M. van der Schaar,
“Conformal Time-series Forecasting,” in Advances in

Neural Information Processing Systems, vol. 34. Curran
Associates, Inc., 2021, pp. 6216–6228. [Online]. Available:
https://proceedings.neurips.cc/paper/2021/hash/312f1ba2a72318edaaa995a67835fad5-Abstract.html

[17] L. Lindemann, M. Cleaveland, G. Shim, and G. J. Pappas, “Safe
Planning in Dynamic Environments using Conformal Prediction,” Oct.
2022, arXiv:2210.10254 [cs, eess] version: 1. [Online]. Available:
http://arxiv.org/abs/2210.10254

[18] A. Dixit, L. Lindemann, S. Wei, M. Cleaveland, G. J. Pappas, and J. W.
Burdick, “Adaptive Conformal Prediction for Motion Planning among
Dynamic Agents,” Nov. 2022, arXiv:2212.00278 [cs, eess]. [Online].
Available: http://arxiv.org/abs/2212.00278

[19] Y. Romano, E. Patterson, and E. J. Candès, “Conformalized Quantile
Regression,” May 2019, arXiv:1905.03222 [stat]. [Online]. Available:
http://arxiv.org/abs/1905.03222

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is
All you Need,” in Advances in Neural Information Processing
Systems, vol. 30. Curran Associates, Inc., 2017. [Online]. Available:
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[21] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam,
“F1TENTH: An Open-source Evaluation Environment for Continuous
Control and Reinforcement Learning,” in Proceedings of the

NeurIPS 2019 Competition and Demonstration Track. PMLR,
Aug. 2020, pp. 77–89, iSSN: 2640-3498. [Online]. Available:
https://proceedings.mlr.press/v123/o-kelly20a.html

[22] A. Heilmeier, A. Wischnewski, L. Hermansdorfer, J. Betz, M. Lienkamp,
and B. Lohmann, “Minimum curvature trajectory planning and control
for an autonomous race car,” Vehicle System Dynamics, vol. 58, no. 10,
pp. 1497–1527, Oct. 2020, publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/00423114.2019.1631455. [Online]. Available:
https://doi.org/10.1080/00423114.2019.1631455

https://www.nature.com/articles/s42254-021-00314-5
https://proceedings.mlr.press/v168/djeumou22a.html
https://www.nature.com/articles/s42256-020-0225-y
http://arxiv.org/abs/2110.06607
http://arxiv.org/abs/2207.05844
http://arxiv.org/abs/1911.02620
http://arxiv.org/abs/2001.03093
http://arxiv.org/abs/2107.07511
https://proceedings.neurips.cc/paper/2021/hash/312f1ba2a72318edaaa995a67835fad5-Abstract.html
http://arxiv.org/abs/2210.10254
http://arxiv.org/abs/2212.00278
http://arxiv.org/abs/1905.03222
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.mlr.press/v123/o-kelly20a.html
https://doi.org/10.1080/00423114.2019.1631455

[23] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun,
“Autonomous Automobile Trajectory Tracking for Off-Road Driving:
Controller Design, Experimental Validation and Racing,” in 2007

American Control Conference. New York, NY, USA: IEEE,
Jul. 2007, pp. 2296–2301, iSSN: 0743-1619. [Online]. Available:
http://ieeexplore.ieee.org/document/4282788/

http://ieeexplore.ieee.org/document/4282788/

	Introduction
	Related Work

	Methodology
	Intent and Trajectory Prediction & Training
	Uncertainty Quantification with Conformal Prediction
	Rotated Rectangle Region
	Frenet Region
	Conformal Prediction

	Results And Discussion
	Performance Measures
	Dataset
	Experimental Parameter Settings
	Performance
	Conformal Prediction Coverage

	Robustness to Out of Distribution Driving
	Robustness to Modeling Error
	Limitations

	Conclusion
	References

