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Abstract—Recent works have shown the superior robustness of
four-dimensional (4D) Radar-based three-dimensional (3D) object
detection in adverse weather conditions. However, processing 4D
Radar data remains a challenge due to the large data size, which
require substantial amount of memory for computing and stor-
age. In previous work, an online density reduction is performed
on the 4D Radar Tensor (4DRT) to reduce the data size, in
which the density reduction level is chosen arbitrarily. However,
the impact of density reduction on the detection performance and
memory consumption remains largely unknown. In this paper, we
aim to address this issue by conducting extensive hyperparamter
tuning on the density reduction level. Experimental results show
that increasing the density level from 0.01% to 50% of the
original 4DRT density level proportionally improves the detection
performance, at a cost of memory consumption. However, when
the density level is increased beyond 5%, only the memory
consumption increases, while the detection performance oscillates
below the peak point. In addition to the optimized density
hyperparameter, we also introduce 4D Sparse Radar Tensor
(4DSRT), a new representation for 4D Radar data with offline
density reduction, leading to a significantly reduced raw data size.
An optimized development kit for training the neural networks
is also provided, which along with the utilization of 4DSRT,
improves training speed by a factor of 17.1 compared to the state-
of-the-art 4DRT-based neural networks. All codes are available
at: https://github.com/kaist-avelab/K-Radar.

Index Terms—4D Radar, 3D object detection, adverse weathers

I. INTRODUCTION

Perception is an essential module for autonomous driving
systems because the information acquired by the perception
module will be used as inputs for the subsequent planning
and control modules. Therefore, a robust perception module
that can operate under challenging driving conditions (e.g.,
adverse weather conditions) is urgently needed.

In recent years, numerous studies have introduced deep
learning-based perception modules with remarkable accuracy
for various autonomous driving tasks such as lane detection
[1]–[4] and object detection [5]–[9]. These studies often rely
on RGB images as inputs to the neural networks, mainly due to
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the abundance of camera-based datasets available to the public.
In addition, RGB images have a relatively straightforward data
structure with low dimensionality and high correlation between
neighboring pixels, which enable the neural networks to learn
high-dimensional representations efficiently. However, RGB
cameras are vulnerable to low illumination conditions, can be
easily obstructed by raindrops and snowflakes, and lack of
depth information that is crucial for proper 3D understanding
of the surroundings. In contrast, the LiDAR sensors use
infrared signals to measure the surroundings with up to cm-
level resolution and without being affected by the illumination
conditions. However, infrared signals with a wavelenght of
about λ = 850nm ∼ 1,550nm cannot pass through raindrops
or snowflakes, which results in unreliable measurements under
adverse weather conditions [10].

Radar sensors, on the other hand, utilizes signals with a
longer wavelength (λ ≈ 4mm) compared to LiDAR sensors.
This enables Radar signals to pass through raindrops and
snowflakes, allowing for accurate measurements even under
adverse weather conditions. The robustness of Radar sensors
(particularly Frequency Modulated Continuous Wave (FMCW)
Radars) in adverse weather conditions has been studied in
several works [11]–[13]. Additionally, FMCW Radars can be
easily implemented into hardwares, resulting in the widespread
use of FMCW Radar in the automotive industry.

As illustrated in Fig. 1, an FMCW Radar output is a
Radar Tensor (RT), a dense tensor that is populated by non-
zero power measurements in all axes. The RT is obtained
by applying the Fast Fourier Transform (FFT) algorithm on
the hardware-processed FMCW signals. Due to the density,
an RT provides rich information regarding the environment,
but at a cost of a large amount of memory for storage and
computations.

With the availability of dense RTs, many studies [11], [13]–
[15] have proposed RT-based object detection networks that
achieve similar detection performance to camera and Lidar-
based object detection networks. In particular, the K-Radar
dataset [11] provides a collection of 4D Radar Tensor (4DRT)
that consists of power measurements along the Doppler, range,
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Fig. 1. The signal processing steps of an FMCW Radar to convert the received
signals into a dense Radar Tensor (RT). The signals are first processed through
RF circuits that include a low noise amplifier (LNA), a local oscillator (LO),
and an analog-to-digital converter (ADC). The RT is obtained by applying
the Fast Fourier Transform (FFT) algorithm to the processed FMCW signals.

azimuth, and elevation dimensions. This is in contrast to
the conventional 3D Radar tensor (3DRT) [13]–[15] that do
not provide elevation information. The importance of the
additional elevation information has been shown in [11],
where the 4DRT-based Radar Tensor Network with Height
(RTNH) significantly outperforms the Radar Tensor Network
without height (RTN) in the 3D object detection task. In
addition, the 4DRT-based RTNH achieves similar 3D object
detection results to LiDAR point cloud-based (LPC-based)
neural network, PointPillars [5], in road environments under
clear weather conditions, and significantly outperforms the
LPC-based network in adverse weather conditions such as
sleet and heavy snow. These results indicate the importance of
4D Radar sensors for a robust perception in adverse weather
conditions.

While the advantages of 4DRT-based networks are clear,
it remains challenging to conduct experiments on the 4DRT
data. This is mainly because of the size of the 4DRT data
is prohibitively large (i.e., ∼12TB). In the prior work [11],
the size of the 4DRT data is reduced by performing a density
reduction online during training, where the ouput density level
is chosen arbitrarily. The effects of density reduction on the
detection performance and memory consumption, however,
remains largely unknown.

In this paper, we aim to address this issue by conducting
extensive hyperparamter tuning on the density reduction level.
As expected, experimental results show that increasing the
density level from 0.01% to 50% of the original 4DRT density
level proportionally improves the detection performance, at a
cost of memory consumption. Interestingly, however, when the
density level is increased beyond 5%, only the memory con-
sumption increases, while the detection performance oscillates
below the peak point. This optimized density reduction level
could act as a guide for the automotive radar industry for
designing the pre-processing steps at hardwarde-level imple-
mentations.

In addition to the optimized density reduction hyperparam-
eter, we introduce the 4D Sparse Radar Tensor (4DSRT),
a new representation for 4D Radar data. Unlike 4DRT, we
perform the polar-to-Cartesian transformation and the density

reduction offline, which significantly reduce the raw data size
of 4DSRT. When the 4DSRT is used along with the optimized
development kit for training the neural networks, the training
speed is improved by a factor of 17.1 times compared with
the original 4DRT-based neural networks.

In a summary, our contributions are as follows:
• We conduct an extensive hyperparameter tuning for the

density reduction level of the 4DRT. We observe that
increasing the density level up to 5% proportionally
improves the detection performance, but provides there
is no clear benefits beyond that. This insight can serve as
a hardware guide for the 4D Radar industry.

• We propose 4D sparse Radar Tensor (4DSRT), a new rep-
resentation for 4D Radar data that allows for a reduction
in memory size. The new representation could improve
accessibility of 4D Radar data, especially for resource-
limited environments.

• We provide an optimized devkit for 4DSRT which, when
used along with the 4DSRT, could improve the training
speed by a factor of 17.1 compared to the 4DRT-based
neural networks.

The rest of this paper is structured as follows: Section 2
provides an overview of the K-Radar dataset and the 4DRT-
based baseline neural network, RTNH. Section 3 explains the
4DSRT data presented in this paper. Section 4 presents the
experimental results of the RTNH using 4DSRT with various
density. Finally, Section 5 summarizes the paper.

II. RELATED WORKS

In this section, we provide an overview of the related
works, especially on the K-Radar dataset and the Radar Tensor
Network with Height (RTNH) [11].

A. K-Radar Dataset

Deep neural networks typically require abundant and diverse
training data to be able to generalize to various conditions.
Within the field of autonomous driving, there are numerous
publicly-available datasets [13], [16]–[18] with a large number
of samples, obtained with various types of sensors such as
RGB camera, LiDAR, 3D Radar, and 4D Radar. Among
these sensors, 4D Radar has the advantages of preserving 3D
spatial information while also being robust to adverse weather
conditions such as rain and snow. However, a large-scale 4D
Radar dataset collected from diverse environments including
adverse weather conditions has not been available until the
introduction of K-Radar [11].

K-Radar, as shown in Fig. 2, is a 4DRT-based object detec-
tion dataset and benchmark that contains 35K frames of 4DRT
data with power measurements along the Doppler, range,
azimuth, and elevation dimensions. It includes challenging
driving conditions such as adverse weathers (fog, rain, and
snow) and various road structures (urban, suburban roads,
alleyways, and highways). In addition to the 4DRT, auxiliary
measurements such as LiDAR point clouds, surround stereo
images, and RTK-GPS measurements are also provided.



Fig. 2. Samples of the K-Radar dataset for various weather conditions. Each column shows (1) 4D Radar tensors (4DRTs), (2) front view camera images,
(3) Lidar point clouds (LPCs), and (4∼7) 4D sparse Radar tensors (4DSRTs) with various density (0.01∼10%), where (1∼3) are obtained from [11], and
(4∼7) are our contributions. 4DRTs are depicted in a two-dimensional Cartesian coordinate system (BEV), since their dense 3D spatial information are hard
to be visualized. 4DSRTs are represented in black points with LPCs.

B. Radar Tensor Network with Height (RTNH)

In addition to the dataset, [11] also proposes Radar Ten-
sor Network with Height (RTNH), a 4DRT-based 3D object
detection network that fully utilizes 3D spatial information
available in the 4DRT. As shown in Fig. 3, the RTNH network
consists of a pre-processing, a backbone, a neck, and a head.
In the pre-processing, the 4DRT is converted from the polar
coordinate into the Cartesian coordinate, resulting in a 3DRT-
XYZ within the region of interest (RoI). Note that the Doppler
dimension is reduced by computing the mean value along the
dimension. The backbone then efficiently extracts the feature
maps that represent relevant information for bounding box
predictions using 3D sparse convolution [19] blocks. The
sparse convolution is performed on the sparse Radar tensor
(SRT), which consists of the top-10% of power measurements
with the highest values in the 3DRT-XYZ. Lastly, the head
predicts 3D bounding boxes from the concatenated feature
maps output of the neck.

While RTNH outperforms the Radar Tensor Network with-
out height (RTN) in terms of detection performance, the train-
ing process of RTNH is relatively slow due to the processing

time of a 4DRT, particularly the data reading operation of
the 4DRT. In addition, the prohibitively large 4DRT data
size of 12TB becomes a challenge to the accessibility of 4D
Radar data, resulting in a slow download speed and high (and
potentially costly) storage requirement.

III. SPARSE RADAR TENSOR

As shown in Fig. 3, a 4D Sparse Radar Tensor (4DSRT) is
the sparse representation of a 4D Radar Tensor (4DRT) that
can be used as an input to 4D Radar-based neural networks
such as the RTNH. To construct a 4DSRT, we transform the
4DRT from a polar coordinate into a Cartesian coordinate, and
then perform a pooling operation, where the top-N% elements
with the highest power measurements are retained. These
post-pooling values are then used as the input to the nural
networks. Note that unlike [11] that performs the coordinate
transformation and pooling operation at every iteration of the
training process, we only need to perform the transformation
and pooling once for each unique 4DRT, and reuse the
corresponding 4DSRT for every subsequent iterations.

Compared with a 4DRT, a 4DSRT requires significantly
lower memory and number of computations because the



Fig. 3. Overall structure of Radar Tensor Network with Height (RTNH) and comparison of the two types of Radar data (Radar Tensor and Sparse Radar
Tensor). RoI, FM, DFM, and PW denotes region of interests, feature map, dense feature map, and power, respectively.

number of elements in a 4DSRT is only N% of a 4DRT.
As a result, the advantages of utilizing 4DSRT are twofold.
First, the 4DSRT representation improves the accessibility
of the K-Radar dataset. Since the 4D Radar data size is
significantly reduced, we can easily host the complete dataset
in a commercial cloud-based storage service. This would
bring the advantage of higher uptime and download bandwidth
compared with hosting the dataset in a local server, as is the
case of the original K-Radar. Therefore, a higher number of
uninterrupted parallel access to the dataset can be supported.

Second, utilizing 4DSRT significantly improves the training
speed. This is because when we train using 4DRTs, the
majority of the training time is used for reading the 4DRT
elements from the disk, and for pre-processing the 4DRT with
Polar-to-Cartesian transform with interpolation that requires
a large number of computations. Because the number of
elements in the 4DSRT is significantly smaller, and the pre-
processing is only performed once, we observe that the training
speed of 4DSRT-based networks can be improved by a factor
of 17.1 compared with 4DRT-based networks.

One of the most important hyperparameter for 4DSRT is
the density reduction level N . In prior work [11], for the
online density reduction of 4DRT, N is arbitrarily chosen as
10%. However, we observe that N has profound effects on
both detection performance and memory consumption, and
therefore should be chosen carefuly. We discuss the most
optimal value for N in Subsection IV. C.

IV. EXPERIMENTS

In this section, we first describe the experiment setup and
metrics that are used in the experiments. Then, we discuss
the experiment results of 4DSRT-based RTNH with various
density of 4DSRT. We also provide a comparison of training
speed between 4DSRT-based RTNH and 4DRT-based RTNH.

A. Experiment Setup

In the experiments, the networks are implemented with
PyTorch 1.11.0 [20] on Ubuntu machines equipped with
RTX3090 GPUs. The batch size is set to 4, and the network
is optimized using Adam [21] for 11 epochs with a learning
rate of 0.001. We follow [11] and set the detection target to

the Sedan class, which has the highest number of samples in
the K-Radar dataset.

B. Metric

In the experiments, we evaluate the performance of the
3D object detection using Intersection Over Union (IOU)-
based Average Precision (AP) metric. The results are presented
in terms of APs for both BEV (APBEV ) and 3D (AP3D)
bounding box predictions, following the protocol in [22].
Following [11], we consider a prediction to be a true positive
if the IoU is greater than 0.3.

C. Comparison of RTNH with 4DSRT of various density

Table I and Table II show the AP3D and APBEV , respec-
tively, of 4DSRT-based RTNH networks with various density.
In [11], a density of 10% is arbitrarily chosen as the density
level of the input tensor. However, as we can see in the tables,
it is not the most optimal density level when considering
the memory consumption and AP performance. As shown
in the tables, the memory consumption grows proportional
to the density of the 4DSRT from 205 MB for the 0.01%
density level to 802 MB for the 50% density level. However,
increasing the density level does not guarantee an increase
in the detection performance. Specifically, the total AP3D

and total APBEV increases proportionally to the density of
the 4DSRT only from 0.01% density level to 5% density
level, with peak performance of AP3D = 47.9% at 5%
density level and APBEV = 61.9% at 3% density level. For
density levels over 5%, the detection performance oscillates
at AP3D ≈ 47% and APBEV ≈ 57%. These results, which
is intuitively illustrated in Fig. 4, provide a valuable insight
on the optimal value for 4DSRT density level, and can be
used as a guideline for hardware-level implementation in the
automotive radar industry [23].

D. Comparison of training speed whether utilizing 4DSRT

Table III shows the comparison of training speed between
a 4DSRT-based network and a 4DRT-based network. We find
that utilizing 4DSRT during training leads to a training speed



TABLE I
3D DETECTION PERFORMANCE COMPARISON OF RTNH WITH INPUTS OF 4DSRT OF VARIOUS DENSITY. WE REPORT THE AVERAGE PRECISION (AP3D )

OF THE TOTAL TEST SET AND INDIVIDUAL WEATHER CONDITIONS.

Density[%] GPU RAM[MB] Total[%] Normal[%] Overcast[%] Fog[%] Rain[%] Sleet[%] Light snow[%] Heavy snow[%]
0.01 205 16.8 18.3 13.6 23.5 16.9 27.1 23.1 32.2
0.1 212 35.2 34.9 30.9 53.8 26.9 33.4 41.8 41.6
1 245 43.0 45.0 43.2 48.0 35.4 41.8 57.7 41.0
3 325 44.6 49.4 52.5 52.1 36.3 37.5 59.5 44.2
5 380 47.9 50.4 56.5 60.4 38.8 39.2 53.2 50.3

10 421 47.4 49.9 56.7 52.8 42.0 41.5 50.6 44.5
15 567 46.9 50.0 56.5 57.2 39.3 30.4 51.0 41.3
20 623 47.1 49.0 57.4 56.6 42.3 30.6 52.0 48.9
30 697 45.4 48.7 57.7 52.3 40.6 24.4 51.6 41.0
50 802 46.1 50.6 55.0 54.5 38.2 22.2 57.6 49.5

TABLE II
BEV DETECTION PERFORMANCE COMPARISON OF RTNH WITH INPUTS OF 4DSRT OF VARIOUS DENSITY. WE REPORT THE AVERAGE PRECISION

(APBEV ) OF THE TOTAL TEST SET AND INDIVIDUAL WEATHER CONDITIONS.

Density[%] GPU RAM[MB] Total[%] Normal[%] Overcast[%] Fog[%] Rain[%] Sleet[%] Light snow[%] Heavy snow[%]
0.01 205 24.2 22.5 13.8 44.6 20.0 37.3 24.9 34.7
0.1 212 42.6 42.8 31.4 65.6 34.2 44.8 44.2 48.6
1 245 55.5 56.1 51.1 66.8 50.6 57.7 62.1 59.0
3 325 61.9 60.8 61.7 79.9 53.3 59.1 66.2 59.0
5 380 59.4 60.5 65.2 73.6 53.8 60.1 56.1 61.4

10 421 58.4 58.5 64.2 76.2 58.4 60.3 57.6 56.6
15 567 57.1 59.0 71.3 70.0 55.4 46.3 55.9 50.7
20 623 57.7 58.1 70.6 71.8 60.3 45.4 58.0 57.6
30 697 55.9 56.7 70.9 71.2 55.6 44.3 56.3 46.1
50 802 57.8 59.9 71.9 77.7 56.1 37.1 63.8 53.8

Fig. 4. Detection performance comparison between RTNH with inputs of
various density. We visualize the memory size for each variant with different
color values.

of 8.04 iteration/s, compared with 0.47 iteration/s for 4DRT-
based training. The 17.1 times improvement in training speed
clearly testify the benefits of 4DSRT over 4DRT.

V. CONCLUSION

In this paper, we have proposed the 4D Sparse Radar
Tensor (4DSRT), a sparse representation of 4D Radar data
with significantly lower data size compared with the dense
4D Radar Tensor (4DRT). Unlike prior work, that arbitrarily

TABLE III
COMPARISON OF TRAINING SPEED BETWEEN A 4DSRT AND A

4DRT-BASED NETWORK.

Network input Training speed [iteration/s]
4DSRT 8.04
4DRT 0.47

choose the density reduction level, we have conducted an ex-
tensive hyperparameter tuning to find the most optimal density
reduction level for the 4DSRT. We have found that a 5%
density reduction would result in the best performance in terms
of AP3D, and further increases in the density level do not
result in better detection performance, indicating that a denser
4DSRT does not guarantee a better detection performance. In
addition, we have provided a highly-optimized development
kit that, when used along with the 4DSRT, can improve the
training speed by a factor of 17.1.
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